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Studying brain function is a challenging task. In the past, we could only study brain

anatomical structures post-mortem, or infer brain functions from clinical data of patients

with a brain injury. Nowadays technology, such as functional magnetic resonance imaging

(fMRI), enable non-invasive brain activity observation. Several approaches have been

proposed to interpret brain activity data. The brain connectivity model is a graphical tool

that represents the interaction between brain regions, during certain states. It depicts

how a brain region cause changes to other parts of the brain, which can be implied

as information flow. This model can be used to help interpret how the brain works.

There are several mathematical frameworks that can be used to infer the connectivity

model from brain activity signals. Granger causality is one such approach and is one

of the first that has been applied to brain activity data. However, due to the concept of

the framework, such as the use of pairwise correlation, combined with the limitation

of brain activity data such as low temporal resolution in case of fMRI signal, makes

the interpretation of the connectivity difficult. We therefore propose the application of

the Tigramite causal discovery framework on fMRI data. The Tigramite framework uses

measures such as causal effect to analyze causal relations in the system. This enables the

framework to identify both direct and indirect pathways or connectivities. In this paper,

we applied the framework to the Human Connectome Project motor task-fMRI dataset.

We then present the results and discuss how the framework improves interpretability

of the connectivity model. We hope that this framework will help us understand more

complex brain functions such as memory, consciousness, or the resting-state of the

brain, in the future.
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1. INTRODUCTION

According to the theory of evolution, animals, including humans, as we know them today started
from simple organisms, then evolved and diverged over time into several species of animals. Some
animals have what looks like simplistic behavior, and some are more complicated than others.
Complex behavior in an animal is governed by the development of its central nervous system.
Earthworms have a relatively simple nervous system, and their behaviors reflect that—they are
observed to behave according to their set of innate behaviors (McManus et al., 1982). Animals
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with a more developed central nervous system, some birds for
instance, exhibit more complex future-oriented behavior, such
as food caching in anticipation of upcoming environmental
changes (Roth, 2015). Animals like dogs show higher cognitive
function with their social behavior among other dogs and even
with humans. Even more advanced animals, namely elephants
(Plotnik et al., 2006) and dolphins (Reiss and Marino, 2001),
exhibit even higher cognitive function, such as self-recognition
of their own reflection when presented with a mirror, which is a
rare cognitive capability in the animal kingdom.

At the apex of that central nervous system development is
humankind. We are capable of performing complex cognitive
tasks that no other animals have been observed to be capable
of. Our perceptions enable us to recognize and interpret sensory
stimuli, process the meaning of what we see, hear, feel, and taste,
and then storing these stimuli in our memory. Our linguistic
abilities enable the transfer of knowledge or ideas. The ability
to spontaneously perform memory-related cognitive functions
is theorized to be a basis of higher cognitive function, such as
problem-solving, decision-making, and even the theory of mind,
which is a theory about how humans are able to recognize their
own selves and project that self within their mind, resulting in the
individuality of each human (Schacter et al., 2015).

The brain is at the center of the central nervous system.
Understanding its mechanism is important to understanding
how all aforementioned cognitive functions work. Studying brain
mechanisms presents several difficulties, mainly the fact that
brain activity cannot be physically observed from the outside.
In the past, it was difficult to observe the brain activity of a
living subject without the risk of an invasive medical procedure.
Nonetheless, post-mortem studies of brain cellular structures
have provided us with an idea of how the brain is anatomically
organized and, combined with medical and psychological
observation of patients with specific cognitive prognosis or
brain injuries, several studies have aimed to interpret how brain
mechanisms work based on those observations.

Current technological advances such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) techniques enable us to observe
live brain activities non-invasively using external sensors. Each
technique has its own advantages and disadvantages. The EEG
technique yields a high temporal resolution signal because it
monitors brain electrical activity, however, its signal has low
spatial resolution since the recorded electrical brain activity is
observed through the layers of the skull and scalp. Functional
magnetic resonance imaging (fMRI) is an extension of the
MRI technique, which is an imaging technique developed to
form an image of an internal anatomical structure without
the need of an invasive procedure. MRI scanners use strong
magnetic fields to polarize and then detect hydrogen atoms,
abundantly present in the human body in the form of water
and fat, to construct anatomical structure images. The fMRI
technique extends conventional MRI by observing blood flow
or blood-oxygen-level-dependent (BOLD) through the brain
over time. We can infer brain activity from the BOLD signal on
the assumption that the active brain areas consume energy, thus
require relatively higher amounts of blood in comparison to the

inactive areas. The fMRI technique yields high spatial resolution
in terms of localization of the active brain area; however, it
has low temporal resolution due to the fact that it observes
the physical displacement of blood, which is relatively slow
compared to the actual underlying electrical neuronal activity.

With the current technology, we can observe live brain
activity. The next question is how we would interpret this
information. Conventional fMRI studies can show us the
localization of brain activity in relation to the cognitive
function of interest. Knowing which area of the brain is active
during which cognitive task does not provide us with a full
understanding of the mechanisms of the brain. Understanding
the interaction between those active brain regions will provide
us with a deeper understanding of dynamic brain function.
The concept of the brain connectivity model was developed to
represent those interactions between brain regions. There are
three types of brain connectivity models, anatomical, functional,
and effective connectivity models. The anatomical connectivity
model represents the actual physical connection based on the
brain’s cellular structure and organization (Wang et al., 2013),
knowledge mostly acquired through post-mortem studies of the
brain. Functional models represent an un-directed statistical
relationship between brain regions, while the effective model
represents a directed causal relationship between brain regions.
These are usually constructed by analyzing brain activity data.
We can interpret the information provided by these models to
infer how brain mechanisms works.

There are several mathematical frameworks and algorithms
available for functional or effective connectivity model inference
from recorded brain signal time-series. One of the most well-
known frameworks is Granger causality (GC), a linear auto-
regressive causality modeling framework (Granger, 1969). The
underlying causality definition of this framework is that X → Y
if, and only if, change in X has an effect on Y (Pearl, 2009).
However, this framework only measures statistical dependencies
(correlation) between activities of brain regions. Moreover, in
case of fMRI, the fact that BOLD time-series is only by-products
of the actual neuronal signal and has low temporal resolution,
further confounds the connectivity model, where the basis
assumption relies on correct temporal order of the signal.

In recent years, several tools designed specifically for brain
connectivity study using fMRI data, such as Dynamic Causal
Modeling (DCM) (Friston et al., 2003) or CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) have been
developed. Each attempts to address the aforementioned issue
from different aspects. The DCM constructs the connectivity
model by predicting neuronal activity using a forward model,
then it uses a hemodynamic model to generate a hypothetical
BOLD time-series. Finally, it tests the hypothesis against the
real BOLD time-series to choose the best model. The CONN
toolbox performs temporal pre-processing on BOLD time-series
in addition to conventional spatial pre-processing to remove
noises that usually cause spurious connection in the model
as much as possible. Each approach has its own advantages
and disadvantages. For example, the DCM needs a concrete
assumption of the driver that causes changes in the system,
and it is usually suitable with a task-based fMRI paradigm. The
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CONN toolbox, which is usually applied to resting-state fMRI,
is only designed for functional connectivity that only shows
correlation between brain regions, in contrast to the effective
connectivity model which encodes more information in form
of a directed link. The additional information improves the
model interpretability.

In the context of fMRI analysis, DCM is a technique developed
specifically for analysing connectivity from fMRI BOLD time-
series and it is arguably one of the most widely adopted
methods. This technique is a model-based approach where it
constructs a connectivity model by simulating a hypothetical
model supplemented by a hemodynamic forward model. It then
estimates the model parameters from observed data (Friston
et al., 2003). DCM requires a priori knowledge about the
structure of the network being estimated to test different specific
hypotheses using Bayesian model comparison. For this reason,
the classical DCM is only suitable for a task-based experiment
paradigm where input functions are known. To extend the
capability of DCM to cover resting-state analysis where input
function is not well-defined, a DCM for resting-state fMRI
(spectral DCM) was developed (Friston et al., 2014). The
new developed technique fits a model to the cross spectrum
of the data. Cross spectra are second-order statistics of the
original time-series under stationarity assumption. However,
the resting-state analysis usually includes a larger number of
regions of interest, which can be a challenge for DCM in
terms of computational cost. Razi et al. proposes a framework
complimentary to spectral DCM, using functional models as
priors to reduce computational complexity of a large-scale
network (Razi et al., 2017).

Tigramite (time-series graph-based measures of information

transfer) is a time-lagged causal discovery framework based
on conditional independence testing using the assumptions of
time-order, Causal Sufficiency, the Causal Markov Condition,
and Faithfulness, among others (Runge, 2018). The inclusion of
time-lag enables this framework to show changes in the causal
model over time, which is useful for pathway inference. The
connectivity models can be visualized in form of graphical model
(Lauritzen, 1996) which is a summary model showing all existing
connectivities, or time-series graph (Eichler, 2012), a graph that
shows a causal relation along a lagged-timeline. This visualization
is useful for model interpretation.

The development of this framework started with an attempt
to escape the curse of dimensionality in estimating multivariate
transfer entropy from observational climate data (sea level
pressure) (Runge et al., 2012). Transfer entropy (TE) is a
model-free approach to detect directed transfer of information
(causality) between a stochastic process (Schreiber, 2000). The
main problems with the interpretation of causal influences in a
system where the underlying mechanisms are poorly understood,
are the possibility of spurious causalities from indirect influences
or common drivers (Runge et al., 2012). When interpreting
the relationship between two process, it can be said to be
a causal relationship if a statistical methods can (1) measure
associations, (2) measure time delays, and (3) exclude other
influences (Pearl, 2009). An existing model-based approach

such as Granger causality fulfills requirements (1) and (2). The
unfulfilled requirement (3) makes it controversial to infer causal
relationship in this approach. There are no such model-based
requirements in the information theoretic framework (Cover
and Thomas, 2006). The information-theoretic function utilized
in this framework is conditional mutual information (CMI)
(Hlaváčková-Schindler et al., 2007) in the form of transfer
entropy (TE) (Schreiber, 2000).

The main advantage of choosing TE over conventional
methods such as DCM is that it is model-free and is also capable
of detecting both linear and non-linear dependencies. DCM relies
on correct prior knowledge of the network under investigation to
define the optimal model space, because the model space should
reflect the possible causal connection between the brain region in
the network (Kahan and Foltynie, 2013). Therefore, it may not be
optimal for exploratory analyses. Vicente et al. formulated four
requirements for a new effective connectivity measure for it to be
considered a useful addition to the established methods, such as
GC and DCM, and showed that TE fulfills those requirements.
(Vicente et al., 2010). The four requirements are as follows:

1. It should not require the a priori.
2. It should be able to detect non-linear interactions.
3. It should be able to detect effective connectivity even if there

is a wide distribution of interaction delays between two nodes.
4. It should be robust against linear cross-talk between signals.

The first requirement ensures that the new measure is useful
for exploratory investigations. DCM was designed specifically
for fMRI data by including a generative model based on
hemodynamic function (Buxton et al., 1998), which can be both
a strength and a weakness because, while the model fits the
data well, it depends on the accuracy of the current knowledge
regarding hemodynamic response (Bielczyk et al., 2019). There
are new studies suggesting that hemodynamic responses vary
across populations based on the physical conditions of the
individuals (Handwerker et al., 2012). Nonetheless, the model-
free measure could also be used in addition to DCM in large-
scale analyses to create prior constraints, to reduce the model
space of large networks. The second and third requirements
are dictated by observed characteristics of brain function. The
brain exhibits strong non-linear interactions across all levels
of brain function. The signal, traveling from one brain region
to another, also involves several pathways where delays could
be varied according to the anatomical structure (Swadlow and
Waxman, 1975). The fourth requirement ensures the quality of
the analysis using signals from electroencephalography (EEG) or
magnetoencephalography (MEG), however, this property could
still benefit from further analysis using the fMRI signal.

There are several studies that utilize TE to investigate brain
connectivity. The studies by Wibral et al. investigate brain
connectivity using multivariate transfer entropy (Novelli et al.,
2019) in both task and resting-state paradigms (Wibral et al.,
2017a,b). On the other hand, the Tigramite framework proposes
the use of graphical causality in combination with information
theoretic measure i.e., TE. The Tigramite utilizes the PCMCI
algorithm (Runge, 2018), which was proposed to address the
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shortcomings of the Peter and Clark (PC) algorithm (Spirtes
and Glymour, 2016). The PC algorithm is a graph-based causal
discovery algorithm where it starts with a complete undirected
graphical model (Lauritzen, 1996), then the links are adjusted
based on a conditional independence test (Spirtes and Glymour,
2016). The PCMCI algorithm has two main steps. In the first
step, a version of the PC algorithm is used to estimate parent
sets of each variable. Then, in the second step, it performs the
momentary conditional independence (MCI) test for each pair of
variables and conditions on the aforementioned parent sets. This
reduces the number of independence tests it needs to perform.
The important advantage of PCMCI over PC is that the MCI test
accounts for autocorrelation which keeps the false-positive rates
at the expected level (Runge et al., 2017).

This study is the first to attempt to apply the Tigramite
framework to fMRI time-series. We applied the Tigramite
framework to motor task-fMRI data collected and distributed by
the Human Connectome Project (HCP) (Van Essen et al., 2012).
Later in this paper, we discuss how we applied the framework
to fMRI BOLD time-series, and how we interpret the resulting
model in context of brain connectivity.

2. MATERIALS AND METHODS

2.1. HCP Dataset and Protocols
The Human Connectome Project (HCP) is a project conducted
by the Washington University-University of Minnesota Human
Connectome Project Consortium (WU-Minn HCP) (Van Essen
et al., 2012). This dataset provides access to exceptional
spatiotemporal resolution fMRI data of a large well-characterized
group of healthy individuals. We utilized HCP motor task-fMRI
for this study (Figure 1A). This motor task was adapted from a
design developed by Bucholz et al. (1994). Subjects were asked
to perform the following actions: tapping left or right fingers,
squeezing left or right toes, or moving tongue according to a
visual cue presented. The session was organized in blocks of
movement type, each preceded by a 3 s cue, and lasted for 12
s with 10 movements. Overall, the session contains 13 blocks
in total, with four foot movements (two right and two left),
four hand movements (two right and two left), and two tongue
movements. The remaining three blocks are 15 s fixation blocks.

2.2. Univariate Group Subtraction Analysis
Aunivariate group subtraction analysis was performed to identify
activated brain regions while the subjects were performing the
tasks. The fMRI images were processed and analyzed using
FSL 6.0.2 (FMRIBs Software Library, www.fmrib.ox.ac.uk/fsl)
software suite (Figure 1B). The pre-processing consisted of
image reconstruction, distortion correction, motion correction,
and slice timing correction. The HCPs structural MRI and fMRI
were pre-processed using FSL 5.0.6 according to the HCP pre-
processing pipeline (Glasser et al., 2013). Individual- and group-
level univariate group subtraction analyses were done using
FEAT (FMRI Expert Analysis Tool, v.6.00). Fifty subjects were
randomly selected from the HCP dataset for this analysis.

FIGURE 1 | Summary of processing pipeline from fMRI data to connectivity

using Tigramite. (A) Here, we use a motor task-fMRI dataset provided by the

Human Connectome Project (HCP). The data were pre-processed by the HCP

using the HCP pre-processing pipeline (Glasser et al., 2013), which includes

image reconstruction, distortion correction, motion correction, and MNI

nonlinear volume registration. (B) We performed localization of the activated

brain region during the task using FSL FEAT fMRI analysis. Group-level

analyses were done using 50 randomly selected individuals. (C) We then

defined masks for BOLD time-series extraction based on the aforementioned

localization results using FSLeyes. Additional regions that are known to play

roles in motor-related function were included. The average BOLD time-series

of each region of interest was then extracted using the fslmeants tool.

(D) Finally, Tigramite was used to construct a connectivity from the extracted

time-series. The first step is to estimate the lagged dependencies to determine

the maximum lag (τmax ). We then performed the conditional independence test

to estimate the causal link between each ROI. After that, the estimated

time-series graph was used to evaluate the causal effect and causal mediation.

2.3. Region-of-Interest Selection and
Time-Series Extraction
To construct a connectivity model, a region-of-interest (ROI)
set must be selected. A ROI set was usually selected based on a
univariate group subtraction analysis. Additionally, ROI can also
be selected from related literature. In this study, the main effect
of motor task is identified in the left and right anterior primary
motor cortex Brodmann area 4, left and right posterior primary
motor cortex Brodmann area 4, left and right premotor cortex
Brodmann area 6, left and right visual cortex V1 Brodmann
area 17, and left and right visual cortex V2 Brodmann area
18. Furthermore, the frontal lobe, cerebellum, left and right
thalamus, are included based on prior studies (Manto et al.,
2011) where they a play role in motor related task. The masks of
the aforementioned region were created using FSLeyes software
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TABLE 1 | All region of interest included in connectivity model.

No. Area name Abbreviation Atlas

1 Left thalamus PmcBA4pL MNI structural

2 Right thalamus PmcBA4pR MNI structural

3 Left premotor cortex Brodmann area 6 PcBA6L Juelich histological

4 Right premotor cortex Brodmann area 6 PcBA6R Juelich histological

5 Left anterior primary motor cortex Brodmann area 4 PmcBA4aL Juelich histological

6 Right anterior primary motor cortex Brodmann area 4 PmcBA4aR Juelich histological

7 Left posterior primary motor cortex Brodmann area 4 PmcBA4pL Juelich histological

8 Right posterior primary motor cortex Brodmann area 4 PmcBA4pR Juelich histological

9 Left visual cortex V1 Brodmann area 17 V1BA17L Juelich histological

10 Right visual cortex V1 Brodmann area 17 V1BA17R Juelich histological

11 Left visual cortex V2 Brodmann area 18 V1BA18L Juelich histological

12 Right visual cortex V2 Brodmann area 18 V1BA18R Juelich histological

13 Cerebellum Cereb Harvard-Oxford cortical structural

14 Frontal lobe FL Harvard-Oxford cortical structural

(Figure 1C). Each mask has been checked to ensure that there is
no overlapping between different regions.

BOLD time-series were extracted using FSL’s average time-
series calculation tool (fslmeants). The time-series of each area
was extracted according to the Juelich histological atlas, the
Harvard-Oxford cortical structural atlas, and the MNI structural
atlas (Table 1). Slice timing correction was performed using FSL.

2.4. Tigramite Causal Discovery
For connectivity model construction, we propose the use of the
Tigramite causal discovery framework (Figure 1D). To obtain
causal information from measured variables, some assumptions
are needed. This framework focuses on three main assumptions
under which the time-series graph represents a causal relation
(Runge, 2018).

The first assumption is Causal Sufficiency, which assumes that
no other unobserved variable exists that influences any other
pair of our set of variables, either directly or indirectly. We
need this assumption because it is impossible to ensure that we
have measured all possible variables (Pearl, 2009). The second
assumption is the Causal Markov Condition. This condition
dictates the relationship between process X and its associated
graphG. It implies that once we know the value of a node’s parent
at time τ , all other variables in the past become irrelevant for
predicting the state of the current node (Spirtes et al., 2000). The
third assumption is Faithfullness. Faithfullness guarantees that
the graph entails all conditional independence relations that are
implied by the Markov condition (Spirtes et al., 2000).

Subsequently for the Causal Markov condition to hold true,
the assumption that there is no instantaneous (contemporaneous)
causal effects is needed. It may seem counterintuitive to consider
the instantaneous effect between dynamical systems because the
physical speed of information transfer, i.e., speed of light, is finite.
The problem arises when the time-series cannot be sampled with
sufficient resolution (Runge, 2018).

The causal discovery algorithm used in this framework is
PCMCI. This approach was implemented in this framework to

address some of the shortcomings of the PC (Peter and Clark)
algorithm (Spirtes and Glymour, 2016). The PC algorithm was
invented for random variables without assuming a time order
(Lauritzen, 1996). Its process consists of several phases where
first an undirected graphical model is estimated, then its links are
adjusted using a set of logical rules (Spirtes and Glymour, 2016).

Tigramite defines the time-series graph of a stationary
multivariate discrete-time stochastic process X of dimension N
as graph structure G = (V × Z,E) of X where the set of nodes
in the graph consists of the set of components V at each time
t ∈ Z. The links in graph G are defined as a connection between

variables Xi
t−τ

and X
j
t connected by a lag-specific directed link

"Xi
t−τ

→ X
j
t" ∈ G for τ > 0 if and only if

Xi
t−τ

6⊥⊥ X
j
t|X

−
t \{X

i
t−τ

}, (1)

where X−
t = (Xt−1,Xt−2, . . . ). X, Xt , and X−

t are considered
as sets of random variables. The symbol \ denotes set difference
(Runge, 2018).

The stationarity is assumed for process X. The process X is
casually stationary over a time index set T if and only if for all

links Xi
t−τ

→ X
j
t in graph (Runge, 2018)

Xi
t−τ

6⊥⊥ X
j
t|X

−
t \{X

i
t−τ

} holds for all t ∈ T. (2)

The framework constructs a time-series graph of a multivariate
stochastic process Xt by evaluating the conditional mutual
information (CMI) from subprocesses Xt−τ to Yt for τ > 0

I(Xi
t−τ

;Yt|X
−
t \{Xt−τ }), (3)

with infinite past X−
t = (Xt−1,Xt−2, . . . ). If Y 6= X, the link

Xt−τ → Yt is considered as a coupling or cross-link at lag τ . If
Y = X, then the link is considered an autodependency or autolink
at lag τ (Runge, 2015).
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The CMI for multivariate random variables X, Y , Z is
defined as

IX;Y|Z =

∫∫∫

dxdydz p(x, y, z)log
p(x, y|z)

p(x|z) · p(y|z)
,

= HX|Z +HY|Z −HZ −HX,Y|Z ,

(4)

where H denotes the Shannon entropy and densities p(·) are
assumed to exist (Runge, 2017). The framework tests the
conditional independence hypothesis

H0 :X ⊥⊥ Y|Z, (5)

against the general alternative. IX;Y|Z = 0 if, and only if,
X ⊥⊥ Y|Z, provided that densities are well-defined (Runge,
2017). Tigramite utilizes a permutation-based generation of the
distribution under H0 for hypotheses testing in graph structure
construction. The conditional independence testing used in this
framework is CMI, as defined in Equation (4) and is a model-
free method, therefore, in principle, it can handle non-linear
dependencies (Runge, 2018).

The framework then measures information transfer from the
past of a process X at times t′ < t to the target variable Y at time
t and excludes common information in history shared by X and
Y . TE is defined as (Runge, 2015)

I(X−
t ;Yt|X

−
t \X

−
t ), (6)

I(X−
t ;Yt|X

−
t \X

−
t ) =

∞
∑

τ=1

I(Xt−τ ;Yt|X
−
t \X

−
t ,X

−
t−τ

), (7)

To overcome the curse of dimensionality of the condition in each
term, TE is estimated using decomposed transfer entropy (DTE)
(Runge et al., 2012), utilizing the theory of graphical models
(Lauritzen, 1996; Eichler, 2012) which implies that

I(Xt−τ ;Yt|X
−
t \X

−
t ,X

−
t−τ

) = I(Xt−τ ;Yt|SYt ,Xt−tau ), (8)

for a certain finite subset SYt ,Xt−tau ⊂ X−
t \X

−
t ∪ X−

t−τ
of the

conditions. The suitable set SYt ,Xt−tau can be determined from the
constructed time-series graph. The DTE is calculated by

ITEX→Y ≈ IDTEX→Y =

τ
∗

∑

τ=1

I(Xt−τ ;Yt|SYt ,Xt−tau ), (9)

where τ
∗ is the smallest chosen τ (Runge et al., 2012).

The conditional independence test needed to compute CMI
and TE in Tigramite is CMIknn, based on conditional mutual
information estimated with the k-nearest neighbor entropy
estimator developed by (Kraskov et al., 2004)

ÎXY|Z = 9(k)+
1

n

n
∑

i=1

[9(kzi )− 9(kxzi )− 9(k
yz
i )] (10)

with the logarithmic derivative of the Gamma function 9(x) =
d
dx
lnŴ(x). Free parameter k is the number of nearest neighbors in

the joint space of X ⊗ Y ⊗ Z around each sample point i at
maximum norm distance ǫi. The k

xz
i , k

yz
i , and kzi are computed

by the number of points with a distance smaller than ǫi in the
subspace X ⊗Z , Y ⊗ Y , and Z to get kxzi , k

yz
i , kzi , respectively

(Runge et al., 2017).
The appropriate maximum time delay τmax usually depends

on the nature of the signal being investigated. We can estimate
the τmax by observing the lagged unconditional dependencies
decay. In this study, we observed that the dependencies decay
beyond a lag of 15. For the significance level α, in the context
of this framework it takes the role of a regularization parameter
for model-selection, since precise assessment of uncertainty is
not possible in iterative hypothesis testing. In our motor task-
fMRI application, the algorithm parameters we used are as follow:
maximum time lag τmax = 15 time point, significance level
α = 0.01 (Student’s t-test).

To quantify causal interaction between the subprocess, this
framework proposed a measure I to quantify linear causal effect
(CE) of perturbation (Runge, 2015)

ICEi→j(τ ) = 9ji(τ ) (11)

where 9(τ ) is iteratively computed matrix products of estimated
coefficient matrices 8(τ ) by (Runge et al., 2015)

9(τ ) =

τ
∑

s=1

9(s)8(τ − s). (12)

The mediated causal effect (MCE) through a component k is the
sum over the products of path coefficients only along causal paths
through k.

IMCE
i→j (τ ) = 9ji(τ )− 9

(k)
ji (τ ) (13)

where 9
(k)(t) is a computed from Equation (12) with

modified path coefficient matrices 8
(k)(t) where all links toward

component k are set to zero

9
(k)
ki

(τ ) =

{

0, for all links Xi
t−τ

→ Xk
t

8ki(τ ), otherwise
(14)

which blocks all paths through component k at any lag
(Runge et al., 2015).

Aggregated causal effect (ACE) and aggregated causal
susceptibility (ACS) measures on the lag with maximum effect
(Runge et al., 2015):

ICE,max
i→j = max

0<τ≤τmax

|ICEi→j(τ )| (15)

IACEi→j =
1

N − 1

∑

j 6=i

ICE,max
i→j (16)

IACSi→j =
1

N − 1

∑

i6=j

ICE,max
i→j . (17)
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FIGURE 2 | Group-level clusters of each task block from 50 randomly selected subjects of the HCP motor task-fMRI dataset. Z statistic images were thresholded

using clusters determined by Z>3.1 at a cluster significance threshold of P = 0.05 (corrected). FEAT (FMRI Expert Analysis Tool, v6.00) was used for the analysis. The

General Linear Model was used to model six blocks (five task blocks, one cue block). Task blocks consisted of tapping left or right fingers, squeezing left or right toes,

or moving the tongue, preceded by a visual cue block. The brain areas covered by these clusters are listed in Table 2. (A) Right foot, (B) right hand, (C) left hand, (D)

left foot, (E) tongue, (F) visual cue.

The average mediated causal effect (AMCE) is calculated based
on causal paths through a given node

IAMCE
k =

1

|Ck|

∑

(i,j)∈Ck

max
0<τ≤τmax

|IMCE
i→j|k(τ )| (18)

where Ck is the set of interactions between all non-identical
pairs i, j 6= k at all lags 0 < τ ≤ τmax where k is
an intermediate component (at any lag) and |Ck| denotes its
cardinality (Runge et al., 2015).

3. RESULTS

3.1. Brain Activity Localization
While the localization of the motor-related brain region has
been well studied, we performed univariate group subtraction
analysis on this data to verify that this dataset is consistent with
previous findings.

The resulting main cluster of all the task blocks is shown in
Figure 2, and the areas covering the activated brain region are
listed in Table 2. The left and right foot tasks show clusters at the
right and left premotor cortex (Brodmann area 6), respectively.
The left- and right-hand tasks show clusters at the right and
left primary motor cortex (Brodmann area 4). The tongue block
shows clusters in both the left and right primary motor cortex.
The visual cue block shows large cluster covers both in the left and

TABLE 2 | Area identified by univariate group subtraction as defined by Juelich

histological atlas.

Area name Abbreviation used

in this paper

Left anterior primary motor cortex Brodmann area 4 PmcBA4aL

Right anterior primary motor cortex Brodmann area 4 PmcBA4aR

Left posterior primary motor cortex Brodmann area 4 PmcBA4pL

Right posterior primary motor cortex Brodmann area 4 PmcBA4pR

Left premotor cortex Brodmann area 6 PcBA6L

Right premotor cortex Brodmann area 6 PcBA6R

Left visual cortex V1 Brodmann area 17 V1BA17L

Right visual cortex V1 Brodmann area 17 V1BA17R

Left visual cortex V2 Brodmann area 18 V1BA18L

Right visual cortex V2 Brodmann area 18 V1BA18R

right visual cortex V1 (Brodmann area 17) and V2 (Brodmann
area 18).

3.2. Causal Effect
In the following section, we show a constructed connectivity
model and its associated parameter of a random HCP subject.
In this framework, in addition to studying causal effects between
adjacent nodes in the connectivity model, we can also study total
causal effect (CE) along indirect causal paths. Thematrices of CEs
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FIGURE 3 | Causal effect of all ROI pairs and lags. An entry in the matrix shows causal effect ICEi→j (τ ) calculated using Equation (12) where i and j correspond to the ROI

listed in Table 1. The strength declines in the longer lags.

between all ROIs are shown in Figure 3. The CE between two
components i and j at lag τ can be denoted as ICEi→j(τ ).

We can observe that CE becomes stronger as the lag (τ ) is
increased at node 12, 8, and 4 or area V1BA18R, PmcBApR,
and PcBA6R (Table 1), respectively. From this observation, we
can further investigate the interaction between these areas by
plotting their mediation graph. The Figure 4 is a mediation graph
between V1BA18R and PmcBA4aL. We choose to investigate
this pair because it has the highest CE, ICE12→5(15) = 0.82. The
time-series graph in Figure 4B shows the effects propagated from
V1BA18R to other visual areas in the early process, then the

strongest CE propagates to PmcBA4aL in the left hemisphere,
and weaker CE propagates to PmcBA4aR in the right hemisphere.
After that, the CE propagates from PmcBA4aR to PcBA6R. The
left Thalamus only receives CE from PcBA6R and shows negative
CE to several visual areas and PmcBA4aL. The negative CEmeans
that it counteracts the effect of other areas.

3.3. Causal Gateway and Mediators
By calculating average causal effect (ACE), a column-mean of
the CE matrices, and average causal susceptibility (ACS), a row-
mean of the CE matrices, we can observe how much effect a
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FIGURE 4 | (A) An aggregated graphical model from V1BA18R to PmcBA4aL at lag 15 ICE12→5(15). It is a summary graph representing the time-series graph in (B). The

edge color shows link coefficient and node color shows the MCE. (B) A time-series-graph of V1BA18R to PmcBA4aL pair at lag 15 ICE12→5(15) depicts links in relevant

causal paths between V1BA18R and PmcBA4aL at lag 15. The edge color shows link coefficient and node color shows the MCE.

specific ROI has on the rest of the brain and how sensitive a
specific ROI is to perturbations from other parts of the brain.
An average mediated causal effect (AMCE) measures how strong
a subprocess mediates CEs propagating throughout the system
(Runge et al., 2015).

In Figure 5, we show ACE, ACS, and AMCE for this HCP
subject. The Figure 5A shows that this particular subject’s right
visual cortex (Brodmann area 18) has a strong effect on the rest
of the brain. This is reasonable since in the HCP motor task-
fMRI protocol, the subject’s actions were initiated by a visual
cue. In Figure 5B, we can see that the left primary motor cortex
(Brodmann area 4) has high susceptibility with the change from
other areas. We can infer the reason behind this observation
to be due to the fact that this task focuses on motor function,
thus most changes in the system affect motor-related areas the
most. In Figure 5C, the right visual cortex (Brodmann area 17)
is shown to be the strongest mediator of the CE spreading. This
area acts as themain pathway to this system, corresponding to the
experiment paradigm where their visual cue initiates the action.

4. DISCUSSION

4.1. Connectivity Model Inference and
Interpretation
Correctly interpreting brain mechanisms is difficult, especially
in higher cognitive functions such as memory or self-awareness,
because there is no ground truth, and some cognitive functions
cannot be physically observed. In this study, we show that
in addition to conventional connectivity model construction
approaches such as Granger causality, Tigramite is also a viable
approach with its own benefits. We chose to show its application
with a motor task-fMRI dataset because mechanisms of brain
motor function are well studied. The available knowledge can
be used to compare and verify the validity of the resulting
connectivity model.

The brain area involved in controlling the body’s voluntary
movement is the motor cortex. This area can be further divided
into the primary motor cortex (Brodmann area 4), the premotor
cortex (Brodmann area 6), and a supplementary motor area

(Meier et al., 2008). The primary region of the motor system
is the primary motor cortex. It works in association with the
rest of the motor area to control muscle movement. Visual
area 1 (V1), or Brodmann area 17 (BA17) in the visual cortex,
functions primarily in pattern recognition in the visual field
(Goetz, 2007). It processes visual information in association
with other regions inside the visual cortex, such as Broadmann
area 18 (BA18). The frontal cortex in the frontal lobe has
been found to play roles in mediating movement-related brain
signals (McFarland and Haber, 2002) through the thalamus
and cerebellum (Bosch-Bouju et al., 2013). According to this
knowledge, we used Tigramite to construct a connectivity model
involving these regions.

The Tigramite framework shows not only the statistical
dependency between brain regions, but also the causal effects
among the regions. In addition to the topological information
of the resulting graphical model, ACE, ACS, and AMCE provide
information about the overall characteristic of the interaction
inside the model.

ACE shows how much of an effect a ROI has on the rest
of the brain. The ACE of the random subject depicted in the
results section shows that the major driver of the system is the
right visual area (BA17), followed by the right premotor cortex
(BA6), and the right primary motor cortex (BA4), respectively
(Figure 5A). It is reasonable to expect the visual cortex to be
a major driver to the system, due to the fact that the motor
task performed by the subject was initiated by a visual cue.
Inside the motor cortex, ACE shows that the premotor cortex
is the major driver to the system. It reflects the fact, found by
studying brain activity of monkeys, that the premotor cortex is
involved in planning and preparing for movement, after which
the movement is then executed by the primary motor cortex
(Weinrich and Wise, 1982).

The level of ACS shows how susceptible a ROI is to
the perturbations from other parts of the brain. In our
sample case, the brain areas with high ACS are the left
primary motor cortex (BA4) and the left premotor cortex
(BA6) (Figure 5B). Considering that the right motor cortex is
shown to be a major driver, the high susceptibility of the left
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FIGURE 5 | (A) Depicts the average causal effect (ACE) of each brain region (nodes) in HCP motor task-fMRI connectivity model. The values (size of the nodes) reflect

how much a particular region effects the rest of the brain. (B) Average causal susceptibility (ACS) shows how sensitive the region is to the change from the rest of the

system. (C) Average mediated causal effect (AMCE) shows how strong the region mediates the effect propagation.

motor cortex may be evidence of inter-hemispheric coupling in
brain activity, observable even during a uni-lateral motor task
(Darvas and Hebb, 2014).

AMCE measures the subprocess that mediates the
propagation of CEs throughout the system. Figure 5C

demonstrates that the most dominant causal mediators is
the right visual area (BA17), which means that this region is a
major causal pathway of this system. The presence of dominant
mediation and a driver in the right hemisphere may be related to
the handedness of the subject. Unfortunately, the HCP dataset
does not include this information in subject’s profile, so we
cannot confirm this conjecture.

In Figure 4, we show a connectivity model of the pathway
between the right visual area (BA18) and the left primary motor
cortex (BA4) at lag 15. While we expected a mediation pathway
in the frontal lobe, caused by motor movement planning activity
(Andersen and Cui, 2009), we could not detect it. The absence of
this connection might be due to the fact that if the CEs are faster
than the lag resolution, the repetition time (TR) in the case of
fMRI—which is 2.8 s for this dataset—will appear in the analysis
as contemporaneous links, which are not regarded as causal links
(Runge et al., 2015).

4.2. Computational Cost and Consistency
The computational complexity of the PCMCI used in Tigramite
depends on the complexity of the condition selection step and
the momentary condition independence (MCI) test step. The
complexity of the conditional selection step depends on the
network structure where, the worst case being complete graph,
the number of conditional independence tests for N variables are

N

Nτmax−1
∑

p=0

Nτmax = N3
τ
2
max (19)

tests with iteratively increasing cardinality (Runge et al., 2017).
The number of tests in the MCI step are N2

τmax tests for τ > 0

of a maximal dimensionality of 2+ |P̂(X
j
t)| + |P̂(Xi

t−τ
)| where

P denotes the causal parents (Runge et al., 2017). Thus, the
overall complexity of the PCMCI is N3

τ
2
max + N2

τmax which is
polynomial. The current implementation of the PCMCI does not
yet support parallelization, however, it is a planned feature. There
are several processes that have potential for parallelization, so the
framework’s performance may improve in the future.
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Consistency is a property of the causal discovery method,
indicating whether the method is able to converge to the true
causal graph in the limit of the infinite sample size (Runge, 2018).
Consistency of PCMCI is proven by Runge et al. (2017).

4.3. Advantages and Disadvantages of
Tigramite
Graph theory is a classical tool used for brain function modeling,
usually based on pairwise association measures among nodes in
the graph (Bullmore and Sporns, 2009). In contrast, Tigramite
uses CE which is a dynamical and causal alternative to classical
measures, and which has been found to have a higher predictive
power (Runge et al., 2015). The problem such as common driver,
where X and Y are driven by a common Z process with a
difference in time lag, reduces the validity and interpretability of
the connectivitymodel in the framework where only a correlation
between two variables is considered at a time, such as Granger
causality (Mannino and Bressler, 2015). The implementation
of Tigramite allows for a more detailed pathway analysis by
investigating the CE of each node along lagged time. It mitigates
the common driver problem by discovering hidden pathways
and drivers.

However, limitations of this approach have to be considered
when interpreting the model. This method is a data-driven
approach; thus, it needs to rely on several assumptions. For
example, causal sufficiency assumes that all variables are available
and taken into account (Spirtes et al., 2000). When interpreting
resulting CEs, it is important to consider it relative only to
variables that were taken into account (Runge et al., 2015).

While we have shown that this approach is applicable on an
individual level, to interpret brain mechanisms for the general
population, a method to construct a group connectivity is needed
because modeling connectivity from data across individuals is
controversial (Duggento et al., 2018). Causal analysis is sensitive
to temporal noise and variance. The variation in time-order of
neuronal activity across individuals due to brain plasticity may
cause misinterpretation of the causal effect. The fact that the
BOLD signal is an indirect measurement of the actual neuronal
activity further confounds the connectivity inference.

5. CONCLUSION

In this paper, we have shown the application of a novel time-
lagged causal discovery, Tigramite (Runge, 2018), to a fMRI
BOLD time-series to construct a brain connectivity model.
We demonstrated the result using a motor task-fMRI dataset

provided by the Human Connectome Project (Van Essen et al.,
2012). We chose to use motor task-fMRI because the brain
mechanism related to motor function has been well studied,
so we could utilize this prior knowledge to compare it with
the model constructed using this new approach. We have also
shown the advantages of using this new approach. For example,
this approach considers additional measurements (ACE, ACS,
and AMCE) that are useful in understanding the dynamics
of the model in addition to the topographical aspects of
the connectivity. Moreover, the incorporation of time-lag into
the analysis allows the discovery of both direct and indirect
pathways, which the classical approaches may fail to identify. In
the future, we hope that the benefits this framework provides may
improve interpretability of more complex brain functions, such
as, memory or consciousness, where the mechanism is difficult to
observe, or in resting-state fMRI where there is no concrete driver
to the system (Biswal, 2012). In such situations, understanding
the characteristic of the model could improve the interpretation
of the brain function of interest.
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