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A B S T R A C T   

Background: A significant proportion of adults have normal weight obesity (NWO), defined as a normal body 
mass index (BMI) but disproportionately high body fat percentage. Individuals with NWO may have increased 
risk of cardiometabolic disorders and lower exercise tolerance, but it is unclear if this obesity phenotype is linked 
with dysregulated production of adipokines or myokines such as adiponectin and apelin, respectively. 
Methods: This cross-sectional, secondary analysis included 177 working adults (mean age 49.6 ± 9.9 yrs, 64% 
female). Plasma high-molecular weight adiponectin and apelin levels were measured by ELISA. Body composi
tion and fat distribution were assessed using dual energy X-ray absorptiometry. Exercise tolerance (VO2 
maximum) was determined by treadmill testing. NWO was defined as a BMI <25 kg/m2 and body fat >30% for 
women or >23% for men. Participants were categorized as lean, NWO, or overweight-obese. 
Results: A total of 14.7% of subjects were categorized as lean, 23.7% as having NWO, and 61.6% as having 
overweight-obesity. Plasma adiponectin levels were elevated in the overweight-obesity group (P < 0.05) 
compared to the lean and NWO groups, which did not differ from each other (P > 0.05). Adiponectin concen
trations were inversely associated with BMI, fat mass, fat mass percent, visceral fat, and trunk to leg fat ratio and 
positively associated with leg fat mass (all P < 0.001). Plasma apelin levels were similar between the three body 
composition groups (P < 0.05) and were not significantly associated with any body composition indices. Apelin 
concentrations were inversely related to VO2 maximum (β = − 0.03 ± 0.01, p = 0.002). 
Conclusion: Plasma adiponectin and apelin levels did not distinguish between lean and NWO groups. Positive 
relationships with leg fat mass and adiponectin suggest the importance of assessing body composition and fat 
distribution when studying adipokines and cardiometabolic disorders. Further investigations are needed to un
derstand relationships between exercise, body composition, and apelin secretion.   

Introduction 

Obesity results from complex interactions between factors such as 
genetics, dietary intake, and physical activity [1]. Clinically relevant 
comorbidities such as type 2 diabetes, hypertension, and cardiovascular 
disease are associated with obesity [2]. In general, obesity is defined as a 

body mass index (BMI) >30 kg/m2. However, normal weight obesity 
(NWO) has been recognized as an obesity phenotype that commonly 
exhibits metabolic disturbances in individuals that are not determined to 
be obese by BMI [3,4], as BMI does not assess a person’s relative pro
portions of fat and fat free mass. Individuals with NWO have excess 
adiposity, despite a normal BMI, partly owing to a decrease in lean mass 
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[5]. A growing literature shows these individuals have increased car
diometabolic disease and mortality risk [3,4,6–12], but it is unknown if 
drivers of metabolic dysfunction in individuals with NWO are similar to 
individuals with overt obesity as assessed by BMI. 

A mechanism through which excess fat mass causes metabolic 
changes involves adipokine secretion [13]. As an endocrine organ, cells 
present in adipose tissue secrete chemicals that exert metabolic effects 
both locally and systemically. These hormones are collectively termed 
adipokines. Obesity is associated with dysregulated adipokine secretion, 
and fat tissue distribution may also influence adipokine production 
[13,14]. Given the widespread interest in determining the role of adi
pokines in contributing to disease onset, many groups have investigated 
the extent to which adipokines are involved in the metabolic changes 
observed with obesity. Due to the relatively high level of adiposity in 
individuals with NWO, they may exhibit altered adipokine secretion, 
though few studies have investigated these relationships [15,16]. 

Adiponectin and apelin are cytokines with important roles in bio
logical processes. Adiponectin, primarily secreted by adipose tissue (an 
adipokine) has been extensively studied for its anti-diabetic, anti-in
flammatory, and anti-atherogenic characteristics [13]. Apelin is a more 
recently discovered cytokine with insulin-like functions that has roles in 
macronutrient metabolism and energy balance [17]. Multiple tissues, 
including adipose tissue and skeletal muscle, secrete apelin [18]. Some, 
but not all, studies have shown positive relationships of plasma apelin 
with obesity [19–21]. In contrast, apelin has also been identified as an 
exerkine whose mRNA expression in skeletal muscle increases following 
endurance training [22]. Additionally, lower levels of apelin or loss of 
the apelin receptor (APJ) resulted in loss of muscle function in mice 
[23]. Thus, relationships of plasma apelin with health outcomes is not 
clear. Given the combination of high body fat mass, low lean mass, and 
decreased levels of physical fitness in individuals with NWO [24], apelin 
may be particularly relevant to study in a population with NWO. 

The current study was a secondary analysis of previously collected 
data from a large Atlanta-based cohort, the Emory-Georgia Tech Pre
dictive Health Institute (PHI) cohort, where nearly a quarter of the 
population was categorized as having NWO [5]. The study objective was 
to compare plasma adiponectin and apelin concentrations between 
adults categorized as being lean, having NWO, or having overweight- 
obesity. A secondary aim was to investigate the relationships of the 
cytokines with body composition, fat distribution, and exercise capacity 
in all participants regardless of body composition group. 

Subjects and methods 

Participants 

Emory University and Emory Healthcare employees were invited to 
join the PHI study from 2007 to 2013 at the Emory-Georgia Tech Center 
for Health Discovery and Well Being [24,25]. The study was approved 
by the Emory University Institutional Review Board and informed con
sent was obtained from all subjects. Participants completed a variety of 
assessments including behavioral, biochemical, and physical measures. 
Exclusion criteria were having a poorly controlled chronic disease, acute 
illness, currently pregnant or breastfeeding, hospitalization within the 
previous year, severe psychosocial disorder, substance abuse or alco
holism, or current active malignant neoplasm. The present analysis was 
conducted in a subset of the PHI cohort. A random sample of participants 
from the cohort were chosen for analysis of the cytokines and included 
in this study. 

Body composition analysis 

Body composition and fat distribution was measured by dual energy 
x-ray absorptiometry (DXA, GE Lunar iDXA Densitometer, GE Health
care, Madison, WI, USA). Height and weight were measured using a 
digital scale and stadiometer (Tanita TBF-25, Tanita Health 

Management, Arlington Heights, IL). BMI was calculated as weight in 
kilograms divided by height in meters squared. Fat mass index (FMI) 
was calculated as fat mass (kg) divided by height in meters squared, and 
lean mass index (LMI) was calculated as lean mass (kg) divided by height 
in meters squared. The study population was categorized into three body 
composition groups: lean, NWO, or overweight-obese. Lean was defined 
as a BMI below 25 kg/m2 and a body fat below 23% for males and below 
30% for females. NWO was defined as a BMI less than 25 kg/m2 and 
body fat >30% for women or >23% for men [26]. Overweight-obesity 
was defined as a BMI greater than or equal to 25 kg/m2 and a body 
fat above the sex-specific cut points. 

Cytokine assessments 

Fasting plasma apelin concentrations were measured using an 
enzyme-linked immunosorbent assay (ELISA) following manufacturer’s 
instructions (RayBiotech, #EIA-APC-1, intra-assay CV = 4.7%). Fasting 
plasma high-molecular weight adiponectin concentrations were also 
quantified using an ELISA kit, and assay procedures followed the man
ufacturer’s instructions (R&D Systems, #DHWAD0, intra-assay CV =
2.8%). 

Exercise testing 

Participants (n = 167) underwent a submaximal volume of oxygen 
consumed (VO2 maximum) test following a modified Balke protocol 
[27] under the supervision of a trained technician. This assessment 
provides an objective measure of cardiorespiratory fitness. All exercise 
tests were performed on a GE T2100 Treadmill (GE Healthcare, Wau
kesha, WI). Of the ten subjects with missing treadmill data, five were 
missing at random, three had an injury or medical/surgical history that 
was a contraindication to perform the test, and data from two partici
pants were deemed inaccurate due to highly elevated heart rates. There 
was no difference in mean apelin levels between the ten participants 
with missing VO2 maximum data and the remaining participants (P >
0.05). 

Statistical analyses 

Descriptive statistics were performed for all variables, and contin
uous variables were summarized as mean ± SD and categorical variables 
were summarized as count, percent (n, %). Variables that did not have a 
normal distribution were natural log-transformed for analyses and back- 
transformed as adjusted geometric mean (95% confidence interval). The 
data were analyzed by demographic characteristics using chi-squared 
(χ2) or analysis of variance (ANOVA) tests. For groups with a signifi
cant (P < 0.05) χ2 result, post-hoc pairwise χ2 analyses were conducted 
to determine which groups were significantly different using a Bonfer
roni correction with an alpha value set to 0.017. To test for differences in 
the cytokine levels between the body composition groups, two-way 
analysis of covariance (ANCOVA) was utilized, with multiple compari
son correction via Tukey’s honest significant difference method. 
ANCOVA analyses were adjusted for age, race, and sex for both cyto
kines, and apelin was additionally adjusted for VO2 maximum because 
of its role as an exerkine [22]. To address the secondary study aim, 
multiple linear regression models, adjusting for age, race, and sex, were 
used to test for relationships between cytokine concentrations and body 
composition variables. In multiple linear regression analyses investi
gating the relationship between lean mass variables and cytokine levels, 
fat mass was also included as a covariate to test for the independent 
relationship of the cytokines with lean mass. Similarly, to evaluate the 
independent relationship of the fat distribution variables (leg fat and 
visceral adipose tissue) with cytokine levels, body fat excluding the 
variable of interest was included as a covariate in the model. Additional 
covariates considered for analysis were income and education level, but 
these variables were not included in the final analyses because they were 
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not associated with apelin or adiponectin concentrations. Analyses were 
conducted in JMP Pro (version 15, SAS Institute Inc., Cary, NC, USA) 
with two-sided tests and an alpha significance value of 0.05. 

Results 

A total of 177 individuals were included in this study (Table 1). The 
majority of the population was female (n = 116, 66%), and there was a 
greater percentage of women in the NWO compared to the overweight- 
obesity group (P = 0.008). There were 41 women classified as post- 
menopausal, and a higher proportion of women with NWO were clas
sified as post-menopausal than lean women (P = 0.01). The overall study 
population predominantly included Caucasians (76.5%), with African 
Americans comprising most of the remaining participants. The distri
bution of race between the three groups was similar (P > 0.05). The 
mean age of all participants was 49.7 years (SD, ± 10.0 y), and average 
age was similar across the three groups (P > 0.05). There were 26 par
ticipants categorized as lean (15%), 42 as having NWO (24%), and 109 
as having overweight-obesity (62%). According to the definitions for 
lean and NWO, the mean BMI for the lean and NWO groups were similar 
(P > 0.05) and both groups had an average BMI significantly lower than 
the group with overweight-obesity (P < 0.05). Fat mass was also similar 
between the lean and NWO groups and significantly highest in the group 
with overweight-obesity (P < 0.05). Fat mass percent, fat mass index, 
and lean mass index differed significantly between each group (P <

0.05), while lean mass was similar between the lean and overweight- 
obesity groups and significantly lowest in the NWO group (P < 0.05). 
Among fat distribution variables, leg fat mass, trunk to leg fat ratio, and 
visceral fat mass were all significantly different between groups (P <
0.05). As previously reported [5], the NWO and overweight-obesity 
groups had lower VO2 maximum levels compared to the lean group 
(P < 0.05). 

Analyzed by demographic variables, females had higher adiponectin 
levels compared to males [5.92 (5.08, 6.91) vs 3.17 (2.56, 3.92) μg/mL, 
P < 0.001], this difference between males and females remained sig
nificant after adjusting for menopausal status (P < 0.001). Apelin levels 
were similar between males and females [69.71 (59.86, 81.18) vs 67.99 
(54.01, 85.58) ng/mL, P = 0.85] and did not vary by menopausal status 
(P = 0.57). Caucasian participants had significantly higher adiponectin 
concentrations compared to other participants [5.34 (6.16, 4.63) vs. 
3.34 (4.49, 2.49), P = 0.003], but apelin did not vary by race [70.44 
(81.55, 60.85) vs. 65.0 (84.15, 50.20), P = 0.59]. Neither adiponectin 
nor apelin concentrations were related to participant age (β = 0.006 ±
0.007, P = 0.37 and β = 0.002 ± 0.006, P = 0.74, respectively). 

Adiponectin 

Adiponectin levels were similar between the lean and NWO groups 
and significantly lowest in the group with overweight-obesity (Fig. 1). In 
multiple linear regression analyses, adiponectin was significantly, 
inversely associated with measures of whole-body adiposity including 
BMI, fat mass percent, fat mass, and fat mass index (Table 2, P < 0.001 
for all). Adiponectin concentrations were positively associated with leg 
fat mass (P < 0.001) and inversely related to the measures of abdominal 
adiposity, trunk to leg fat ratio and visceral fat mass (P < 0.001 and P =
0.03, respectively). There were no statistically significant relationships 
between indices of lean mass and adiponectin levels (all P > 0.05). 

Apelin 

Apelin concentrations were not significantly different between the 
body composition groups (Fig. 2, P = 0.2). Likewise, apelin was not 
significantly associated with any measures of body composition or fat 
distribution (Table 2, P > 0.05 for all). However, VO2 maximum was 
significantly, inversely associated with apelin concentrations, 

Table 1 
Demographic, clinical, and body composition characteristics.  

Variable Lean 
(n = 26) 

Normal 
Weight 
Obesity 
(n = 42) 

Overweight- 
Obesity 
(n = 109) 

All 
participants 
(N = 177) 

Age (yr) 47.2 ±
11.4 

47.8 ± 9.3 50.9 ± 9.6 49.6 ± 9.9 

Female n (%) 15 (58) 35 (83)* 66 (59.5)* 116 (66) 
Post- 
menopausal n 
(%) 

2 (8)* 14 (33)* 25 (23) 41 (23) 

Caucasian n (%) 23 (88) 35 (83) 77 (71) 135 (76) 
BMI (kg/m2) 23.1 ±

0.8a 
23.0 ± 0.7a 30.5 ± 0.4b 27.3 ± 5.5 

Fat mass (%) 22.5 ±
0.9a 

30.4 ± 0.8b 37.3 ± 0.5c 35.1 ± 8.3 

Fat mass (kg) 15.2 ±
1.7a 

19.3 ± 1.4a 33.1 ± 0.8b 27.9 ± 11.1 

Fat mass index 5.2 ± 0.6a 6.8 ± 0.5b 11.6 ± 0.3c 9.8 ± 4.0 
Lean mass (kg) 50.4 ±

1.4a 
44.0 ± 1.2b 52.1 ± 0.7a 47.3 ± 10.5 

Lean mass index 
(kg/m2) 

17.0 ±
0.3a 

15.3 ± 0.3b 17.9 ± 0.2c 16.5 ± 2.4 

Leg fat mass (kg) 5.7 (5.2, 
6.3)a 

6.7 (6.2, 
7.3)b 

9.9 (9.5, 
10.4)c 

8.9 (8.5, 9.4) 

Trunk to leg fat 
ratio 

1.2 ±
0.08a 

1.5 ± 0.07b 1.8 ± 0.04c 1.5 ± 0.57 

Visceral fat mass 
(kg) 

0.18 
(0.13, 
0.25)a 

0.44 (0.34, 
0.57)b 

1.18 (1.01, 
1.37)c 

0.62 (0.52, 
0.73) 

VO2 maximum 
(mL/min/kg)+

44.0 ±
2.0a 

36.1 ± 1.7b 35.3 ± 1.0b 36.9 ± 10.7 

Demographic characteristics are presented as mean ± SD or count (percent). 
For body composition and clinical variables by body composition subtype, data 
are presented as adjusted mean ± SE or, for variables that were log-transformed, 
geometric mean (95% confidence interval). Estimates are adjusted for age, sex, 
and race. Variables within rows that are connected by the same letter are sta
tistically similar (P > 0.05) while those with different letters are significantly 
different via Tukey’s comparisons at P < 0.05. 
* Groups within rows are significantly different at P < 0.017 following χ2 post- 
hoc results using a Bonferroni correction. 
+ N = 167; n = 25 lean, n = 40 NWO, n = 102 overweight-obesity. 
Abbreviations: NWO, normal weight obesity; BMI, body mass index; VO2, vol
ume of oxygen consumption. 

Fig. 1. Levels of plasma adiponectin between lean, normal weight obesity, and 
overweight-obesity groups. Geometric mean and 95% confidence interval are 
shown for each group. Groups connected with the same letters are statistically 
similar (P > 0.05), while groups with different letters are significantly different 
at P < 0.05 according to Tukey post-hoc comparisons. 
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independent of the body composition groups, age, race, and sex (β =
− 0.03 ± 0.007, Fig. 3, P < 0.001). This relationship indicates that for 
every one unit increase in VO2 maximum, plasma apelin decreases by 
about 2.85%. 

Discussion 

Obesity causes chronic low-grade inflammation, which may be 
linked to metabolic dysfunction and adverse health outcomes [28]. The 
altered release of adipokines by adipose tissue may contribute, in part, 
to metabolic dysfunction commonly observed in individuals with 
obesity. While BMI remains a popular anthropometric tool as it is simple 
to calculate, there is a growing body of evidence suggesting that 
adiposity and fat distribution [29], rather than BMI, may be more 
strongly correlated to circulating adipokine levels. For individuals with 
NWO, who have a normal BMI but high fat mass and low lean mass, it is 
important to determine if altered adipose tissue function is leading to 
increased disease and mortality risk. In the current study, findings 
indicated that adiponectin concentrations were similar in adults with 
NWO compared to lean adults and lowest in adults with overweight- 
obesity. Adiponectin levels were also inversely related to whole body 
and abdominal adiposity but were positively related to leg fat mass. 
Apelin concentrations were not related to the body composition groups 
or measures of body composition but were inversely related to cardio
respiratory fitness. 

Adiponectin is expressed by adipocytes and has anti-inflammatory 
effects, as well as acting as an insulin sensitizer [30]. Several studies 
have shown a decrease in adiponectin concentrations with obesity [31], 
and reciprocal association of adiponectin with altered metabolic 
markers such as elevated C-reactive protein (CRP) and insulin resistance 
[32]. In the current study, adiponectin concentrations were similar be
tween the NWO and lean groups and significantly lower only in the 
overweight-obesity group, which corroborates findings of two other 
studies in adults with NWO [16,15]. Consistent with previous studies 
[14,33,34], adiponectin levels were inversely related to measures of 
total adiposity and abdominal adiposity. As further evidence linking low 
adiponectin levels to worsening outcomes, a five-year prospective study 
showed that decreased plasma adiponectin levels predicted increased 
visceral fat and insulin resistance in a cohort of Asian American adults 
[35]. 

Table 2 
Cross-sectional associations between body composition measures (independent 
variable) and adipokine concentrations (dependent variable) [β ± SE (p- 
value)].a  

Body Composition Measure Plasma adiponectinb Plasma apelinb,c 

Body mass index (kg/m2) ¡0.06 ± 0.01 
(<0.001) 

− 0.007 ± 0.01 
(0.62) 

Fat mass (%) ¡0.04 ± 0.008 
(<0.001) 

− 0.01 ± 0.01 
(0.29) 

Fat mass (kg) ¡0.03 ± 0.005 
(<0.001) 

− 0.003 ± 0.006 
(0.60) 

Fat mass index ¡0.09 ± 0.01 
(<0.001) 

− 0.01 ± 0.02 
(0.52) 

Lean mass (kg) 0.01 ± 0.01 
(0.32) 

0.003 ± 0.01 
(0.83) 

Lean mass index (kg/m2) − 0.0009 ± 0.04 
(0.98) 

0.01 ± 0.05 
(0.82) 

Leg fat mass (kg)b 1.05 ± 0.29 
(<0.001) 

− 0.07 ± 0.37 
(0.84) 

Trunk to leg fat ratio ¡0.83 ± 0.12 
(<0.001) 

− 0.11 ± 0.15 
(0.47) 

Visceral fat mass (kg)b ¡0.20 ± 0.09 
(0.03) 

− 0.02 ± 0.11 
(0.88) 

R2 values for adiponectin analyses ranged from 0.33 to 0.41 with leg fat mass 
having the highest R2. 
R2 values for apelin analyses ranged from 0.08 to 0.09, indicating low goodness 
of fit across all analyses. 

a All coefficient estimates are from multiple linear regression analyses with 
body composition measures as a continuous variable. Analyses were conducted 
individually for each measure of body composition. All estimates for adiponectin 
analyses are adjusted for age, race, and sex. Estimates for lean mass and lean 
mass index are adjusted for age, race, sex, and fat mass. Estimates for variables of 
fat distribution (leg fat mass, trunk to leg fat ratio, and visceral fat mass) were 
adjusted for age, race, sex, and fat mass excluding the variable of interest. In 
addition, all estimates for apelin analyses are adjusted for VO2 maximum. Bol
ded values indicate significant findings.  

b Variable was natural log-transformed for analyses.  

c n = 167.  

Fig. 2. Levels of plasma apelin between lean, normal weight obesity, and 
overweight-obesity groups. Geometric mean and 95% confidence interval are 
shown for each group. Groups connected with the same letters are statistically 
similar (P > 0.05), while groups with different letters are significantly different 
at P < 0.05 according to Tukey post-hoc comparisons. 

Fig. 3. Relationship between VO2 maximum and log-transformed plasma 
apelin concentrations [− 0.03 ± 0.01, p < 0.001, mean square error (MSE) =
0.699] adjusting for age, race, sex, and fat mass percent. A multiple linear 
regression model was fit to test the association between VO2 maximum and log- 
transformed plasma apelin. 
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We also found an independent, positive association between leg fat 
mass and adiponectin levels. While most studies have focused on the 
inverse relationship between total adiposity and adiponectin levels, few 
studies have investigated the specific relationship between lower body 
fat mass accumulation and adiponectin concentrations. In line with 
findings reported here, another study also reported a significant, posi
tive association between adiponectin levels and leg fat mass, indepen
dent of trunk fat mass [36]. Quantification of adiponectin expression in 
human adipose tissue depots has suggested that omental or visceral fat 
adiponectin mRNA expression is low compared to subcutaneous 
abdominal or thigh adipose tissue [37,38]. Adipose tissue that accu
mulates in the lower body area, such as the thigh, is less contributory to 
the obesity phenotype of metabolic dysregulation than android or 
visceral fat and is often considered protective to metabolic health [39]. 
Measures of leg fat mass, independent of total body fat, are associated 
with greater insulin sensitivity, improved lipid panels, lower inflam
mation, and lower blood pressure [36,40,41]. In addition, pre- 
menopausal women who store fat peripherally (i.e. gluteal-femoral 
fat) consistently have lower metabolic disease risk than males or 
women who store more abdominal fat [36,39]. Thus, while BMI remains 
an easy tool to screen for health and disease risk, measurement of body 
fat distribution is essential when considering metabolic risk. 

Apelin is a ligand of the APJ receptor [42] with several different 
variants based on cleavage sites, including apelin-36, apelin-17, and 
apelin-13. While it is expressed in adipocytes [19], it is also expressed by 
several other tissues, including skeletal muscle, the stomach, lung, brain, 
and heart [18,19,43]. Here, apelin concentrations were not significantly 
different between the three body composition groups. This finding is 
likely indicative of the breadth of physiological processes involving 
apelin [44] rather than its secretion as an adipokine specifically indi
cating dysfunctional adipose tissue. The apparently discordant findings 
reported between increased apelin levels in patients with type 1 and 
type 2 diabetes [45,46] but lack of association with apelin concentra
tions in some populations with obesity [21] may be an effort to coun
teract the absence of insulin or proper insulin signaling and improve 
glucose utilization through increased apelin secretion [47]. There re
mains no consensus on the relationship between circulating apelin levels 
and obesity. Our data do not indicate a strong link between adiposity 
and circulating apelin concentrations. 

On the other hand, apelin was significantly, inversely associated with 
VO2 maximum levels in this population. In line with this finding, a su
pervised 4-week aerobic exercise intervention resulted in decreased 
serum apelin concentrations in adults with normal glucose tolerance, 
impaired glucose tolerance, and type 2 diabetes [46]. Besse-Patin et al. 
reported no changes in circulating apelin concentrations following an 8- 
week cycling and running exercise program despite a significant in
crease in apelin mRNA expression in skeletal muscle [22]. The authors 
indicated that apelin may act locally to enhance muscle metabolism 
[22]. In contrast, animal studies have shown acute increases in serum 
apelin levels following an exercise bout [23,48], implicating this as an 
exerkine secreted to promote muscle function and lower inflammation 
following exercise [23]. Apelin has been proposed as a therapeutic agent 
to prevent age-related muscle loss [23], although it was not associated 
with measures of lean mass in this cohort. The discrepancies in findings 
regarding apelin with health and physical functioning outcomes may be 
due to differences in human and animal models or the age of the pop
ulations studied. Alternatively, apelin is a vasoactive peptide [49], and it 
is possible that higher circulating apelin reflects a compensatory 
mechanism to promote vasodilation in individuals with lower cardio
respiratory fitness. Further studies are warranted to understand the re
lationships between exercise, body composition, and apelin secretion. 

This study contributes new data regarding concentrations of adipo
nectin and apelin in a population with NWO and in association with 
body fat distribution and cardiorespiratory fitness. Additional strengths 
include the detailed body composition phenotyping in a well- 
characterized cohort. Limitations of this work are related to its cross- 

sectional nature and inability to infer causality. Measurement of tissue 
mRNA and protein expression in mechanistic studies, as well as longi
tudinal studies of these cytokines will be needed to determine the 
directionality of relationship with adiposity and fitness. Furthermore, 
sample sizes were relatively small between groups, particularly in ana
lyses stratified by sex, which may have limited power to detect differ
ences in cytokine concentrations. Finally, the cohort used in this study is 
mostly Caucasian adults, and a more heterogenous cohort may demon
strate different findings. 

Conclusions 

Plasma adiponectin and apelin levels did not differentiate in
dividuals with NWO from lean adults. Plasma adiponectin levels 
decreased with increasing central adiposity but were positively associ
ated with leg fat mass, thus adding to the body of evidence that the 
pattern of body fat deposition is an important determinant of metabolic 
health. Plasma apelin levels were not associated with body composition 
but were inversely related to physical fitness, highlighting a research 
need for further mechanistic understanding of the physiologic processes 
involved in circulating apelin and its implications for metabolic health. 
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