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Abstract: Acetylcholinesterase (AChE) reactivators (oximes) are compounds 

predominantly targeting the active site of the enzyme. Toxic effects of organophosphates 

nerve agents (OPNAs) are primarily related to their covalent binding to AChE and 

butyrylcholinesterase (BChE), critical detoxification enzymes in the blood and in the 

central nervous system (CNS). After exposure to OPNAs, accumulation of acetylcholine 

(ACh) overstimulates receptors and blocks neuromuscular junction transmission resulting 

in CNS toxicity. Current efforts at treatments for OPNA exposure are focused on  

non-quaternary reactivators, monoisonitrosoacetone oximes (MINA), and diacylmonoxime 

reactivators (DAM). However, so far only quaternary oximes have been approved for use 

in cases of OPNA intoxication. Five acetylcholinesterase reactivator candidates (K027, 

K075, K127, K203, K282) are presented here, together with pharmacokinetic data (plasma 

concentration, human serum albumin binding potency). Pharmacokinetic curves based on 

intramuscular application of the tested compounds are given, with binding information and 

an evaluation of structural relationships. Human Serum Albumin (HSA) binding studies 

have not yet been performed on any acetylcholinesterase reactivators, and correlations 
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between structure, concentration curves and binding are vital for further development. HSA 

bindings of the tested compounds were 1% (HI-6), 7% (obidoxime), 6% (trimedoxime), and 

5%, 10%, 4%, 15%, and 12% for K027, K075, K127, K203, and K282, respectively. 

Keywords: acetylcholinesterase; oximes; human serum albumin; pharmacokinetics; 

reactivator; antidote; nerve agent 

 

1. Introduction 

Drug development is challenging work with numerous unknown variables that have to be taken into 

account, including the detailed pharmacokinetics of novel compounds [1]. Here, we present in vitro 

and in vivo determinations of plasma concentration and human serum albumin (HSA) binding potency 

of newly synthesized acetylcholinesterase (AChE, E.C. 3.1.1.7) reactivators. For newly synthesized 

compounds, properties of absorption, distribution, metabolism and excretion (“ADME”) are critical for 

determining the future potency of compounds in clinical practice. Indeed, the “Lipinski rule of 5” 

quantifies the properties that compounds should possess to be eligible for success [2,3]. This rule 

postulates that poor absorption or permeation is more likely when there are more than 5 H-bond 

donors, 10 H-bond acceptors, the molecular weight is greater than 500 and the calculated Log P is 

greater than 5. Lipinsky et al. (1997) [2] stated these properties for drug candidates to be used orally, 

however it can be more or less applied to all drug formulations with appropriate modifications. 

Many years before Lipinsky postulated his ADME properties, Sudlow et al. (1975) [4] found  

that HSA interacts with various compounds, and defined two major binding sites responsible in the 

majority of cases for altering the pharmacokinetic profile of exogenous compounds. The two binding 

sites were named site I and site II, or Sudlow sites I and II. In addition to these two sites, other less 

potent binding regions have been identified: e.g., domain III (sub-domain B) for thyroxine, propofol; 

domain II (sub-domain B) for halothane, ibuprofen; domain I (sub-domain B) for indomethacin, 

azapropazone. It is important to note that substances can bind to several sites with different  

affinities [5,6]. Compounds that bind to site I have several structural similarities. Most ligands seem to 

be dicarboxylic acids and/or have heterocyclic molecules with a negative charge localized in the 

middle of the molecule. Since structurally different compounds (e.g., bilirubin and warfarin) bind to 

the same site, this points to the flexibility and adaptability of the Sudlow I site [7–11]. Site II, or 

Sudlow II, is also known as the indole-benzodiazepine site, according to the ligands with the highest 

affinity. In general, ligands for this site are often aromatic carboxylic acids with a negatively charged 

acidic group away from the hydrophobic center, e.g., non-steroidal anti-inflammatory drugs (NSAIDs). 

Compared to site I, site II is smaller (narrower) and less flexible, which is reflected by the absence of 

large ligands binding to site II (e.g., bilirubin, hemin, hematin or other porphins) [12–17]. 

Our work focuses on the pharmacokinetic properties of antidotes for irreversible AChE inhibitors 

that act directly on the cholinergic system and lead to hyperactivation of the choline system with all 

accompanying negative symptoms, e.g., bradycardia, hypotension, hypersecretion, bronchoconstriction, 

GI tract hypermotility, which, if left untreated, lead to death [18]. Furthermore, the simple structure of 

these inhibitors and their relatively easy and inexpensive synthesis makes them even more dangerous, 
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since it makes them easy to be acquired by terrorist groups and misused against civilian personnel 

(e.g., sarin, tabun, soman, VX) [19]. However, numerous pesticides (parathion, malathion, methyl 

parathion, chlorpyrifos, diazinon etc.) used every day by farmers around the developing world are also 

inhibitors of AChE and intoxication is unfortunately very common [20]. 

In the work presented here, oximes (HI-6, obidoxime, trimedoxime, Figure 1) that are structurally 

and therapeutically well-defined were used as standards to help correlate the biological behavior of 

five newly synthetized compounds (K027, K075, K127, K203, K282, Figure 2). Some pharmacokinetic 

data of HI-6, obidoxime, trimedoxime, K027, and K203 have been published earlier [21–24], but 

binding to human serum albumin and structural correlations have not been performed before on these 

compounds, and using a whole set of promising structurally heterogonous AChE reactivators make 

comparisons more robust. Novel compounds are structural analogues combining features from all three 

established oximes. In vitro tests have confirmed improved reactivation efficacy [25,26], so detailed 

pharmacokinetic data are needed for further testing [27]. 

Figure 1. Structures of the standard Acetylcholinesterase (AChE) reactivators used. 

 

Figure 2. Novel AChE reactivators tested in this study. 

 

Recently, novel hypotheses and compounds with unique structures have been introduced as potential 

antidotes against OPNA poisoning (MINA, DAM, non-quaternary oximes, bioscavengers, etc.). 

Nevertheless, more experimental work needs to be conducted to demonstrate the superiority of these 

new approaches. Currently, quaternary oximes are still the only compounds approved for this use [28–30]. 
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Though based on the known information and structures of the tested compounds significant binding 

cannot be expected, we here provide essential experimental confirmation. 

2. Results and Discussion 

2.1. Tolerability 

After i.m. application of the tested compounds, no side effects were observed the experimental 

animals. Moreover, no signs of discomfort such as pain or convulsion of the hind limb muscles were 

observed during the experimental 240 min or the follow-up period. The follow-up period was 

conducted 24 and 48 h after the last application. None of the animals showed any convulsions or 

movement difficulty. Eating and drinking habits were normal. 

2.2. Plasma Concentrations 

Obtained Cmax data from the experiments conducted on male Wister rats are given in Table 1. 

Kinetic curves where Cmax can be linked to the relevant time interval. HI-6 and trimedoxime exhibit 

slow elimination from the blood and thereby are present longer in higher concentrations. In contrast, 

obidoxime has a quick onset and also relatively fast elimination. The kinetic curves of K127, K075  

and K282 show even longer elimination periods and relatively stable concentrations over longer 

periods of time. The kinetic curves of K075 and K282 are quite similar, with both graphs showing a 

less pronounced curve and missing the characteristic elimination profile, and thus most resemble the 

profile of trimedoxime. K027 and K203 exhibit a kinetic profile with a relatively well-defined peak 

determining Cmax. These curves can be considered analogous to those of HI-6, and even Cmax values 

are comparable. Obidoxime seems to have a unique profile with a relatively swift elimination phase 

and the highest Cmax peak. 

Table 1. Cmax of i.m. injected AChE reactivators.  

AChE Reactivators Plasma Concentration (Cmax µg/mL) 

HI-6 15.26 ± 1.71 
Obidoxime 22.76 ± 4.28 

Trimedoxime 16.64 ± 4.25 
K027 17.61 ± 1.60 
K075 15.50 ± 2.82 
K127 15.35 ± 3.28 
K203 16.63 ± 5.29 
K282 11.56 ± 2.31 

2.3. HSA Binding 

Samples (1 mL) were prepared in triplicates for each compound with one control sample (HSA  

was substituted by phosphate buffer) and transferred into Centrifree® Ultrafiltration Devices. The 

acquired filtrate was subsequently analyzed according to previously published methods [31,32]. AUC 

from the control sample was considered as a reference value of 100%. Filter retention was determined 

to be below 1%, as declared by the manufacturer. All compounds were tested in triplicates, and the 



Int. J. Mol. Sci. 2013, 14 16080 

 

final AUC was the mean of three consecutive measurements and correlated with the measurements of 

blank samples. 

To date there has only been a general consensus that oximes have no significant interactions  

with HSA and no binding studies had been experimentally performed. Based on the results shown in 

Table 2 the interaction potential of the tested compounds is low. HI-6, obidoxime, and trimedoxime, 

which are standardly used in the military, exhibited pharmacologically insignificant binding of 1%, 

7%, 6%, respectively. K127 (4%) and K027 (5%) exhibited the same low binding potency as the 

standards used. However, K075, K203, and K282 had relatively high increases in binding potency of 

10%, 15%, and 12%, respectively. Nevertheless, this increase is still insignificant in terms of 

pharmacological properties. 

Table 2. Binding of selected compounds to Human Serum Albumin (HSA). 

AChE Reactivators Binding (%) a 

HI-6 1 
Obidoxime 7 

Trimedoxime 6 
K027 5 
K075 10 
K127 4 
K203 15 
K282 12 

a results are the mean of three independent measurements. 

2.4. Discussion 

All compounds and standards selected for testing are structurally similar, and during in vitro 

screening tests also had high reactivation potency. Based on these preliminary experiments further 

testing to obtain pharmacokinetic data was performed. We used in vivo experiments to acquire relevant 

kinetic data for these compounds. From Figure 3 it is clear that HI-6 and trimedoxime have an ideal 

pharmacokinetic profile. However, Cmax is reached only after a relatively long time, which could be  

a disadvantage when rapid reactivation is needed especially against quickly aging AChE inhibitors 

(e.g., soman). Nevertheless, HI-6 is the only available oxime so far to show some efficacy against 

soman intoxication [32]. The Cmax time delay seems to be of importance, since obidoxime reaches Cmax 

swiftly when compared to the other compounds and has relatively rapid elimination from the plasma. 

But at the same time obidoxime has demonstrated significant potency against a great number of  

AChE inhibitors and is part of the military standard antidote kits. Indeed, Cmax values alone cannot be 

correlated with the therapeutic efficacy of these compounds. Since these compounds serve as antidotes 

against nerve agents, a clinical trial determining minimum plasma concentrations needed for effective 

therapy is not feasible. For these reasons, characteristics of these compounds are based predominantly 

on pre-clinical experimental data. 

As is evident from Table 3, the binding to HSA by the studied compounds is insignificant for 

potential clinical use, not even exceeding 20%. Nonetheless, correlations between binding, structure 

and pharmacokinetic curves can be drawn. The compounds K075, K203, and K282 have the highest 
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binding potency (Table 3). Furthermore, all three compounds have linking chains between the two 

pyridine rings of the same length (4C) with a double bond between 2C and 3C. None of the other 

compounds have similar links (i.e., they either contain an oxygen atom, only 3C, or no double bond). 

Moreover, the pharmacokinetic curves for compounds K075, K203, and K282 highly resemble each 

other (Figure 4), with profiles reflecting the possibility that the rise of plasma concentrations is  

much slower as HSA binds a higher percentage of these compounds, and their Cmax resemble a plateau 

because HSA is liberating the bound compound. Though these results from the kinetic data are 

intriguing, crystallographic tests would have to be performed to confirm this hypothesis. 

Figure 3. Pharmacokinetic curves of the standards. 

 

Figure 4. Pharmacokinetic curves of the tested novel oximes. 
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3. Experimental Section 

3.1. Chemicals 

Albumin, phosphate buffer saline and acetonitrile super gradient grade G Chromosolve® were 

purchased from Sigma-Aldrich (Prague branch, Czech Republic). Phosphoric acid (85%) was 

purchased from Merck (Dermstadt, Germany). HPLC grade water was obtained by a Millipore reverse 

osmosis system (Goro, Prague, Czech Republic). 

3.2. Apparatus 

The HPLC system used was an Agilent 1260 Infinity Quaternary LC (Agilent Technologies  

Prague branch, Czech Republic) with a Coulochem II detector-analytical cell model 5011 (ESA, 

Bedford, MA, USA). Chemstation software (Agilent Technologies Inc., Morges, Switzerland) was 

used for data acquisition and interpretation. 

Protein separation was performed using Centrifree® Ultrafiltration Devices (Millipore, Ireland BV, 

Tullagreen, Carrightwohill, Country Cork, Ireland). Ultracel regenerated cellulose membrane with a 

surface area 0.92 cm2 designed to retain 99.9% of serum proteins was used. 

3.3. Sample Preparation 

The HSA concentration 45 g/L used in the binding study was derived from the average physiological 

concentration in a healthy population. The appropriate amount of HSA was dissolved in phosphate 

buffer saline and left for 15 min in an ultrasound basin to ensure homogenous albumin solution. 

Samples were prepared by pipetting 900 µL of albumin solution and 100 µL of phosphate buffer  

saline with each tested substance (plasma concentrations of the tested compounds were derived from 

pharmacokinetic studies described below) into Eppendorf microtubes and vortexed to ensure a 

homogenous distribution of the tested compound. Incubation conditions used were 90 min at 37 °C 

with continuous shaking, followed by sample transfer into Centrifree® Ultrafiltration Devices and 

centrifugation at 4380 rpm for 90 min, 37 °C. The acquired filtrate was subsequently analyzed on the 

HPLC system by the method described further below. 

3.4. Calibration 

Calibration curves were established for all measured compounds in the concentration range of  

100, 75, 50, 25, 12.5 6.25 and 0 µg/L. All samples were prepared in triplicates and in rat plasma  

using exactly the same procedure as samples from the actual experiments. The rat plasma was spiked 

with known concentrations of measured compounds and analyzed the same day. At the end of 

measurements calibration was repeated to test the precision of the method. 

3.5. Pharmacokinetic Studies 

Selected plasma concentrations of tested compounds were previously determined from 

pharmacokinetic studies performed on male Wister rats (body weight 230 ± 15 g; Anlab Inc. Prague, 

Czech Republic). All tested animals were kept in the Vivarium at the Faculty of Military Health 
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Sciences, Hradec Kralove at constant temperature (22 ± 2 °C), humidity (55% ± 6%), and regulated 12 

h light-dark cycles. Standard laboratory food and tap water were available ad libitum. The experiment 

was performed under the supervision of the Ethical Committee of the Faculty of Military Health 

Sciences, University of Defence, Hradec Kralove, Czech Republic. 

All animals were left to adapt for seven days in their new surrounds to eliminate the stress factor. 

Tested compounds were injected intramuscularly into the hind limb. Applied doses were calculated as 

5% of LD50 [31,32] (tested compounds and doses applied are listed in Table 3). Before application, 

compounds were dissolved in a saline solution (0.9% w/v NaCl) of 0.1 mL/100 g of animal weight. 

Animals were narcotized by an intraperitoneal injection of pentobarbital (50 mg/kg). Cannulation of 

the arteria carotis was used for blood withdrawals; loss of blood was compensated with saline solution 

(300 µL) via a cannula in the vena jugularis. Each blood sample was taken just before the subsequent 

administration in the following time intervals: 3, 5, 10, 20, 30, 40, 60, 90, 120 and 180 min after 

injection (N = 7, seven animals for each compound). All animals survived. Blood samples were 

centrifuged at 10,000 rpm for 15 min, 10 °C (Universal 320R, Hettich, Germany. The plasma was 

immediately stored at −80 °C until HPLC analysis. 

Table 3. List of tested compounds and applied doses. 

Tested Substance Administered Dose i.m. (mg/kg)

HI-6 22.23 
Obidoxime 22.23 

Trimedoxime 22.07 
K027 22.07 
K075 23.00 
K127 24.39 
K203 23.00 
K282 23.00 

3.6. HPLC Analysis 

Before HPLC analysis, plasma samples underwent acetonitrile deproteinization  

(1:4; plasma/acetonitrile) followed by centrifugation at 14,000 rpm for 15 min, 10 °C. All samples 

were analyzed in triplicates. All analyses were done on a LiChrospher® 60, 250 × 4.6 (5 µm) analytical 

column with a 4 × 4 guard column (RP-select B, Merck, Damstadt, Germany). The mobile phase was 

used for all compounds with slight changes to the pH and the ratio of acetonitrile/purified water or in 

the concentration of octane sulfonic acid-sodium salt. The composition of the mobile phase used was 

as follows 20:80 (v/v) acetonitrile/aqua purificata with octane sulfonic acid sodium salt (6 mM). The 

pH was adjusted with phosphoric acid (H3PO4) [31]. 

The analytical cell and guard cell had voltage set at +350 mV, +650 mV and 1000 mV, respectively. 

The detector gain was set at 2 µA and all data were acquired at conditioned room temperature (22 °C). 

GraphPad Prism, version 5.0 (GraphPad Software, San Diego, CA, USA) was used for  

statistical analysis. 
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4. Conclusions 

Structure influences the pharmacokinetic properties of AChE reactivators and should be considered 

when designing novel compounds. Naturally, efficacy is the most important characteristic but the 

behavior of the compounds in the plasma is just as important. Binding to HSA even at lower 

concentrations can alter pharmacokinetic curves, delay the onset of Cmax and prolong the elimination 

interval. It seems that a double bond in the linking chain has the potential to increase the binding 

affinity towards HSA and change the pharmacokinetic profile. 
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