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Abstract
Muscle failure has been demonstrated in patients with myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological
tools demonstrate the existence of both central and peripheral fatigue in
these patients. Central fatigue is deduced from the reduced amplitude of
myopotentials evoked by transcranial magnetic stimulation of the motor
cortex as well as by the muscle response to interpolated twitches during
sustained fatiguing efforts. An impaired muscle membrane conduction
velocity assessed by the reduced amplitude and lengthened duration of
myopotentials evoked by direct muscle stimulation is the defining feature of
peripheral fatigue. Some patients with ME/CFS show an increased
oxidative stress response to exercise. The formation of lipid hydroperoxides
in the sarcolemma, which alters ionic fluxes, could explain the reduction of
muscle membrane excitability and potassium outflow often measured in
these patients. In patients with ME/CFS, the formation of heat shock
proteins (HSPs) is also reduced. Because HSPs protect muscle cells
against the deleterious effects of reactive oxygen species, the lack of their
production could explain the augmented oxidative stress and the
consecutive alterations of myopotentials which could open a way for future
treatment of ME/CFS.
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Introduction
Chronic fatigue syndrome (CFS), also called myalgic enceph-
alomyelitis/CFS (ME/CFS), is a multisystem disease with  
immune dysfunction and autonomic abnormalities characterized 
by an intense fatigue worsened by physical/mental activity1,2.  
It is often associated with post-exertional malaise (PEM)2,3. 
Its pathogenesis appears to have a number of factors; different  
stressors (such as physical exertion, severe infections, or  
emotional stress or a combination of these) are continually 
reported in the medical history of patients with ME/CFS4. An 
altered skeletal muscle function has been observed in ME/CFS  
pathogenesis5–9. In our studies5–8, alterations of the muscle  
membrane excitability in response to exercise was found in  
86 out of 133 patients with ME/CFS (that is, 65%). Several  
ME/CFS studies have also reported an enhanced oxidative 
stress in response to exercise4–7. This mini-review focuses on the  
neurophysiological disorders found in patients with ME/CFS 
and changes in biochemical markers of exercise, such as the  
potassium outflow, oxidative stress, and heat shock protein (HSP) 
response.

The general mechanisms of muscle fatigue
Muscle fatigue results primarily from the incapacity of the 
muscle fibers to contract. Muscle failure called “peripheral  
fatigue” may result from a failure of different metabolic 
processes such as the imbalance between oxygen demand and 
supply, the reduced excitation–contraction coupling involving  
altered intracellular calcium release and mobilization, and the 
impaired muscle membrane excitability due to the altered flux 
of potassium through the sarcolemma10. “Peripheral fatigue” is  
generally preceded by the reduced recruitment of motoneu-
rons which drive the highly fatiguing motor units. This phe-
nomenon, called “central fatigue”, tends to delay the occurrence 
of “peripheral fatigue” (the “muscle wisdom” phenomenon). 
In humans, non-invasive tools are used to explore “peripheral” 
and “central” fatigue. Peripheral fatigue is assessed by the  
reduction of the contractile response (twitch) to direct electri-
cal muscle stimulation. On the other hand, central fatigue is  
present when the interpolation of twitches elicited by repeti-
tive electrical muscle stimulation or transcranial magnetic  
stimulation (TMS) of cortical motor areas restores a contrac-
tile response during fatiguing efforts. Muscle fatigue is closely  
linked to an excessive production of reactive oxygen species 
(ROS)11. The sensory pathways carried by the group III and IV 
muscle afferents play key reflex roles in triggering the muscle  
wisdom phenomenon. The motor drive of both working and  
resting muscles is modulated by these muscle afferents through 
their spinal and supraspinal projections and their afferent  
pathways, supporting the sensation of muscle fatigue and  
pain12,13. Multiple stressors, such as fatiguing muscle contraction, 
muscle acidosis, hypoxia, ischemia, and ROS, stimulate these  
muscle afferents14–16. Their activation by muscle fatigue triggers  
the widespread production of HSPs17.

In patients with myalgic encephalomyelitis/chronic 
fatigue syndrome, central and peripheral fatigue coexist
Central fatigue
Some physiological studies using the twitch interpolation  
technique and analyzing the maximal voluntary contraction cannot 

support the hypothesis of central fatigue in patients with  
ME/CFS18,19. By contrast, numerous studies support the existence 
of central fatigue in these patients. Kent-Braun et al.20 showed that 
the voluntary contraction of the tibialis muscle during maximal  
isometric exercise was lowered. In patients with post-infectious 
CFS, Sacco et al.21 reported a reduced amplitude of motor  
potentials evoked by TMS of the motor cortex in the biceps  
brachii muscle. The authors also reported an increased inter-
polated twitch amplitude during sustained fatiguing efforts in  
patients with ME/CFS. The same observations were made by 
Schillings et al.22. Davey et al.23 correlated day-to-day changes 
in ME/CFS symptomatology with the changes in simple reaction 
times (SRTs) and movement times of myopotentials evoked in  
muscles by TMS of the motor cortex, and corticospinal  
excitability was assessed by measuring the threshold TMS 
intensity. The authors reported slowed SRTs and increased  
threshold intensity, supporting the existence of a deficit in 
motor preparatory cortical areas. Siemionow et al.24 reported a  
modification of the central motor command to muscles during 
isometric handgrip and measured an increased relative power  
of electroencephalography theta frequency band in patients 
with ME/CFS compared with healthy volunteers. These  
observations suggest that ME/CFS pathology may be associated 
with an altered central nervous system command to muscles.

Perception of effort and pain seems to be accentuated in  
patients with ME/CFS. This was previously reported by Sacco 
et al.21 and more recently confirmed25. The group III or IV  
metabosensitive muscle afferents present in all skeletal muscles 
are strongly activated by the oxygen free radicals16, a situation  
amplified in patients with ME/CFS5,6. It is tempting to speculate 
that increased activation of muscle afferents in patients with  
ME/CFS could result in an accentuated perception of effort and 
pain (myalgia). The key role played by these muscle afferents 
in central fatigue (muscle wisdom phenomenon) could also  
explain the numerous observations of a diminished central  
activation, documented in ME/CFS20–24.

Peripheral fatigue
Delayed recovery from fatiguing exercise in patients with 
ME/CFS may be due to peripheral muscle fatigue9,26. During  
incremental cycling leg exercise approaching the maximal 
oxygen uptake (VO

2
), marked alterations of myopotentials in  

response to direct muscle stimulation (M-wave) have been  
observed in a number of patients with ME/CFS5–8. These M-wave 
changes began early in exercise and culminated at the end of  
a 30-min recovery. This suggests the existence of peripheral  
fatigue due to impaired muscle membrane excitability. Similar 
M-wave alterations are absent in healthy subjects, for whom the  
amplitude of myopotentials either does not vary or even increases 
with the incremental pedaling force5.

Biological events accompanying the electrophysiological 
disorders
Reduced ionic fluxes through the muscle membrane
Alteration of ionic fluxes through the sarcolemma could explain 
the altered muscle membrane excitability reported in patients  
with ME/CFS. In healthy subjects, muscle biopsies demon-
strated a physiological contraction-induced loss in myoplasmic  
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potassium (K+) concentration27. This potassium outflow is detect-
able in plasma, and the kinetics of plasma K+ increase during 
and after an incremental exercise is well known28. A study by 
Fulle et al.29 confirmed the presence of alterations in ryanodine  
channels and a deregulation of Na+/K+ and Ca2+-ATPase pumps 
in the membranes of sarcoplasmic reticulum in patients with  
ME/CFS. To explain their data, Fulle et al.30 suggested that 
the deregulated pump activities could result from an increased 
fluidity of the sarcoplasmic reticulum membrane in these  
patients.

Increased production of reactive oxygen species
Several studies in patients with ME/CFS have examined  
changes in resting blood oxidant–anti-oxidant status and  
reported lower vitamin E concentration and higher levels of  
oxidized LDL, thiobarbituric acid reactive substances (TBARS), 
and malondialdehyde (MAL)31–33. In biopsies of vastus lateralis  
muscle of patients with ME/CFS, Fulle et al.30 detected  
oxidative damage to DNA and lipids and increased activity of 
intracellular anti-oxidants (catalase, glutathione peroxidase, 
and transferase). Other authors also found a correlation between  
musculoskeletal symptoms and an accentuated lipid peroxida-
tion at rest in patients with ME/CFS33,34. Plasma markers of  
oxidative stress are the TBARS, a marker of lipid peroxidation,  
and reduced ascorbic acid, an endogenous anti-oxidant5–7,31–34.

In healthy subjects, exercise induces modest oxidative  
stress5,35,36, whereas marked exercise-induced production of 
ROS has been found in patients with ME/CFS5–7. The muscle  
production of oxygen free radicals is proportional to that of  
VO

2
35,36. From several reports5,37,38, VO

2
 measurement in  

exercising patients with ME/CFS indicated a normal aerobic 
function; indeed, their maximal VO

2
 was in the normal range.  

However, a recent study39 showed that, perhaps because of  
PEM, patients with ME/CFS were unable to reproduce cardi-
opulmonary exercise testing during a second test. An in vitro  
study in skeletal muscle cell culture40 showed that, after electri-
cal pulse stimulation mimicking PEM, patients with ME/CFS, 
compared with normal subjects, had no increase in AMPK  
phosphorylation, a defect of glucose uptake, and a reduction 
of interleukin-6 (IL-6) secretion, highlighting the reality of  
lowered metabolic performance of muscle cells during PEM. A 
recent study by Richardson et al.41 proposed using the weighted 
standing time as a proxy for PEM severity in patients with  
ME/CFS.

An inhibitory action on Na+-K+ pump activity is exerted by  
increased production of ROS during exercise11 and this 
reduces muscle membrane excitability and potassium outflow.  
Published5–8 and unpublished observations have noted that the 
magnitude of altered muscle membrane excitability (reduced  
M-wave amplitude) is proportional to the reduction of exercise-
induced potassium outflow and to the magnitude of oxidative  
stress in patients with ME/CFS. Moreover, in 42% of the 69  
patients with ME/CFS, PEM was associated with post-exercise 
alterations of muscle membrane excitability.

Reduced heat shock protein production/expression
The HSPs protect cells against the deleterious effects of ROS 
produced during exercise42,43, reducing the generation of ROS  

through the activation of anti-oxidants. The oxidant levels, in  
turn, increase the level of plasma HSP43. In patients with  
ME/CFS, the responses of plasma HSP27 and HSP70 to  
exercise can be delayed and often reduced, and resting levels 
of plasma HSP70 are lower in these patients than in healthy  
volunteers6. The lack of HSP response to exercise might explain 
the augmented oxidative stress measured in these patients. As  
already suggested7, a downregulation of HSP production in  
some individuals could be caused by the repetition of exercise 
bouts at high energetic levels. As cited above, the activation of  
the group III or IV muscle afferents triggers the HSP produc-
tion in working and resting muscles as well as in the brain and  
different organs17. It may be hypothesized that the prolonged  
activation of these muscle afferents by the oxidative stress  
could induce a reduction of HSP production in patients with 
ME/CFS. Further studies, including in high-intensity sport  
programs and military training, are needed to show that the  
repetition of exercise bouts at high levels might depress the 
expression of the inducible factors of HSP However, HSP  
malfunction was also reported in different pathologies and 
may have origins other than the repetition of stressors. 
Thus, in patients with multiple sclerosis and systemic lupus  
erythematosus, Elfaitouri et al.44 measured an IgM to specific  
cross-reactive epitopes of human HSP60 compatible with 
infection-induced autoimmunity. HSP dysfunction was also  
reported in patients with chronic fatigue in primary Sjögren’s 
syndrome45. Because antibodies to a microbial HSP60 may 
cross-react with human HSP6046, it may be that infectious  
diseases often reported in patients with ME/CFS alter their HSP  
function.

The role played by history of severe infections in the 
neuromuscular disorders of patients with myalgic 
encephalomyelitis/chronic fatigue syndrome
In a previous study6, it was reported that the history of infection 
in patients with ME/CFS was associated with a marked  
significant increase in M-wave alterations and a reduced  
exercise-induced potassium efflux. The post-exercise changes 
in M-wave amplitude were correlated to a significant reduction 
of the maximal potassium outflow measured at the end of the 
exercise and to the baseline TBARS level. A further study  
highlights the importance of infectious stressors in ME/CFS  
pathogenesis and biological expression. A significant reduction 
of muscle excitability during work and increased blood oxidant 
status disorders at rest were measured in ME/CFS patients 
who reported a recent severe infection due to H1N1 influenza,  
pneumonia, encephalomyelitis, or sepsis7. It is well docu-
mented that acute infection constitutes a trigger for an oxidative  
stress46–48. A review by Rasa et al.49 compiles all of the studies 
carried out so far to investigate various viral agents that could  
be associated with ME/CFS. However, the role played by 
viral infection in ME/CFS pathogenesis is not clear. Recent  
observations by Bouquet et al.50 do not support immune cell  
dysregulation or viral reactivation in ME/CFS patients after  
exercise bouts inducing PEM.

Conclusions
This review focuses on the neurophysiological modifications 
that associate central and peripheral fatigue, reduced potassium  
outflow from exercising muscles, altered equilibrium between 
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pro- and anti-oxidants, and a reduced expression/production of  
HSPs in patients with ME/CFS. A mechanistic approach to the  
causes of neurobiological disorders in the ME/CFS pathology 
is proposed on the basis of a reduction in the protective role  
of HSP. Repeated and combined stressors (high exercise 
level, infections and perhaps also psychological stress) in the  
history of these patients might contribute to a depletion of HSP  
production or its expression or both. The consequences of a  
dysregulation of the oxidant/anti-oxidant status might result  
both in an altered muscle membrane excitability (peripheral  
fatigue) and in an augmented activation of the group III or IV 

muscle afferents which play a key role in the mechanism of  
central fatigue. Correcting any deficiency in HSP production  
could open a future way for the treatment of ME/CFS.

Abbreviations
HSP, heat shock protein; ME/CFS, myalgic encephalomyelitis/ 
chronic fatigue syndrome; M-wave, muscle action potential; 
PEM, post-exertional malaise; ROS, reactive oxygen species; 
SRT, simple reaction time; TBARS, thiobarbituric acid reactive  
substances; TMS, transcranial magnetic stimulation; VO

2
, oxygen 
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