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Abstract
Objective  To evaluate the prediction value of Dual-energy CT (DECT)-based quantitative parameters and radiomics 
model in preoperatively predicting muscle invasion in bladder cancer (BCa).

Materials and methods  A retrospective study was performed on 126 patients with BCa who underwent DECT 
urography (DECTU) in our hospital. Patients were randomly divided into training and test cohorts with a ratio of 7:3. 
Quantitative parameters derived from DECTU were identified through univariate and multivariate logistic regression 
analysis to construct a DECT model. Radiomics features were extracted from the 40, 70, 100 keV and iodine-based 
material-decomposition (IMD) images in the venous phase to construct radiomics models from individual and 
combined images using a support vector machine classifier, and the optimal performing model was chosen as the 
final radiomics model. Subsequently, a fusion model combining the DECT parameters and the radiomics model was 
established. The diagnostic performances of all three models were evaluated through receiver operating characteristic 
(ROC) curves and the clinical usefulness was estimated using decision curve analysis (DCA).

Results  The normalized iodine concentration (NIC) in DECT was an independent factor in diagnosing muscle 
invasion of BCa. The optimal multi-image radiomics model had predictive performance with an area-under-the-curve 
(AUC) of 0.867 in the test cohort, better than the AUC = 0.704 with NIC. The fusion model showed an increased level 
of performance, although the difference in AUC (0.893) was not statistically significant. Additionally, it demonstrated 
superior performance in DCA. For lesions smaller than 3 cm, the fusion model showed a high predictive capability, 
achieving an AUC value of 0.911. There was a slight improvement in model performance, although the difference 
was not statistically significant. This improvement was observed when comparing the AUC values of the DECT and 
radiomics models, which were 0.726 and 0.884, respectively.
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Introduction
Bladder cancer (BCa) ranks as one of the most prevalent 
urologic malignancies and is the 10th most common can-
cer globally [1, 2]. The incidence of BCa is higher in men, 
where it stands as the 6th most common cancer and the 
9th leading cause of cancer-related deaths [2]. In devel-
oped nations, around two-thirds of BCa cases manifest 
as non-muscle-invasive BCa (NMIBC), with the remain-
ing cases presenting as muscle-invasive BCa (MIBC) [3]. 
The extent of muscle invasion serves as an independent 
prognostic factor that greatly influences clinical man-
agement and survival outcomes. MIBC is a lethal malig-
nancy, results in over 85% mortality within 2 years if 
left untreated or treated inadequately [4, 5]. Given these 
grave implications, the ability to predict muscle invasion 
could substantially enhance preoperative planning and 
patient outcomes.

Biopsy, being the gold standard for diagnosing muscle 
invasion, is an invasive method that struggles to defini-
tively determine the extent of muscle layer infiltration 
due to challenges in obtaining a sufficient sample [3, 6]. 
This pitfall may pose serious problems, including the 
delay of radical treatment, disease progression and wors-
ening oncological results [7]. Radiomics, as an emerging 
field, holds potential in converting digital imaging data 
into innumerable and mineable quantitative features 
that reveal pathophysiology [8]. Previous researches have 
shown that radiomics models utilizing conventional CT 
images can accurately forecast muscle invasion in BCa 
[9–12]. Dual-energy computed tomography (DECT) 
enables qualitative analysis of lesions and generation 
of material decomposition and virtual monochromatic 
images (VMIs) for providing additional value of dis-
ease diagnosis [13–15]. Material decomposition allows 
for the estimation of the concentration of specific ele-
ments within a region of interest, thereby distinguishing 
absorption characteristics of different elements [16–18]. 
Processed images such as VMIs have shown promis-
ing results in oncological imaging for tumor detection, 
characterization, and assessing therapy response [15]. 
Although radiomics, DECT material decomposition, and 
VMIs have demonstrated potential for characterizing 
various tumor types, their combined value in predict-
ing muscle invasion in BCa remains unexplored. Con-
sequently, this study aimed to investigate the optimal 
DECT-derived radiomics model for evaluating the mus-
cle status of BCa and to explore the clinical significance 
of combining quantitative parameters and radiomics to 
preoperatively predict the muscle invasion.

Methods
Patients
This retrospective study was approved by the Insti-
tutional Ethics Committee, and the patient consent 
was waived. The study population was retrospectively 
enrolled patients who underwent dual-energy computed 
tomography urography (DECTU) for BCa staging pur-
pose. Among these patients, those scanned between 
April 2021 and October 2023 were recruited. The inclu-
sion criteria were confirmed by pathological examination 
as BCa and their CTU scans performed with dual-energy 
technique. The exclusion criteria were (I) incomplete 
imaging datasets, (II) incomplete clinicopathological 
diagnostic report, (III) inadequate image quality for anal-
ysis, (IV) lesions with a maximum diameter or thickness 
less than 10 mm, (V) radiation therapy or chemotherapy 
between CTU and pathological assessment. Ultimately, 
126 patients were included. We randomly divided the 
cases into training (n = 88) and test (n = 38) cohorts with a 
ratio of 7:3. An overview workflow of this study is shown 
in Fig. 1.

DECT image acquisition
All CTU examinations were performed on a 256-row 
CT scanner (Revolution CT, GE HealthCare, Milwaukee, 
WI, USA). The acquisition parameters were as follows: 
Gemstone Spectral Imaging (GSI) mode with fast tube 
voltage switching (between 80 and 140 kVp); automatic 
exposure mode (GSI Assist) for selecting tube current 
to achieve noise index of 10; detector width of 80  mm; 
pitch of 0.992:1; tube rotation speed of 0.6 s/r. The con-
trast injection, with the amount of iodine intake propor-
tional to patient’s weight (500 mgI/kg) and at a maximum 
of 100 mL, was performed through a peripheral vein of 
the forearm at the injection speed of 3.0–4.0  ml/s, fol-
lowed by appropriate amount of saline at the same rate 
to maintain a total injection time of 30 s. The non-ionic 
contrast agent (Ioversol, 350  mg/mL, Jiangsu Hengrui 
Pharmaceutical Co. Ltd., China) was used. The venous 
phase scan started at 70 s after administration of contrast 
medium. All venous phase images were reconstructed by 
using the adaptive statistical iterative reconstruction-V 
(ASIR-V) algorithm at 60% strength with slice thickness 
of 1.25 mm.

Quantitative parameter measurement
Spectral images were generated using the Advantage 
Workstation 4.7 dedicated to postprocessing (GE Health-
Care) to reconstruct VMIs at 3 different energy levels (40, 
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70, and 100 keV), iodine  (water)-based material decom-
position (IMD), fat  (water)-based and effective atomic 
number (Zeff) images. Quantitative parameters were 
measured on three adjacent slices containing the larg-
est area and the substantial part of the primary lesion, 
avoiding cystic area, calcification and necrosis. Two radi-
ologists (with 2 and 10 years of experience in abdominal 
radiology, respectively) performed the quantitative mea-
surements, unaware of the pathologic findings. The aver-
age values from the two radiologists were used for the 
final evaluation. The quantitative parameters from DECT 

images included the following: (I) iodine concentration 
(IC) of the lesion (IClesion) and IC of descending aorta 
(ICaorta) in the same layer, to calculate the normalized 
iodine concentration (NIC) = IClesion/ ICaorta; (II) fat-water 
concentration (FC); (II) Zeff.

Images segmentation
The 40, 70, 100  keV and IMD images were imported 
into the uAI Research Portal V1.1 software developed 
by Shanghai United Imaging Intelligence Co., Ltd. The 
tumor segmentation was delineated manually in three 

Fig. 1  Overview workflow of this study. DECT, Dual-energy CT; CTU, CT urography; MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive 
bladder cancer; VMI, virtual monochromatic images; IMD, iodine material 
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dimensions slice-by-slice on the 40 keV axial images until 
the whole lesion was captured by a radiologist (with 2 
years of experience in the abdominal imaging diagnosis), 
who was unaware of the clinical data and pathological 
results. To ensure accuracy, another senior radiologist 
(with 20 years of experience in abdominal imaging) veri-
fied and corrected all segmentation masks. Disagree-
ments were resolved with consensus-based discussion. 
Subsequently, the resulting volume of interest (VOI) was 
copied to other types of images.

Radiomics model selection
Feature extraction
To address the interference caused by the non-uni-
form spatial resolution of CT images, we normalized 
all images using Z-score and resampled the voxel size 
spaced to 1 × 1 × 1 mm through the B-spline interpolation, 
and gray values discretized into 25 bin-width. Features 
were extracted separately from each images using uAI 
Research Portal V1.1 software. These radiomic features 
were subdivided into the following classes: (1) first-order 
features; (2) shape features; (3) texture features, including 
gray level co-occurrence matrix (GLCM) features, gray 
level size zone matrix (GLSZM) features, gray level run 
length matrix (GLRLM) features, gray level difference 
matrix (GLDM) features, and neighboring gray tone dif-
ference matrix (NGTDM) features.

Feature selection and radiomics model construction
All radiomics features in the training cohort were stan-
dardized using the Z-score normalization method. To 
select the optimal radiomics features to construct the 
final model, a step-wise feature selection strategy was 
adopted. Firstly, we conducted the recursive feature elim-
ination (RFE) via five-fold cross-validation to solve over-
fitting and classification accuracy problems. Then the 
least absolute shrinkage and selection operator (LASSO) 
was used to select the optimal radiomics features. Sup-
port Vector Machine (SVM) was utilized to construct 
radiomics models individually for single images (at 40, 

70, 100 keV and IMD images) and multi-images (combin-
ing 40, 70, 100 keV and IMD images), aiming to identify 
the optimal performance radiomics model both in the 
training and test cohorts. A radiomics workflow is shown 
in Fig. 2.

Models building
DECT quantitative parameters selected through univari-
able and multivariate logistic regression analyses were 
utilized in building the DECT model. Then the most 
effective radiomics model was identified as the final 
choice. Finally, a fusion model integrating the radiomics 
scores (rad-score) from the radiomics model with the 
independent predictors from DECT model was devel-
oped using logistic regression algorithm. The fusion 
model was visually represented as a nomogram for indi-
vidualized estimating the probability of MIBC in the 
training cohort.

Statistical analysis
Statistical analysis was performed using MedCalc version 
20.2 (MedCalc, Ltd, Ostend, Belgium), R software (ver-
sion 4.2.1), and SPSS version 26.0 (SPSS Inc., Chicago, 
IL, USA). Quantitative measurements from the mono-
chromatic images and MD images in DECT were initially 
checked with the Shapiro-Wilk test for normal distri-
bution. The normally distributed parameters were pre-
sented as mean ± standard deviation (SD), while skewed 
variables were expressed as the median and inter quartile 
range (IQR). Variables were compared using indepen-
dent sample t-test, Mann-Whitney U Test, chi-square 
tests, or Fisher exact test as appropriate. Variables with 
a p value < 0.05 in the univariate analysis were identified 
as candidate variables for the multivariable binary logis-
tic regression analysis. Subsequently, candidate variables 
were included as independent variables in a forward step-
wise binary logistic regression to determine the indepen-
dent predictors. A p value less than 0.05 was considered 
statistically significant.

Fig. 2  A flow chart illustrating the process for building radiomics models in this study. RFE, recursion feature elimination; LASSO, least absolute shrinkage 
and selection operator
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The receiver operating characteristic (ROC) curves 
were drawn, and sensitivity, specificity, accuracy, preci-
sion, and the area under the curve (AUC) were calcu-
lated respectively based on the R language to evaluate the 
diagnostic efficacy of the different models, and statisti-
cal differences between AUCs were compared using the 
DeLong test. Decision curves were utilized to compare 
the clinical usefulness of models.

Results
Patient characteristics
The clinical characteristics and DECT quantitative 
parameters of the 126 BCa patients are summarized in 
Tables  1 and 2, respectively. No significant differences 
were observed in age, gender, lesion location and diam-
eter between the training and test cohorts (all p > 0.05). 
Moreover, regarding quantitative parameters, NIC 
showed significant difference between the MIBC and 
NMIBC in both cohorts with all p < 0.05, while IC was 
significantly different in the training cohort only with 
p < 0.05.

Feature selection and optimal radiomics based model 
screening
A total of 104 radiomics features were extracted from 
each VOI based on the 40, 70, 100 keV and IMD images. 
Following feature selection using RFE and Lasso meth-
ods, the optimal radiomics features of each image 
set remained. The diagnostic performances of the 5 
radiomics models in the training and test cohorts are 
shown in Table  3. Notably, the diagnostic performance 
based on multi-image was the best differentiating MIBC 
and NMIBC in the training (AUC = 0.943) and test 
cohorts (AUC = 0.867), respectively.

Model building
DECT model
Among the four quantitative parameters (IC, NIC, FC 
and Zeff) analyzed, the univariable analysis revealed that 
IC and NIC were significant risk factors for predicting 
muscle invasion. Further multivariable logistic regression 
analysis showed that NIC (OR, 25.426; 95% CI: 5.458-
118.434; P < 0.001) was the sole independent predictor 
(Table  4). Consequently, NIC was used for the DECT 
model.

Table 1  Clinical data of bladder cancer patients in training and test cohorts
variables Training cohort (n = 88) Test cohort (n = 38) P value†

MIBC (n = 34) NMIBC (n = 54) P value* MIBC (n = 15) NMIBC (n = 23) P value*

Age (years) 69.00
(66.75, 76.50)

68.00
(63.00, 72.00)

0.077 69.00
(64.00, 75.00)

65.00
(59.00, 69.00)

0.083 0.103

Gender 0.341 0.371 0.987
Male 27 47 14 18
Female 7 7 1 5
Leision location 0.266 0.295 0.99
Side wall 20 38 8 17
Trigone 14 16 7 6
Diameter of lesion 0.698 0.436 0.104
≥ 3 cm 14 20 5 4
< 3 cm 20 34 10 19
MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer; *Comparison between MIBC and low NMIBC. †Comparison between training 
and test cohorts

Table 2  Comparison of DECT quantitative parameters between MBIC and NMBIC
Variables Training cohort (n = 88) Test cohort (n = 38)

MIBC
(n = 34)

NMIBC
(n = 54)

P value MIBC
(n = 15)

NMIBC
(n = 23)

P value

IC
(mg/mL)

25.76
(20.97, 30.57)

28.45
(25.19, 35.37)

0.007 21.97
(19.62, 26.09)

29.49
(20.13, 35.36)

0.137

NIC 1.24
(0.72, 1.62)

0.68
(0.54, 0.87)

< 0.001 1.16
(0.57, 1.63)

0.66
(0.56, 0.91)

0.033

FC
(mg/mL)

-1558.93
(-1816.74, -1220.38)

-1558.93
(-1816.74, -1220.38)

0.125 -1488.43
(-1837.06, -1364.02)

-1480.77
(-1714.00, -1189.89)

0.953

Zeff 8.90
(8.65, 9.11)

8.82
(8.57, 8.99)

0.12 8.76
(8.68, 8.93)

8.75
(8.56, 8.93)

0.836

MIBC, muscle-invasive bladder cancer; NMIBC, non-muscle-invasive bladder cancer; IC, iodine concentration; NIC, normalized iodine concentration; FC, fat water 
concentration; Zeff, effective atomic number
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Radiomics model
As previously mentioned, we selected the multi-image 
radiomics model based on the combination of the four 
sets of images (40, 70, 100 keV and IMD) as the optimal 
radiomics model.

Fusion model
We combined the independent predictor from the DECT 
model and the rad-score of the optimal radiomics model 
to construct the fusion model and develop a visual nomo-
gram (Fig. 3).

Overall performance assessment
Model comparison
The performance of three models in distinguishing 
between MIBC and NMIBC is presented in Table 5, and 
the DeLong test comparing the performance of these 
models is shown in Table 6. ROC curves illustrated that 
the radiomics model was superior to the DECT model 
in predicting the muscle invasion status in the training 
cohort (AUCradiomics= 0.943; AUCDECT =0.798) and the 
test cohort (AUCradiomics = 0.867, AUCDECT =0.704). Fur-
thermore, the fusion model showed a slight additional 
improvement (AUCtraining = 0.943, AUCtest = 0.893) as 
depicted in Fig. 4. Decision curves revealed that both the 
radiomics model and the fusion model provided a greater 
net benefit compared to the DECT model (Fig. 5).

Diameter-stratified analysis
In the test cohort, for lesions larger than 3 cm, both the 
fusion model and the radiomics model achieved AUC 

values of 0.800. Conversely, for lesions smaller than 3 cm, 
the fusion model exhibited improved predictive ability 
with an AUC value of 0.911, although the difference com-
pared to the AUC value of the radiomics model (0.884) 
was not statistically significant. Notably, the DECT 
model had the lowest AUC values in both groups. Spe-
cific advantages of the diagnostic performance are out-
lined in Table 7.

Discussion
In this study, a fusion model integrating radiomics fea-
tures and quantitative parameters derived from DECT 
was successfully developed to distinguish between MIBC 
and NMIBC. The results demonstrated that the fusion 
model exhibited the best predictive accuracy for mus-
cle invasion, surpassing both the DECT and radiomics 
model. Additionally, this study highlighted the fusion 
model had potential advantages in identifying high-risk 
small lesions that may be challenging to identify. Our 
findings indicated that the fusion model held promise as 
a noninvasive tool for preoperative assessment of muscle 
status in BCa patients.

The iodine concentration (IC) derived from DECT 
enables the quantitative measurement of vascular 
enhancement in lesions, aiding in the differentiation of 
urothelial tumors from non-tumor lesions using IMD 
images [19, 20]. Our study demonstrated that the IC val-
ues of NMIBC were higher than those of MBIC, indicat-
ing discrimination potential. However, previous study 
had shown that IC values may be influenced by various 
factors, such as tumor size, blood volume, the degree of 

Table 3  The diagnostic performance of radiomics models
Cohort Model AUC (95% CI) SEN SPE ACC PRE
Training 40 0.937 (0.884, 0.990) 0.706 0.963 0.864 0.923

70 0.893 (0.823, 0.964) 0.735 0.907 0.841 0.833
100 0.868 (0.785, 0.951) 0.676 0.926 0.830 0.852
IMD 0.932 (0.882, 0.982) 0.857 0.826 0.841 0.818
Multi-image 0.943 (0.897, 0.990) 0.765 0.963 0.886 0.929

Test 40 0.838 (0.682, 0.993) 0.667 1.000 0.868 1.000
70 0.846 (0.698, 0.995) 0.667 0.870 0.789 0.769
100 0.800 (0.641, 0.959) 0.600 0.870 0.763 0.750
IMD 0.777 (0.609, 0.944) 0.643 0.750 0.711 0.600
Multi-image 0.867 (0.727, 1.000) 0.733 0.870 0.816 0.786

AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PRE, precision

Table 4  Independent factors for muscle invasion in bladder cancer
Variables Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value
IC (mg/mL) 0.920 0.861–0.983 0.014
NIC 25.426 5.458-118.434 < 0.001 25.426 5.458-118.434 < 0.001
FC (mg/mL) 0.999 0.998-1.000 0.082
Zeff 3.312 0.817–13.436 0.094
OR, odds ratio; CI, confidence interval; IC, iodine concentration; NIC, normalized iodine concentration; FC, fat water concentration; Zeff, effective atomic number
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enhancement, and differences in hemodynamics among 
individuals [21]. On the other hand, NIC could miti-
gate variations resulting from differences in circulation 
statuses among individuals, providing a more accurate 
representation of tumor tissue blood supply. In contrary 
to IC, the NIC values of MBIC were significantly higher 
than those of NMBIC. Our logistic regression analysis 
concluded that only NIC was an independent predictor 
of muscle status, effectively distinguishing MBIC from 
NMBIC with an AUC of 0.704.

Table 5  Comparison of AUCs between DECT, radiomics, and fusion models
Model AUC (95% CI) SEN SPE ACC PRE

Training cohort DECT model 0.798 (0.699, 0.876) 0.618 0.944 0.818 0.875
Radiomics model 0.943 (0.897, 0.990) 0.765 0.963 0.886 0.929
Fusion model 0.943 (0.872, 0.981) 0.853 0.907 0.886 0.853

Test cohort DECT model 0.704 (0.534, 0.841) 0.600 0.870 0.763 0.750
Radiomics model 0.867 (0.727, 1.000) 0.733 0.870 0.816 0.786
Fusion model 0.893 (0.749, 0.970) 0.800 0.913 0.868 0.857

AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PRE, precision

Table 6  DeLong test for the comparison of AUC values between 
different models
Cohort Model comparison Z statistic P Value
Training DECT vs. Radiomics 2.537 0.011

Radiomics vs. Fusion 0.008 0.993
DECT vs. Fusion 2.547 0.011

Test DECT vs. Radiomics 1.336 0.182
Radiomics vs. Fusion 0.286 0.775
DECT vs. Fusion 1.656 0.098

Fig. 3  The nomogram of the fusion model was constructed using the training cohort, incorporating NIC and rad-score of the multi-image radiomics 
model. NIC, normalized iodine concentration; Rad-score, radiomics scores; MIBC, muscle-invasive bladder cancer
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The existing CT-based radiomics models were based 
on conventional CT images to differentiate whether the 
tumor has invaded the muscular layer [9–11]. These 
studies demonstrated that radiomics models were effec-
tive in evaluating the invasiveness of muscle in BCa and 

outperformed visual assessments by radiologists. This 
underscores the potential of CT-based radiomics for 
evaluating muscle invasion in BCa. However, the impact 
of DECT on predicting muscle status remains unclear. 
Previous studies have highlighted the advantages of 

Table 7  The diagnostic performance of three models in diameter-stratified analysis
Diameter Model AUC (95% CI) SEN SPE ACC PRE
≥ 3 cm DECT model 0.625 (0.265, 0.903) 0.600 1.000 0.778 1.000

Radiomics model 0.800 (0.422, 0.979) 0.800 1.000 0.889 1.000
Fusion model 0.800 (0.422, 0.979) 0.800 1.000 0.889 1.000

< 3 cm DECT model 0.726 (0.530, 0.874) 0.600 0.895 0.793 0.750
Radiomics model 0.884 (0.711, 0.972) 0.900 0.895 0.897 0.818
Fusion model 0.911 (0.745, 0.984) 0.800 0.895 0.862 0.800

AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PRE, precision

Fig. 5  Decision curves for DECT, radiomics, and fusion models in training (A) and test cohorts (B). Fusion model and radiomics model had higher net 
benefits than DECT model

 

Fig. 4  Receiver operating characteristic curves for DECT, radiomic, and fusion models in training (A) and test cohorts (B). 
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multi-energy models derived from DECT. Al Ajmi et al. 
[22] introduced a multi-energy texture analysis utiliz-
ing VMIs ranging from 40 to 140 keV, capturing energy-
dependent tissue attenuation changes. Using the same 
population, they improved the diagnostic accuracy of 
benign parotid tumors in comparison to the single-
energy level of 65  keV (75–92%). Additionally, Forghani 
et al. [23] demonstrated that multi-energy texture anal-
ysis outperformed single-energy methods in evaluat-
ing lymph node metastasis in head and neck squamous 
cell carcinoma. Li et al. [24] utilized VMIs at 40, 65, and 
100  keV obtained from both the arterial and venous 
phases to predict lymph node metastasis in gastric can-
cer. Their results showed that a nomogram based on 
multi-energy data exhibited superior predictive per-
formance and added value compared to single-energy 
and clinical models. Considering CT physics and algo-
rithms, low-energy images (40–70 keV) better reflect tis-
sue enhancement features, whereas high-energy images 
(100–140 keV) represent non-enhanced tissue character-
istics [25]. In our study, we selected the 40 keV to repre-
sent low-energy images, 100 keV for high-energy images, 
and 70  keV as an equivalent to a standard 120-kVp CT 
acquisition [26, 27]. IMD images selectively depict tis-
sue perfusion and permeability, crucially linked to tumor 
angiogenesis and aggressiveness [28]. They not only facil-
itate the quantitative analysis of IC but also find success-
ful application in radiomics, offering valuable insights for 
tissue characterization, diagnosing metastases, and pre-
dicting survival outcomes [29–33]. Furthermore, there is 
a notable deficiency in radiomics utilizing IMD images 
for muscle invasion characterization in BCa, which may 
enhance the predictive model performance by incorpo-
rating information on blood supply variations. Build-
ing on this premise, we incorporated IMD images into a 
multi-image analysis. The multi-image radiomics model 
incorporated features from images at 40,70,100  keV as 
well as IMD images, creating a holistic image dataset of 
the lesion that overcomed the constrains of single-energy 
imaging techniques. The results of our study indicated 
that the multi-image radiomics model outperformed 
radiomics models based solely on single images in distin-
guishing between MIBC and NMIBC. This suggested that 
multi-image radiomics model effectively captured varia-
tions in energy-dependent attenuation among different 
tissues and variations in blood perfusion, providing more 
comprehensive information than single image set alone.

In our study, the multi-image radiomics model exhib-
ited superior predictive efficacy compared to the 
DECT model in forecasting the invasiveness of mus-
cle. While quantitative parameters can capture micro-
scopic details like blood flow and material composition, 
radiomics delves into both intra-tumor and inter-tumor 
heterogeneity by analyzing the entire lesion and its 

microenvironment without invasive conditions [34, 35]. 
The combination of these two aspects enhances the accu-
racy in revealing the fundamental characteristics of the 
lesion. Thus, we conducted a novel fusion model that 
combines the rad-score of radiomics model with NIC 
for the first time to preoperatively forecast muscle inva-
siveness of BCa. The fusion model showcased improved 
accuracy from 82 to 87%, with the sensitivity and speci-
ficity increasing from 73% and 87–80% and 91%, respec-
tively. Tumor size holds prognostic and predictive 
significance in NMIBC and is considered as a critical 
feature in determining muscle invasion. Then, we sepa-
rately evaluated lesions stratified by diameter [36, 37]. 
Our findings showed that the fusion model had the larg-
est AUC compared to both DECT and radiomics models 
in lesions smaller than 3 cm. These results proposed that 
the fusion model may offer significant value in the assess-
ment of small lesions.

This study has several limitations. Firstly, it depended 
on manual tumor segmentation, a process susceptible 
to subjectivity introduced by radiologists. Secondly, the 
adoption of DECT was lower than that of conventional 
CT, leading to a decreasing number of patients receiving 
both pathological biopsies and DECT. Consequently, our 
imaging options were limited to single-mode techniques. 
Thirdly, the utilization of only venous-phase CT images 
may limit the diagnostic performance of the models, sug-
gesting potential enhancement by incorporating multi-
phase CT images.

In conclusion, the multi-image radiomics model out-
performed radiomics models based on the individual 40, 
70, 100  keV and IMD images in distinguishing between 
MBIC and NMBIC. The fusion model, which combines 
the radiomics model and NIC, demonstrated improved 
predictive performance for muscle invasion compared to 
both the DECT and radiomics models, although the dif-
ference was not statistically significant. This innovative 
method holds promise in unraveling the heterogeneity of 
muscle status in BCa and in providing personalized med-
ical care for MBIC patients efficiently and scientifically.
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