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PK-PD Modeling of Individual Lesion FDG-PET Response
to Predict Overall Survival in Patients With Sunitinib-
treated Gastrointestinal Stromal Tumor

E Schindler1*, MA Amantea2, MO Karlsson1 and LE Friberg1

Pharmacometric models were developed to characterize the relationships between lesion-level tumor metabolic activity, as assessed
by the maximum standardized uptake value (SUVmax) obtained on [18F]-fluorodeoxyglucose (FDG) positron emission tomography
(PET), tumor size, and overall survival (OS) in 66 patients with gastrointestinal stromal tumor (GIST) treated with intermittent sunitinib.
An indirect response model in which sunitinib stimulates tumor loss best described the typically rapid decrease in SUVmax during on-
treatment periods and the recovery during off-treatment periods. Substantial interindividual and interlesion variability were identified
in SUVmax baseline and drug sensitivity. A parametric time-to-event model identified the relative change in SUVmax at one week for the
lesion with the most pronounced response as a better predictor of OS than tumor size. Based on the proposed modeling framework,
early changes in FDG-PET response may serve as predictor for long-term outcome in sunitinib-treated GIST.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 173–181; doi:10.1002/psp4.12057; published online 16 March 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Previously developed PK-PD models identified sunitinib-
induced changes in the soluble VEGFR 3, neutrophil counts, and blood pressure as predictors of OS in patients with GIST.
Changes in tumor metabolic activity, occurring several weeks before changes in tumor size, may also correlate to clinical
outcome in GIST treated with anti-angiogenic drugs. • WHAT QUESTION DID THIS STUDY ADDRESS? � A pharmaco-
metric modeling framework linking sunitinib exposure, longitudinal lesion-level tumor metabolic activity, tumor size, and OS
was developed. The predictive ability of tumor metabolic activity and tumor size on OS was investigated. • WHAT THIS
STUDY ADDS TO OUR CURRENT KNOWLEDGE � The developed model described the schedule-dependent tumor met-
abolic response and quantified substantial interlesion variability. Larger changes in metabolic activity in the lesion that best
responds after one week predicted longer OS. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERA-
PEUTICS � Tumor metabolic activity is a promising marker for early assessing response to sunitinib. The developed mod-
eling framework may be used to support dose and schedule selection for anti-angiogenic compounds.

Gastrointestinal stromal tumors (GISTs) are soft tissue sar-

comas that respond poorly to conventional cytotoxic che-

motherapies and palliative radiotherapy. The treatment of

unresectable and metastatic GIST has substantially

improved with the introduction of targeted agents, such as

imatinib mesylate and sunitinib malate. Sunitinib is an oral,

multitargeted tyrosine-kinase inhibitor approved multination-

ally for the treatment of imatinib-resistant or imatinib-

intolerant GIST, advanced renal cell carcinomas and

pancreatic neuroendocrine tumors.1 Sunitinib inhibits

platelet-derived growth factor receptors a and b, the stem

cell factor receptor (KIT), the vascular endothelial growth fac-

tor receptors (VEGFRs; VEGFR-1, VEGFR-2, and VEGFR-

3), and several other tyrosine kinase receptors. Sunitinib pre-

dominantly exhibits cytostatic and antiangiogenic effects,

explaining that pronounced tumor shrinkage is rare when

assessed by the Response Evaluation Criteria in Solid

Tumors based on the sum of longest diameters (SLD) of tar-

get lesions.2 Sunitinib provides, however, significant clinical

benefit and prolongs survival.3,4 Therefore, anatomic size

changes may be insufficient to assess biological activity of

cytostatic drugs5 and pharmacodynamic (PD) circulating and

imaging biomarkers are considered valuable adjuncts to

tumor size to monitor therapeutic response.
By elucidating the relations between drug exposure, PD

responses, and clinical outcomes, pharmacometric model-

ing helps in identifying new biomarkers of response and

guiding oncology clinical trial design and therapeutic deci-

sions.6–8 Hansson et al.9,10 developed a population phar-

macokinetic (PK)-PD modeling framework for sunitinib

treated patients with GIST linking drug exposure to the

time-course of circulating biomarkers (vascular endothelial

growth factor [VEGF], the soluble VEGF receptors

sVEGFR-2 and sVEGFR-3, and soluble KIT [sKIT]), SLD,

adverse effects (fatigue, hand-foot syndrome, neutropenia,

and hypertension) and overall survival (OS). Sunitinib

induced a schedule-dependent increase in VEGF and

decrease in sVEGFR-2, sVEGFR-3, and sKIT. The
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sVEGFR-2 and sVEGFR-3 turnover times were highly cor-
related as well as their drug sensitivities. The sVEGFR-3
and sKIT relative change from baseline, in addition to suniti-
nib exposure, successfully described SLD time-course. A
smaller baseline SLD and larger sVEGFR-3 change from
baseline were associated with longer OS.

Functional imaging by [18F]-fluorodeoxyglucose (FDG)
positron emission tomography (PET) has been proposed to
complement tumor size to assess early response to therapy
in GIST11–13 and for cytostatic drugs.5 Most GISTs exhibit
a high glycolytic activity and therefore a marked FDG
uptake, as assessed by the maximum standardized uptake
value (SUVmax) of a region of interest (ROI).14 A decrease
in SUVmax shortly after sunitinib treatment initiation (1–4
weeks) has been suggested to correlate with clinical out-
come.3,15 Other FDG-PET metrics, such as mean standar-
dized uptake value (SUVmean), reflecting the overall tumor
proliferation, have also been proposed but may be associ-
ated with more variability because of manual ROI selec-
tion.14 Moreover, owing to tumor heterogeneity, SUVmean do
not always correlate with SUVmax; hence, further studies
are warranted to identify the most predictive measure.
In the present work, relationships between sunitinib
exposure and the time-course of individual lesion SUVmax

and SUVmean in GIST were assessed using pharmacomet-
ric models, in which both interindividual and interlesion
variability were characterized. Relationships between SUV,
biomarkers, SLD, and OS were explored.

METHODS
Patients and data
Data from 66 adult patients with imatinib-resistant or
imatinib-intolerant GIST treated with sunitinib in a phase I/II
study were analyzed.3 Sunitinib was administered orally

once daily according to dosing schedules described in
Table 1. FDG-PET data were available from baseline and
at least one postbaseline scan (Table 1). Whole-body PET-
scanning had been performed in a fasting-state 60 minutes
after FDG administration. SUV corrected for lean body
mass was calculated for a maximum of six reference
lesions evaluable at baseline by computed tomography or
magnetic resonance imaging (MRI). SUVmax (SUV of the
most active voxel in an ROI) and SUVmean (mean SUV for
all voxels in an ROI) were recorded for each lesion.14 SLD
and biomarkers data (VEGF, sVEGFR-2, and sKIT) were
also collected. Lesions included in SUV and SLD calcula-
tions could differ. Written informed consent was obtained
from all patients. The study was approved by the institu-
tional review boards of the participating institutions.

Model development
Pharmacometric models were developed using the nonlin-
ear mixed-effect modeling software NONMEM version
7.3.16 The first-order conditional estimation method with
interaction and, for dropout and OS analyses, the Laplacian
estimation method was used for parameter estimation.
Data preprocessing and postprocessing, model diagnostics,
and graphical visualization were performed using R soft-
ware version 2.15.3, the R-based module Xpose version 4,
the PsN toolkit version 4, and Pira~na version 2.9.0.17

Model discrimination was based on graphical diagnostics
and comparison of the objective function value (OFV,
22*log-likelihood). The OFV difference (dOFV) between
nested models is approximately v2 distributed with degrees
of freedom being the difference in number of parameters. A
significance level of P< 0.05 was used to discriminate
between nested models. Relative standard errors (RSEs) of
parameter estimates were obtained from the NONMEM
Sandwich matrix for continuous data, and from the R matrix
for dropout and OS models. The predictive performance of
the individual lesion SUV and SLD models was assessed
using visual predictive checks (VPCs), in which 95% confi-
dence intervals derived from 500 simulated datasets were
compared to the observed data. Kaplan–Meier VPCs, com-
paring the 95% confidence interval derived from 200 simu-
lations to the observed OS data, were used to evaluate the
performance of the OS model.

Pharmacokinetics
Sunitinib daily dose and daily area under the concentration-
time curve (AUCdaily), calculated as daily dose/(CL/F), were
investigated as drivers in the PD models. Individual empiri-
cal Bayes estimates for the apparent oral clearance (CL/F)
were obtained from a published PK model.18 When no PK
data were available (N 5 22), CL/F typical population value
corrected for gender, race, and tumor type (GIST) was
used. During off-treatment periods, AUCdaily was assumed
to be zero. PK data for the equipotent metabolite SU12662
were not available.

Individual lesion SUVmax model
SUVmax time-course was initially explored for an exponen-
tial increase in absence of drug, as described in the growth
models proposed by Claret et al.19 Alternatively, indirect
response (IDR) models were investigated,20 in which the

Table 1 Summary of study design and study assessments

Characteristics Description

Study design Open-label, multicenter, dose

escalation, phase I/II study

Total no. of patients 66

Dosing schedule, wk on/off:

starting daily dose, mg q.d. [N]

2/1: 50 [N 5 6]

2/2a: 25 [N 5 6]b, 50 [N 5 24],

75 [N 5 3]c

4/2: 50 [N 5 27]

FDG-PET assessment time,

study day

2/1: cycle 1: 0, 7, 21; cycle 8: 14

2/2: cycle 1: 0, 7, 28; cycle 4: 28

4/2: cycle 1: 0, 7, 42; cycle 4: 28

SLD assessment time,

study day

2/1: cycle 1: 0; cycle 4, 8, 12: 14

2/2: cycle 1: 0; cycle 2 and every

other cycle: 28

4/2: cycle 1: 0; cycle 2 and every

other cycle: 28

FDG, fluorodeoxyglucose; PET, positron emission tomography; SLD, sum of

longest diameters.
aTen patients who began treatment on schedule 2/2 switched to schedule 4/

2 after completing 8 to 21 cycles.
bAll patients who began treatment at 25 mg daily were switched to 50 mg

daily at cycle 2 or 3.
cAll patients who began treatment at 75 mg daily were switched to 50 mg

daily during or at the end of cycle 1.
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response is assumed to be at steady state (baseline) in the

absence of drug and returns to baseline when the drug

washes out. The IDR model best characterized the data

(lower OFV) and was therefore selected for further assess-

ment. IDR models with inhibition of the zero-order production

(Rin) or stimulation of the first-order loss of response (kout)

were evaluated to characterize the time-course of individual

lesions SUVmax, which typically decrease during sunitinib

treatment. Linear, power, and Emax drug-effect relationships

were considered. An effect compartment accounted for suniti-

nib accumulation and long elimination half-life (T1/2,el�50

hours).21 Because of the study design, the equilibration half-

life (T1/2,ke0) could not be estimated and was fixed to 50 hours.

Linear and nonlinear disease progression models allowing for

an underlying increase in SUVmax during the study were

tested. Additionally, a mono-exponential time-dependent decay

in drug effect was tested. Interindividual and interlesion vari-

ability were evaluated for all model parameters.
Assuming that data were collected for L lesions, j 5 1,

2. . . L, the model parameter for the ith subject (hi ) can be

written as:

hi 5

h � exp gi 1j1ð Þ if lesion 1

h � exp gi 1j2ð Þ if lesion 2

�

h � exp gi1jLð Þ if lesion L

8>>>>><
>>>>>:

(1)

where h is the typical parameter value in the population. gi ,

the random effect common to all lesions for the ith subject,

is assumed to be normally distributed with mean 0 and var-

iance x2. jj , the random effect specific to the jth lesion, is

assumed to be normally distributed with mean 0 and var-

iance p2
j . A common variance was assumed for all lesions

(p2
15p2

25 � � �5p2
j ).

Sources of residual variability on SUVmax may affect all

lesions assessed on the same FDG-PET scan (e.g., injected

radioactivity concentration, scanner resolution) or a single

lesion (e.g., ROI determination). NONMEM level-2 item was

used to group together observations from lesions assessed

on the same scan. These observations were allowed to have

different residual error values (e), arising from a multivariate

normal distribution parameterized with a zero mean vector

and a covariance matrix R. The diagonal elements of R cor-

responding to the variances for each e were assumed to be

the same. The off-diagonal elements of R displaying the

covariances between e were assumed to be the same,

denoting the same correlation between the residual errors

for all lesions assessed simultaneously. This was imple-

mented in NONMEM through a Cholesky decomposition of

the sigma matrix (see Supplementary Material).
As SUVmean and SUVmax data were highly correlated

(r2 5 0.96), the SUV model was built using SUVmax data,

the most commonly reported SUV metrics.22 The best

model structure was then applied to SUVmean data and

parameters were re-estimated.

Correlations between SUVmax and SLD
Individual lesion SUVmax and SLD data were modeled

jointly using the best structural model for individual lesion

SUVmax combined with a tumor growth inhibition model

describing SLD.19 The tumor growth inhibition model

included an exponential growth, a linear drug effect driven

by AUCdaily (through the effect compartment) that increases

tumor death rate, and a mono-exponential function account-

ing for drug effect diminution over time to explain tumor

progression or resistance appearance. Exponential interin-

dividual variability terms were included in SLD baseline, the

growth rate constant, and the drug effect. All fixed and ran-

dom effects parameters in the SUVmax-SLD model were

estimated simultaneously. Correlations at the individual

level between model parameters were investigated.

Correlations between SUVmax and biomarkers
The best structural model for individual lesion SUVmax was

combined with a previously developed joint model for bio-

markers.9 The biomarkers’ time-courses were described by

IDR models in which sunitinib inhibited VEGF degradation

and sVEGFR-2 and sKIT production. Sigmoidal Imax

(VEGF, sVEGFR-2) and Imax (sKIT) models described the

drug-effect relationships. A time-dependent linear disease

progression model accounted for the observed VEGF

increase and sKIT decrease from baseline over time. All

fixed and random effects parameters in the SUVmax-

biomarker model were estimated simultaneously. Correla-

tions at the individual level between model parameters

were investigated.

Overall survival model
OS data were analyzed using parametric time-to-event

models.23 Exponential and Weibull distributions were eval-

uated to describe the baseline hazard (h0(t)). Predictors

were tested one by one and in combination on the hazard

h(t) (Eq. 2).

h tð Þ5h0 tð Þ � eb1�x11���1bn �xn (2)

where bi (i 5 1,. . .,n) are coefficients representing the size

of the effect of a set of predictors (x1, . . ., xn).
Baseline predictors included the number of FDG-PET

positive lesions, Eastern Cooperative Oncology Group

functional status, baseline SLD, and the summed SUVmax

across lesions (RSUVmax). The predictive ability of time-

varying predictors including AUCdaily, the model-predicted

time-courses of RSUVmax, of SUVmax of the most active

(hottest) lesion, and of SLD were investigated. The prod-

uct of SLD and RSUVmax and the product of SLD and

RSUVmean were also tested. Moreover, the model-

predicted relative changes in RSUVmax and SLD from

baseline over time were evaluated. Dose and time-varying

predictors were extrapolated assuming that patients were

treated with sunitinib until the time of death or censoring

according to their last dose and dosing schedule even

after tumor progression, as no other treatment option was

available at the time of the study and the protocol sup-

ported continuation of treatment. Additionally, the relative

change in RSUVmax at week one or two and the relative

change in SUVmax for the lesion that responded the best

(RCFBmax) at week one or two were tested.
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A time-to-event model described censoring, defined as

loss to follow-up or nonoccurrence of death at the end of

the study, to account for varying follow-up durations.

RESULTS
Patients and data
Baseline and postbaseline SUVmax and SUVmean data

(n 5 620) were available in 66 patients for up to 102 weeks

of treatment (median follow-up time of 10 weeks). One to

five target lesions were followed for each patient, resulting

in a total of 176 lesions. Three lesions from two different

patients could not be imaged after the third visit and were

handled as below the quantification limit, setting the first

missing SUV to half of the lowest value in the dataset, and

ignoring the following missing data.24 Dosing history, SLD,

and OS data were available for all patients and 36 patients

(55%) had biomarker data.

Joint model for individual lesion SUVmax and SLD
Data exploratory analysis showed schedule-dependent

changes in individual lesion SUVmax and SUVmean, with a

decrease during on-treatment periods and a recovery dur-

ing off-treatment periods. Log-transformed individual lesion

SUVmax data were best described by an IDR model with

stimulation of kout. An IDR model with inhibition of Rin, with

Emax drug-effect assuming a maximum inhibition had similar

OFV (dOFV 5 24.0 for the same number of parameters)

but demonstrated poorer simulation properties and was

therefore not selected. The linear drug-effect was driven by

AUCdaily through an effect compartment (Eqs. 3–5). A dis-

ease progression component or a time-dependent decay in

drug effect was not significant.

dCe

dt
5ke0 � AUCdaily 2Ce

� �
(3)

dSUVmax

dt
5Rin2kout � 12DRUGSUV � Ceð Þ � SUVmax tð Þ (4)

Rin5SUVmax;0 � kout (5)

Interindividual and interlesion variability were significant
to include in the baseline (SUVmax,0) and the drug effect
parameter (DRUGSUV). For both parameters, interindividual
variability was estimated to be larger than interlesion
variability, although interlesion variability was of signifi-
cance (32% interindividual and 23% interlesion variability
for SUVmax,0, and 74% interindividual and 57% interlesion
variability for DRUGSUV).

In the individual lesion SUVmax-SLD joint model, parame-
ters were estimated with acceptable precision (RSE �29%
for fixed effects, �38% for random effects) except for the
rate constant for vanishing drug effect on SLD, k (45%).
Removal of k increased the OFV by 60 points and the func-
tion was therefore kept in the model. Parameter estimates
and their uncertainty are summarized in Table 2. The drug
effects on individual lesion SUVmax and SLD were 85% cor-
related at the individual level. The model predicts a typical
turnover time (1/kout) of SUVmax of 1.8 weeks, and typical
decreases in SUVmax of 26% and 47% after one and two
weeks of sunitinib treatment (50 mg q.d.), respectively.

Graphical exploration of dropout patterns showed no evi-
dence that dropout from FDG-PET measurements was
related to the magnitude of SUVmax. Therefore, the realized
study design was used for simulations to generate VPCs of
individual lesion SUVmax. For SLD simulations a previously
published dropout model9 accounted for the probability of
dropping out from SLD assessments. The logistic regres-
sion dropout model included as predictors the observed
SLD at dropout and a >20% increase in SLD from nadir

Table 2 Final individual lesion SUVmax, SLD, dropout, and overall survival model parameter estimates

Parameter Typical value (RSE %) Interindividual variability CV % (RSE %) Interlesion variability CV % (RSE %)

Individual lesion SUVmax model

SUV0 7.59 (5.9) 32 (16) 23 (16)

kout (wk21) 0.556 (29) – –

DRUGSUV (mg21.L.h21) 0.946 (15) 74 (26) 57 (20)

Residual error (%) 41.7 (20) – –

SLD model

SLD0 (mm) 263 (6.8) 54 (9.6) –

KGROW (wk21) 0.0105 (24) 60 (38)

DRUGSLD (mg21.L.h22) 0.0166 (21) 63 (37) –

k (wk21) 0.0201 (45) – –

Residual error (%) 6.68 (12) – –

Correlation DRUGSUV/DRUGSLD (%) 85.1 (22) – –

OS model

h0 (wk21) 0.0191 (3.1)

b 5.36 (8.5) – –

b, parameter relating the maximum relative change from baseline in individual lesion SUVmax at week one to the hazard; CV, coefficient of variation; DRUGSLD,

tumor size reduction rate constant; DRUGSUV, slope of the linear drug effect on SUVmax; h0, constant baseline hazard for the overall survival model; KGROW,

tumor growth rate constant; kout, SUVmax turnover rate constant; OS, overall survival; k, rate constant for drug effect washout; RSE, relative standard error;

SLD, sum of longest diameters; SLD0, baseline sum of longest diameters; SUVmax, maximal standardized uptake value; SUV0, estimated individual lesion SUV-

max at baseline.
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(yes/no). Time since first dose was not significant in the

present study. VPCs for the best individual lesion SUVmax-

SLD model showed a good predictive performance of the

joint model (Figure 1, Supplementary Figure).
The individual lesion SUVmax model structure was suc-

cessfully applied to individual lesion SUVmean data. The typ-

ical value of the drug effect parameter in SUVmean model

and its interindividual and interlesion variability

(0.920 mg21 � L.h21, 77% coefficient of variation, and 57%

coefficient of variation, respectively) were of similar magni-

tude as for SUVmax.

Joint model for individual lesion SUVmax and

biomarkers
A joint model for individual lesion SUVmax, VEGF, sVEGFR-

2, and sKIT was developed using data from 36 patients

with available biomarkers data. As there was limited infor-

mation on disease progression in the data, the typical value

of the slope in the linear disease progression for VEGF and

sKIT was fixed to the published value (0.0261 month21). No

statistically significant correlations between parameters in

the SUVmax and biomarker models were identified.

Overall survival model
OS data were collected up to 102 weeks. Eleven patients

(17%) had an event. Individual lesion SUVmax, SLD, and

OS data were fitted simultaneously.25,26 The population

SUVmax and SLD parameters were fixed to the values from

the best SUVmax-SLD model, but individual SUVmax and

SLD parameters were estimated simultaneously with OS
parameters based on all data, similar to the PPP&D
approach described by Zhang et al.27 The probability of OS
was best described by an exponential distribution (constant
hazard). The probability of being censored was described
by a time-to-event model with constant hazard. In the uni-
variate analysis, RCFBmax at one week (dOFV 5 28.8) and
two weeks (dOFV 5 24.5) were identified as significant pre-
dictors of OS. AUCdaily achieved statistical significance but
resulted in model instability and the 95% confidence inter-
val around the estimate of the size of AUCdaily effect on the
hazard included zero. The model-predicted SLD time-
course (dOFV 5 27.8) and relative change in SLD from
baseline over time (dOFV 5 26.6) also resulted in a signifi-
cant OFV drop; however, these drops were driven by a sin-
gle individual. When RCFBmax,wk1 was included in the
model, none of the other predictors further improved model
fit. Eq. 6 describes the hazard function for the best OS
model:

h tð Þ5h0 � eb�RCFBmax;wk1 (6)

where h0 represents the constant baseline hazard and b
the size of the effect of RCFBmax,wk1 on the hazard. b was
estimated to 5.36, corresponding to a hazard ratio (HR) of
0.16, 0.02, and 0.50 for the median (20.34), 5th (20.76),
and 95th (20.13) percentiles of RCFBmax,wk1, respectively.
Uncertainty around the HR was reasonable (95% confi-
dence interval 5 0.12–0.22 for the median RCFBmax,1wk).

Figure 1 Visual predictive checks of the joint model for individual lesion maximum standardized uptake value (SUVmax, left panels) and
the sum of longest diameters (SLD; right panels) for dosing schedules 2/2 (top) and 4/2 (bottom). Median (solid line), 10th and 90th
percentiles (dashed lines) of the observed data are compared to the 95% confidence intervals (shaded areas) for the median (gray),
10th and 90th percentiles (blue) of the simulated data (based on 500 simulations). The dots represent the observed data.
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Similar results were obtained when assessing the predictive
ability of SUVmean. Kaplan–Meier VPCs showed a good
performance of the model (Figure 2).

DISCUSSION

In this pharmacometric analysis, the time-course of tumor

metabolic activity assessed by FDG-PET after sunitinib

treatment in patients with GIST was described and substan-

tial interindividual and interlesion variability in FDG-PET

response were estimated. Correlations between sunitinib

effects on tumor metabolic activity and tumor size, but not

circulating biomarkers, were identified. An early FDG-PET

response was predictive of OS with an HR of 0.16 for a

median relative decrease in SUVmax from baseline at week

one of 34%. Even though the individual drug effect parame-

ters on SUVmax and SLD were highly correlated, the magni-

tude of change and the onset time are different, explaining

why FDG-PET was better than SLD at predicting OS.

Figure 3 illustrates the developed modeling framework.
Lesion-level SUVmax data were best characterized by an

IDR model in which sunitinib stimulated the loss of SUVmax

response. Little is known about the mechanistic rationale

behind the sunitinib-induced decrease in tumor FDG

uptake. Possible mechanisms include a deprivation of

tumor accessibility to glucose due to the anti-angiogenic

effect28 and a reduced expression of glucose transporters

1. As sunitinib inhibits multiple tyrosine kinases, other path-

ways may be involved in its metabolic effects on tumors. As

new data become available, an IDR model with inhibition of

response production may be reevaluated.

In our analysis, an IDR model could characterize SUVmax

time-course significantly better than an exponential growth

model. The latter could capture the initial decrease in

SUVmax but not the rapid recovery during off-treatment peri-

ods. These results contrast with findings in erlotinib-treated

patients with nonsmall cell lung cancer,29 in which the peak

SUV (SUVpeak, SUV within a 1 cm3-sphere centered in the

highest-uptake region) time-course assessed by FDG-PET

and 30-[18F]fluoro-30-deoxy-L-thymidine (FLT)-PET was

modeled. The authors used a tumor progression inhibition

model to characterize the changes among baseline, week

one, and week six in SUVpeak for the hottest lesion up to

five lesions (not necessarily the same lesion at each time-

point). Erlotinib continuous daily dosing and the short study

duration may explain why a tumor progression inhibition

model described their data but could not appropriately char-

acterize the SUV data in the current study. Additionally, a

waning of the drug effect accounting for disease progres-

sion or resistance appearance was identified for SUVpeak in

nonsmall cell lung cancer, whereas it was not significant in

the present analysis.
To the best of our knowledge, this is the first analysis in

which the interindividual variability has been separated

from the interlesion variability and from residual variability

in a single estimation process. The methodology presented

herein could be applied to other lesion-level tumor data, for

example, individual lesion tumor diameters or volumes. Ferl

et al.30 proposed a model for dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) biomarkers lesion-

level data in patients with liver metastases from primary

epithelial colorectal cancer after a single administration of

bevacizumab, an anti-VEGF monoclonal antibody. The indi-

vidual lesion baseline biomarker values were estimated as

a function of the observed baseline and a lesion-specific

residual variability magnitude.31 However, the interlesion

variability could not be separated from the residual unex-

plained variability. With our approach, the effect of poten-

tially available covariates (e.g., lesion localization, mutation

status) could be explored to explain part of the variability in

response between lesions. Unfortunately, such data were

not available in the present study.
When the individual lesion SUVmax was modeled jointly

with VEGF, sVEGFR-2, and sKIT, no significant correlations

were identified between the baseline levels or the sensitivity

to sunitinib for the different variables. Sunitinib inhibits sev-

eral tyrosine kinase receptors involved in various molecular

pathways and results in both anti-angiogenic and antitumor

effects.1 The absence of correlations may be due to hetero-

geneous levels of inhibition of these pathways within a

patient. However, as circulating biomarker data were only

collected in 36 patients, these results should be treated

with caution.
The typical predictions (relative to baseline) derived from

the individual lesion SUVmax-SLD model, after treatment

with 50 mg of sunitinib on 4/2 and 2/2 schedules, are

depicted in Figure 4. The model predicts a rapid and pro-

nounced decrease in SUVmax after sunitinib administration,

whereas the change in SLD is predicted to be slower and

of a smaller magnitude during the observation period.

Figure 2 Kaplan–Meier visual predictive checks of the overall
survival model. The blue line represents the observed Kaplan–
Meier curve and the black ticks represent censored events. The
gray shaded area is the 95% confidence interval of the simulated
data (200 simulations).
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Despite the sparse data and rather small population, the

parametric time-to-event model reported here successfully

identified predictors for OS (i.e., a more pronounced

change in SUVmax for the lesion that responds the best

within a patient, as predicted by our model, was associated

with longer OS). An HR of 0.59 is predicted for every 10%

drop in SUVmax after one week of treatment. These results

are comparable to the findings in erlotinib-treated nonsmall

cell lung cancer, in which the relative change from baseline

in SUVpeak after one week was associated with an

improved OS, with an HR of 0.84 for every 10% drop in

SUVpeak.
29 Altogether, these results indicate that FDG-PET

can potentially serve as an early biomarker of tumor

response to targeted treatments, and that early changes in

SUVmax may be used as a predictor for long-term outcome

(OS).
The data, as described by our model, indicate that suniti-

nib typically causes a rapid initial decrease in SUVmax fol-

lowed by a recovery toward baseline during off-treatment

periods. These findings may explain why observed FDG-

PET response at week four did not correlate with clinical

outcome in a study of sunitinib-treated patients with meta-

static clear-cell renal cancer.32 In that study, FDG-PET

scans were assessed two to five days after the last dose in

cycle one (i.e., tumor metabolic activity may have already

increased during the period off-treatment and variability in

response may be due to different assessment time). For

future studies assessing FDG-PET response to drugs

with intermittent schedules, trial designs should acknowl-

edge potential schedule dependence of tumor metabolic

response.
Other treatment schedules than the approved 4/2

schedule have been investigated in GIST and other solid

tumors. George et al.33 reported the results of a phase II

study in imatinib-resistant patients with GIST assessing

the efficacy and safety of sunitinib continuous daily dosing

at a dose of 37.5 mg/day, chosen to achieve the same

dose intensity over a six-week period. The continuous

daily dosing schedule was associated with sustained

effective drug concentrations, acceptable safety, and per-

sistent effects on VEGF, sVEGFR-2, sVEGFR-3, and

sKIT, without concentration rebounds observed during off-

treatment periods with discontinuous schedules. Addi-

tional treatment schedules have been proposed for meta-

static renal cell carcinoma in which individualized

increases in sunitinib dose or longer on-treatment periods

with shorter off-treatment periods can be decided based

on individual patient toxicity. However, it remains unclear

Figure 3 Schematic representation of the modeling framework for sunitinib in gastrointestinal stromal tumor patients. Dashed arrows
represent effects identified as statistically significant. Sunitinib daily area under the curve (AUCdaily) was used as a driver of the drug
effect on tumor metabolic activity, assessed by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) as the maximal
standardized uptake value (SUVmax), tumor size (sum of longest diameters [SLD]) and biomarkers (the soluble stem cell factor receptor
[sKIT], the soluble vascular endothelial growth factor receptor [sVEGFR-2], and the vascular endothelial growth factor [VEGF]). An
effect compartment accounted for sunitinib long half-life. SUVmax was described by a turnover model where sunitinib stimulates the
loss of SUVmax response. SLD model included an exponential growth and a washout of the drug effect over time. Biomarkers time-
courses were described by published turnover models [Hansson et al.9,10]. The drug effect on SUVmax (DRUGSUV) and SLD
(DRUGSLD) were positively correlated, whereas no correlations were found between SUVmax and biomarkers responses. The relative
change in SUVmax from baseline after one week of treatment for the lesion that best responds to sunitinib was a significant predictor of
overall survival. ke0, equilibration constant for the effect compartment; KGROW, first-order growth rate constant; kout, first-order rate con-
stant for the loss of response; k, rate constant for the disappearance of drug effect on SLD; Rin, zero-order rate constant for the pro-
duction of response.
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which dosing strategy is associated with the best clinical

benefit.34 Off-treatment periods are not only associated

with tumor progression but also coincide with reemer-

gence of tumor-related symptoms (e.g., coughing in

patients with lung metastases).35 Simulations using the

developed modeling framework can help understand the

tumor metabolic and anatomic response after different

treatment schedules.
In summary, we have developed a model describing

lesion-level FDG-PET data in sunitinib-treated patients with

GIST followed up to 102 weeks. The SUVmax-SLD-OS joint

model proposed here, together with the modeling frame-

work proposed by Hansson et al.,9,10 including biomarkers,

SLD, adverse effects, and OS, offer a platform for perform-

ing simulations and investigating the effect of different treat-

ment schedules and doses on clinical benefit and risk-

benefit balance. This work may therefore support therapy

individualization to improve the care of patients with cancer.

Additionally, the developed framework can be used for lev-

eraging the extensive clinical data collected throughout

drug development, comparing the efficacy and safety profile

of candidate drugs, and helping the selection of efficacious

but safe doses.

Acknowledgments. The research leading to these results has
received support from the Swedish Cancer Society, Sweden, and from the
Innovative Medicines Initiative Joint Undertaking under grant agreement
no. 115156, resources of which are composed of financial contribution
from the European Union’s Seventh Framework Programme (FP7/2007-
2013), and EFPIA companies’ in kind contribution. The DDMoRe project is

also financially supported by contributions from Academic and SME
partners.
Conflict of Interest. M.A.A. is an employee of Pfizer Ltd.

M.O.K. and L.E.F. have acted as paid consultants to Pfizer

Ltd. As Deputy Editor-in-Chief of CPT: Pharmacometrics &

Systems Pharmacology, L.E.F. was not involved in the

review or decision process for this article. E.S. declared no

conflict of interest.

Author Contributions. E.S., M.A.A., M.O.K., and L.E.F.

wrote the manuscript. E.S., M.A.A., M.O.K., and L.E.F.

designed the research. E.S., M.A.A., M.O.K., and L.E.F.

performed the research. E.S., M.A.A., M.O.K., and L.E.F.

analyzed the data.

1. Rock, E.P. et al. Food and Drug Administration drug approval summary: sunitinib
malate for the treatment of gastrointestinal stromal tumor and advanced renal cell
carcinoma. Oncologist 12, 107–113 (2007).

2. Eisenhauer, E.A. et al. New response evaluation criteria in solid tumours: revised
RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

3. Demetri, G.D. et al. Molecular target modulation, imaging, and clinical evaluation of
gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib fail-
ure. Clin. Cancer Res. 15, 5902–5909 (2009).

4. Demetri, G.D. et al. Efficacy and safety of sunitinib in patients with advanced gastro-
intestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet
368, 1329–1338 (2006).

5. Contractor, K.B. & Aboagye, E.O. Monitoring predominantly cytostatic treatment
response with 18F-FDG PET. J. Nucl. Med. 50 Suppl 1, 97S–105S (2009).

6. Bender, B.C., Schindler, E. & Friberg, L.E. Population pharmacokinetic-
pharmacodynamic modelling in oncology: a tool for predicting clinical response. Br. J.
Clin. Pharmacol. 79, 56–71 (2015).

7. Mould, D.R., Walz, A.C., Lave, T., Gibbs, J.P. & Frame, B. Developing exposure/
response models for anticancer drug treatment: special considerations. CPT Pharma-
cometrics Syst. Pharmacol. 4, e00016 (2015).

8. Ribba, B. et al. A review of mixed-effects models of tumor growth and effects of anti-
cancer drug treatment used in population analysis. CPT Pharmacometrics Syst. Phar-
macol. 3, e113 (2014).

9. Hansson, E.K. et al. PKPD modeling of VEGF, sVEGFR-2, sVEGFR-3, and sKIT as
predictors of tumor dynamics and overall survival following sunitinib treatment in
GIST. CPT Pharmacometrics Syst. Pharmacol. 2, e84 (2013).

10. Hansson, E.K. et al. PKPD modeling of predictors for adverse effects and overall sur-
vival in sunitinib-treated patients with GIST. CPT Pharmacometrics Syst. Pharmacol.
2, e85 (2013).

11. Van den Abbeele, A.D. The lessons of GIST–PET and PET/CT: a new paradigm for
imaging. Oncologist 13 (suppl. 2), 8–13 (2008).

12. Treglia, G., Mirk, P., Stefanelli, A., Rufini, V., Giordano, A. & Bonomo, L. 18F-
Fluorodeoxyglucose positron emission tomography in evaluating treatment response
to imatinib or other drugs in gastrointestinal stromal tumors: a systematic review.
Clin. Imaging 36, 167–175 (2012).

13. Stefanelli, A., Treglia, G., Mirk, P., Muoio, B. & Giordano, A. F-FDG PET imaging in
the evaluation of treatment response to new chemotherapies beyond imatinib for
patients with gastrointestinal stromal tumors. ISRN Gastroenterol. 2011, 824892
(2011).

14. Vanderhoek, M., Perlman, S.B. & Jeraj, R. Impact of different standardized uptake
value measures on PET-based quantification of treatment response. J. Nucl. Med.
54, 1188–1194 (2013).

15. Prior, J.O. et al. Early prediction of response to sunitinib after imatinib failure by 18F-
fluorodeoxyglucose positron emission tomography in patients with gastrointestinal
stromal tumor. J. Clin. Oncol. 27, 439–445 (2009).

16. Beal, S., Sheiner, L.B., Boeckmann, A. & Bauer, R.J. NONMEM user’s guides
(1989–2009) (Icon Development Solutions, Ellicott City, MD, 2009).

17. Keizer, R.J., Karlsson, M.O. & Hooker, A. Modeling and simulation workbench for
NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst. Pharma-
col. 2, e50 (2013).

18. Houk, B.E., Bello, C.L., Kang, D. & Amantea, M. A population pharmacokinetic
meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662)
in healthy volunteers and oncology patients. Clin. Cancer Res. 15, 2497–2506
(2009).

19. Claret, L. et al. Model-based prediction of phase III overall survival in colorectal
cancer on the basis of phase II tumor dynamics. J. Clin. Oncol. 27, 4103–4108
(2009).

Figure 4 Typical predictions of the relative change from baseline
in individual lesion maximum standardized uptake value (SUVmax)
and the sum of longest diameters (SLD) during sunitinib treatment
(50 mg q.d. on 2/2 and 4/2 weeks on/off schedule). The predic-
tions were generated using the SUVmax-SLD joint model.

PK-PD Model of Lesion-Level FDG-PET SUVmax in GIST
Schindler et al.

180

CPT: Pharmacometrics & Systems Pharmacology



20. Sharma, A. & Jusko, W.J. Characteristics of indirect pharmacodynamic models and
applications to clinical drug responses. Br. J. Clin. Pharmacol. 45, 229–239 (1998).

21. Papaetis, G.S. & Syrigos, K.N. Sunitinib: a multitargeted receptor tyrosine kinase
inhibitor in the era of molecular cancer therapies. BioDrugs 23, 377–389 (2009).

22. Wahl, R.L., Jacene, H., Kasamon, Y. & Lodge, M.A. From RECIST to PERCIST:
evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50
Suppl 1, 122S–150S (2009).

23. Holford, N. A time to event tutorial for pharmacometricians. CPT Pharmacometrics
Syst. Pharmacol. 2, e43 (2013).

24. Beal, S.L. Ways to fit a PK model with some data below the quantification limit.
J. Pharmacokinet. Pharmacodyn. 28, 481–504 (2001).

25. Ribba, B., Holford, N. & Mentr�e, F. The use of model-based tumor-size metrics to
predict survival. Clin. Pharmacol. Ther. 96, 133–135 (2014).

26. Desm�ee, S., Mentr�e, F., Veyrat-Follet, C. & Guedj, J. Nonlinear mixed-effect models
for prostate-specific antigen kinetics and link with survival in the context of metastatic
prostate cancer: a comparison by simulation of two-stage and joint approaches.
AAPS J. 17, 691–699 (2015).

27. Zhang, L., Beal, S.L. & Sheiner, L.B. Simultaneous vs. sequential analysis for population PK/
PD data I: best-case performance. J. Pharmacokinet. Pharmacodyn. 30, 387–404 (2003).

28. Calvo, M.B., Figueroa, A., Pulido, E.G., Campelo, R.G. & Aparicio, L.A. Potential role
of sugar transporters in cancer and their relationship with anticancer therapy. Int. J.
Endocrinol. 2010, 205357 (2010).

29. Suleiman, A.A. et al. Modeling tumor dynamics and overall survival in advanced non-
small-cell lung cancer treated with erlotinib. J. Thorac. Oncol. 10, 84–92 (2015).

30. Ferl, G.Z. et al. Mixed-effects modeling of clinical DCE-MRI data: application to colo-
rectal liver metastases treated with bevacizumab. J. Magn. Reson. Imaging. 41,
132–141 (2015).

31. Dansirikul, C., Silber, H.E. & Karlsson, M.O. Approaches to handling pharmaco-
dynamic baseline responses. J. Pharmacokinet. Pharmacodyn. 35, 269–283
(2008).

32. Kayani, I. et al. Sequential FDG-PET/CT as a biomarker of response to suniti-
nib in metastatic clear cell renal cancer. Clin. Cancer Res. 17, 6021–6028
(2011).

33. George, S. et al. Clinical evaluation of continuous daily dosing of sunitinib malate in
patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur. J.
Cancer 45, 1959–1968 (2009).

34. Bjarnason, G.A. et al. Outcomes in patients with metastatic renal cell cancer treated
with individualized sunitinib therapy: correlation with dynamic microbubble ultrasound
data and review of the literature. Urol. Oncol. 32, 480–487 (2014).

35. Desar, I.M. et al. The reverse side of the victory: flare up of symptoms after discon-
tinuation of sunitinib or sorafenib in renal cell cancer patients. A report of three
cases. Acta Oncol. 48, 927–931 (2009).

VC 2016 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on behalf
of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the terms
of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited and
is not used for commercial purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

PK-PD Model of Lesion-Level FDG-PET SUVmax in GIST
Schindler et al.

181

www.wileyonlinelibrary/psp4


