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Abstract: The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells
surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully
coordinated interplay between these cellular and non-cellular components is required to maintain
normal neuronal function, and in line with these observations, a growing body of evidence has
linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of
the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora
of physiological events including wound healing, angiogenesis, cell migration and inflammation.
The last four decades of research have revealed that the two mammalian plasminogen activators,
tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal
regulators of NVU function during physiological and pathological conditions. Here, we will review
the most relevant data on their expression and function in the NVU and their role in neurovascular
and neurodegenerative disorders.

Keywords: tissue-type plasminogen activator (tPA); urokinase-type plasminogen activator (uPA); neu-
rodegeneration

1. Introduction

The plasminogen activation system is assembled by a cascade of proteases and their
inhibitors that catalyze the conversion of the zymogen plasminogen into the two-chain pro-
tease plasmin (Figure 1). Plasminogen is a 90 kDa single-chain multidomain glycoprotein
produced mainly in the liver [1] and assembled by 791 amino acids distributed in seven
different structural domains: an N-terminal pre-activation peptide, 5 kringle domains and
a C-terminal trypsin-like serine protease domain that harbors the catalytic triad His603,
Asp646 and Ser741 [2]. Plasminogen binds to a plethora of highly heterogenous receptors
on the cell surface, and this interaction not only triggers the generation of plasmin, but
also activates cell signaling pathways that orchestrate a wide variety of functions including
wound healing, angiogenesis, cell migration and inflammation [3]. Cleavage of plasmino-
gen at the Arg561–Val562 bond by one of the two main plasminogen activators [tissue-type
plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA)] generates
a two-chain plasmin molecule assembled by an N-terminal heavy-chain and a disulfide-
linked C-terminal light chain containing the proteolytically active site. Importantly, the
conversion of plasminogen into plasmin is enhanced when plasminogen is bound to fibrin
or to the cell surface [4]. The generation of plasmin is tightly controlled at different steps of
the plasminogen activating system. Accordingly, while plasminogen activator inhibitor-1
(PAI-1) and plasminogen activator inhibitor-2 (PAI-2) antagonize the proteolytic effect of
tPA and uPA [5], α2-antiplasmin inhibits plasmin. In the intravascular space, plasmin
acts not only as an effector of the fibrinolytic system by degrading fibrin, but also as an
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immune regulator [6]. Likewise, on the cell surface plasmin triggers the degradation of
multiple components of the extracellular matrix (ECM) and basement membrane, including
collagen, vitronectin, laminin, fibronectin and proteoglycans.

Figure 1. The plasminogen activating system. tPA: tissue-type plasminogen activator. uPA: urokinase-
type plasminogen activator. AP: antiplasmin. PAI-1: plasminogen activator inhibitor-1. FDP: fibrin
degradation products.

2. The Neurovascular Unit

The concept of the neurovascular unit (NVU) describes a dynamic interaction in the
central nervous system between endothelial cells ensheathed by a basement membrane,
and surrounding pericytes, astrocytes, microglia and neurons (Figure 2). The nature of
the interplay between these cellular and non-cellular components has led to the proposal
that the NVU is a single functioning unit responsible for the maintenance of cerebral
hemostasis [7].

Figure 2. The neurovascular unit. Schematic representation of the cellular and non-cellular compo-
nents of the neurovascular unit.

3. Plasminogen Activators in the Neurovascular Unit under Physiological Conditions
3.1. Tissue-Type Plasminogen Activator

Tissue-type plasminogen activator (tPA) is a 70-kDa serine proteinase secreted as a
single-chain form (that upon its cleavage by plasmin at Arg275-Ile276 generates an active
two-chain form held together by disulfide bonds). The tPA molecule is assembled by four
domains: an amino-terminal region (fibronectin-like or finger domain), an EGF-like domain,
two kringles and one serine protease region that harbors the active site residues His322,
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Asp371 and Ser478 [8]. In the neurovascular unit (NVU), tPA is found in endothelial cells,
perivascular astrocytes, microglia, pericytes and neurons [9,10].

3.2. Tissue-Type Plasminogen Activator in the Neurovascular Unit
3.2.1. Cerebral Endothelial Cells

In endothelial cells tPA is stored in Weibel–Palade bodies, the specialized endothelial
storage granules for von Willebrand factor [11]. The expression of tPA is increased at
the transcriptional level in endothelial cells by a variety of stimuli, including vascular
endothelial growth factor (VEGF), fluid shear stress, thrombin and histamine [12–14]. In
turn, its release from a preformed pool is triggered by physical activity, β-adrenergic drugs,
cholinergic agents, disseminated intravascular coagulation and hypoxia [15,16]. Studies
with a primary monoclonal antibody that detected free and PAI-1-complexed human
tPA revealed that in the non-human primate brain, tPA is found in a reduced number of
endothelial cells of the microvasculature, most of them pre-capillary arterioles and post-
capillary veins [17]. However, despite the relevance of these data, it is important to consider
that since this report was published almost 3 decades ago no further effort has been made
to characterize the expression of tPA with newer antibodies in endothelial cells of the
brain. Finally, although tPA has been detected in in vitro lines of human microvascular
endothelial cells [18], no in vivo studies have been published describing the expression of
tPA in blood vessels of the human brain.

3.2.2. Pericytes

Very few studies have assessed the expression and function of tPA in pericytes. How-
ever, the few that have been published to this date indicate that zinc prompts the release
of tPA from these cells [19], and that pericytes negatively regulate fibrinolysis-triggered
endothelial cell-derived tPA [20].

3.2.3. Astrocytes

tPA is abundantly found in astrocytes, and several stimuli including hypoxia [21]
and mechanical injury [22] trigger its release, both in vivo and in vitro. In line with these
observations, tPA activates the NF-κB pathway in astrocytes [23], and its release into the
basement membrane increases the permeability of the NVU [21]. The mechanism whereby
tPA activates the NF-κB pathway is not completely understood. However, work with
cerebral cortical astrocytes and rat kidney interstitial fibroblasts (NRK-49F) [24] revealed
that the interaction between tPA and LRP1 triggers the phosphorylation of IKKα, which
then allows p65/p50 to translocate to the nucleus [25]. Further work with kidney cells has
shown that another mechanism whereby tPA activates the NF-κB is by triggering annexin
2-mediated aggregation of the integrin CD11B, which in turn prompts the phosphorylation
of IKβ with the resultant nuclear translocation of p65/p50 [26] (Figure 3). In addition to its
proinflammatory effect, an increase in the expression and activity of astrocytic tPA induced
by multipotent mesenchymal stromal cells has been associated with neurite growth [27].
Furthermore, it has been proposed that astrocytes recycle tPA released in the synaptic
cleft in response to glutamatergic signals [28], and that tPA released from astrocytes
modulates the microglial response to endotoxins [29]. Together, these data indicate that the
release of astrocytic tPA plays a pivotal role in the NVU as a regulator of the permeability
of the astrocyte–basement membrane–endothelial cell interface, synaptic transmission,
neuroinflammation and microglial function.
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Figure 3. Mechanisms of tPA-induced NF-κB activation. Representative diagram of the proposed
mechanisms whereby tPA activates the NF-κB pathway in the kidney and cerebral cortical astrocytes.
In both cases, IKBα phosphorylation is followed by the nuclear translocation of p65/p50.

3.2.4. tPA in Microglia

Inasmuch as a functional link between tPA and microglial activation has been ex-
perimentally demonstrated, it is not clear if microglia release tPA. However, it has been
proposed that injured neurons release tPA, and that this tPA triggers the release of microglial
tPA, which in turn causes neurodegeneration [30]. Independently of these considerations,
experimental evidence indicates that tPA mediates endotoxin- and kainic acid-induced
microglial activation via an annexin II-mediated mechanism [31] that does not require
plasmin generation [32] and triggers neuronal apoptosis [33].

3.2.5. Neuronal tPA

Neurons are a major reservoir of tPA in the central nervous system (CNS), and the
release of neuronal tPA in the developing and mature brain plays a central role in the regu-
lation of synaptic function and the response of the CNS to a variety of injuries. Indeed, the
release of tPA by neuronal growth cones in the developing brain [34] induces neuronal mi-
gration [35] and neurite outgrowth and remodeling [36]. Noticeably, a similar sequence of
events in the mature brain promotes neuronal recovery following an ischemic injury [37,38].
In contrast with the developing CNS, in situ zymography studies have revealed that only
well-defined areas of the mature brain exhibit tPA-catalyzed proteolytic activity, namely
the hippocampus, hypothalamus, thalamus, amygdala, cerebellum and meningeal blood
vessels [39]. Furthermore, the interaction of tPA with N-methyl-D-aspartate (NMDA) recep-
tors in these structures [40] regulates glutamatergic neurotransmission [41] and promotes
the development of synaptic plasticity, as demonstrated in in vitro and in vivo models of
long-term potentiation [42], learning [43,44], stress-induced anxiety [45] and visual cortex
plasticity [37].

3.3. Urokinase-Type Plasminogen Activator

Urokinase-type plasminogen activator (uPA) is a 53 kDa serine proteinase secreted
as a single-chain uPA (scuPA) with 411 amino acids assembled into three domains: an
N-terminal domain homologous to the epidermal growth factor (responsible for its binding
to uPAR), a kringle domain that interacts with plasminogen activator inhibitor-1 (PAI-1)
and a C-terminal catalytic domain that harbors the active site with the His204, Asp255
and Ser356 amino acids triad [46]. The binding of scuPA to its receptor (uPAR) triggers its
cleavage at K158-I159, thus prompting its conversion into an active two-chain form (tcuPA),
with an A chain with the epidermal growth factor and kringle domains, and a B chain with
the proteolytic domain [47]. In turn, tcuPA catalyzes the conversion of plasminogen into
plasmin on the cell surface [48].
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The receptor for uPA (uPAR) has 270 amino acids assembled into three cysteine-
rich Cd59-like sequence domains (D1, D2 and D3) connected by short linker regions and
bound to the surface of the plasma membrane by a glycosyl phosphatidylinositol (GPI)
tail. Regulation of uPAR is accomplished by either an inactivating uPA-induced cleavage
of the receptor between D1 and D2, or by endocytosis of a PAI-1–uPA–uPAR low-density
lipoprotein receptor-related protein-1 (LRP1) complex assembled on the cell surface, which
then recycles free uPAR back to the membrane to bind to more uPA [49].

3.4. Urokinase-Type Plasminogen Activator in the Neurovascular Unit (NVU)
3.4.1. Cerebral Endothelial Cells

A substantial body of experimental evidence indicates that uPA and uPAR are found
in endothelial cells [50], and that the release of this uPA and the increase in the expression
of uPAR in endothelial cells triggered by a variety of stimuli [51,52] induces cell migration,
angiogenesis [53] and capillary branching. However, it is important to take into account
that most of these studies have been performed with cell lines, and that very few studies
have assessed the in vivo expression of uPA in cerebral endothelial cells. With that in mind,
it has been reported that Cryptococcus neoformans increases the expression of uPA in cerebral
endothelial cells [54], and that microvascular endothelial cells upregulate uPA following
an ischemic injury to the spinal cord in vivo [55].

3.4.2. Astrocytes and Microglia

The abundance of uPA and uPAR is increased in glial cell tumors, particularly glioblas-
toma multiforme, where they have been reported to play a role in tumor growth [56]. In
contrast, the role of astrocytic uPA and uPAR under physiological conditions is less well
understood. However, recent studies indicate that the release of uPA under physiologi-
cal conditions triggers astrocytic activation [57] and induces the formation of peripheral
astrocytic processes [58]. The expression and role of microglial uPA and uPAR under
non-pathological conditions is largely unknown, although in vitro studies have shown that
endotoxins, kainic acid and neurogeneration increase their abundance in microglia [59].

3.4.3. Neurons

Despite the fact that uPA and uPAR are abundantly found in developing neurons [60–62],
their expression changes dramatically over a few days. Hence, while day in vitro (DIV) 3
neurons harbor uPAR in their cell body and neurites, at DIV 7 the expression of this receptor
shifts to the axon shaft and growth cones, and at DIV 16 is restricted to the distal segment of
some axons and very few growth cones [60]. Significantly, uPA/uPAR binding during the
early stages of development induces neuritogenesis and neuronal migration via a plethora
of mechanisms that do not always require plasmin generation [63,64]. More specifically,
by promoting activation of integrins and the focal kinase adhesion (FAK) pathway, uPAR
regulates the reorganization of the cytoskeleton [63], thus triggering axonal growth, neuronal
migration [65] and dendritic branching [66]. In line with these observations, uPAR seems to
be pivotal for the formation of neuronal circuits that underlie the development of language
and cognition, and dysregulation of the uPA/uPAR system has been linked to epilepsy and
cognitive and developmental disorders [67].

In contrast, the expression and role of uPA/uPAR in the mature brain have been less
studied. However, recent studies with human, murine and non-human primate brains
indicate that uPA is abundantly found in synapses of the second and fifth cortical layers of
the cerebral cortex, and that uPA/uPAR binding modulates excitatory neurotransmission
by regulating the synaptic expression of neuronal cadherin (NCAD) [68]. Additionally,
these studies showed that uPA induces the expression of NCAD in the synapse, and that
the resultant generation of NCAD-dimers leads to the formation of synaptic contacts in
neurons maintained under physiological conditions [68].
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4. Plasminogen Activators in the Neurovascular Unit (NVU) under
Ischemic Conditions

Ischemic stroke is a leading cause of mortality and disability in the world [69]. Signifi-
cantly, plasminogen activators are pivotal for the protection and repair of the NVU that has
suffered an ischemic injury. Indeed, while acute cerebral ischemia causes the rapid release
of tPA from each cellular compartment of the NVU [70], the abundance and activity of uPA
increase only during the recovery stages from the ischemic insult [61]. These data have
led to the proposal that while the early release of tPA restores the patency of the occluded
blood vessel and has a neuroprotective effect, the delayed release of uPA promotes the
repair of the damaged NVU. Below we will review data on the role of tPA and uPA in each
component of the NVU under hypoxic/ischemic conditions.

4.1. Endothelial Cells
4.1.1. Tissue-Type Plasminogen Activator

The effect of hypoxia on the release of tPA from human cerebrovascular endothelial
cells has been poorly characterized. However, studies with human saphenous and umbili-
cal veins [71,72] have shown that hypoxia decreases the abundance and activity of tPA in
endothelial cells, and that this effect is accompanied by an increase in the expression and ac-
tivity of PAI-1. Furthermore, in vitro studies with rat brain microvascular endothelial cells
indicate that tPA has a harmful effect on endothelial cells exposed to oxygen and glucose
deprivation conditions [4,73]. In contrast with these in vitro studies, in vivo observations
have revealed an increase in the concentrations of tPA and PAI-1 in the intravascular space
of patients suffering an acute ischemic stroke [74], suggesting that endothelial cells release
tPA into the intravascular space as an attempt to restore the patency of the occluded blood
vessel. This is supported by the observation of complete or nearly complete recovery
of neurological function in acute ischemic stroke patients intravascularly treated with
recombinant tPA within 3–4.5 h of the onset of symptoms [75,76].

A growing body of experimental evidence indicates a link between plasminogen
activation and the immune system. Indeed, while some studies have revealed that plas-
minogen activators play a role in bradykinin-mediated endothelial cell activation [77],
others show that an interaction between plasmin and factor XII increases the permeability
of the neurovascular unit in neurodegenerative diseases [78,79]. Importantly, in apparent
discrepancy with a proinflammatory role of plasmin, in vivo studies with an animal model
of cerebral ischemia suggest that tPA attenuates the activation of the immune response in
the neurovascular unit that has suffered an ischemic injury [80].

4.1.2. Urokinase-Type Plasminogen Activator

The role of uPA in hypoxic/ischemic cerebral endothelial cells is even less well stud-
ied. Indeed, although studies with human umbilical endothelial cells (HUVEC) [81] and
human microvascular endothelial cells [82] have revealed that a hypoxia-induced, hypoxia-
inducible factor (HIF)-mediated increase in uPAR expression in endothelial cells triggers
angiogenesis and cell migration [83], the effect of hypoxia on uPA and uPAR expression
and function in cerebral endothelial cells has not been characterized. Independently of
these considerations, clinical studies indicate that the intravascular administration of re-
combinant uPA effectively restores the patency of the occluded blood vessel and improves
neurological outcome in acute ischemic stroke patients [84,85].

4.2. Astrocytes
4.2.1. Tissue-Type Plasminogen Activator

As discussed above, tPA is abundantly found in astrocytes [21], and the release of
astrocytic tPA has a direct effect on the permeability of the NVU. Indeed, the interaction
between tPA, released from perivascular astrocytes in response to the ischemic injury, and
the low-density lipoprotein receptor-related protein-1 (LRP-1) found in astrocytic end-feet
processes, activates an NF-κ-regulated inflammatory response [86] and triggers the detach-
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ment of perivascular astrocytes from the basement membrane, which in turn increases the
permeability of the blood–brain barrier, thus causing ischemic cerebral edema [21]. In line
with these observations, the intracerebroventricular administration of recombinant tPA
induces an LRP-1-mediated increase in the permeability of the NVU [87]. The translational
relevance of these observations is underscored by neuroradiological studies showing that
the intravenous administration of recombinant tPA to acute ischemic stroke patients also
increases the permeability of the blood–brain barrier [88] which is in line with a reported
10-fold increase in the risk of hemorrhagic complications in recombinant tPA (rtPA)-treated
stroke patients [75]. Interestingly, besides its effect on the permeability of the NVU, experi-
mental evidence indicates that multipotent mesenchymal stromal cell-induced tPA activity
in astrocytes promotes neurorepair after stroke by facilitating neurite outgrowth in the
ischemic area [27,89].

4.2.2. Urokinase-Type Plasminogen Activator

The roles of astrocytic uPA and uPAR in the ischemic brain have only recently been
studied. Accordingly, it was reported that the binding of uPA released from neurons to
uPAR recruited to the astrocytic plasma membrane in response to the ischemic injury,
induces astrocytic activation [57]. Ezrin is a protein that regulates the reorganization of the
actin cytoskeleton [90] and the formation of microvilli, filopodia and lamellipodia [91]. In
the cytosol, ezrin exists in an inactive conformation. However, following its recruitment
to the plasma membrane, ezrin is activated by phosphorylation at a conserved Thr567
residue [92]. Ezrin is abundantly found in astrocytic filopodia [93], and its activation is
required for the formation of peripheral astrocytic processes [94]. Significantly, uPA induces
the expression of ezrin in astrocytes, thus triggering the formation of peripheral astrocytic
processes that, upon embracing the pre- and post-synaptic compartments, preserve the
integrity of the tripartite synapse that has suffered an ischemic insult [58].

4.3. Microglia
4.3.1. Tissue-Type Plasminogen Activator

Microglial activation is a key step in a sequence of events that trigger not only cell
death but also neurorepair in the ischemic brain [95]. Remarkably, tPA is pivotal for
microglial activation [31], and in support of these observations, genetic deficiency of tPA at-
tenuates cerebral ischemia-induced microglial activation [32]. Interestingly, the N-terminal
fibronectin type III finger domain of tPA also mediates endotoxin-induced microglial acti-
vation, most likely by its interaction with annexin II on the cell membrane [96]. Further
work has revealed that LRP-1 mediates the effect of tPA on microglial activation in the
ischemic brain [97], and that the resultant downstream activation of latent platelet-derived
growth factor-CC (PDGF-CC) increases the permeability of the NVU [98]. Additionally, it
was reported that by modulating the release of cytokines, interferon-β attenuated the effect
of tPA-induced microglial activation on the permeability of the NVU [99].

4.3.2. Urokinase-Type Plasminogen Activator

It has been recognized that cultured human microglia express uPAR [100], and that the
abundance of this receptor in microglia is greatly increased by treatment with endotoxins.
More importantly, experimental studies have shown that uPAR is able to induce microglial
activation by a mechanism that always requires uPA [101], but that in some cell lines is
mediated by MMP-9 [102]. Strikingly, despite the importance of these observations, the role
of uPA/uPAR in cerebral ischemia-induced microglial activation is still poorly understood.

4.4. Neurons
4.4.1. Tissue-Type Plasminogen Activator

Despite the fact that a large number of studies agree on the fact that hypoxia and
ischemia trigger the release of neuronal tPA [70,103–105], there is significant disagree-
ment on the effect that this tPA has on cell survival. Indeed, results from early studies
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showing that mice genetically deficient in tPA (tPA−/−) have a significant decrease in the
volume of the ischemic lesion following transient occlusion of the middle cerebral artery
(tMCAo) [104,106] seeded the idea that tPA has a neurotoxic effect in the ischemic brain.
Strikingly, this idea lingered for a long time despite subsequent publications by other
groups describing an increase in the volume of the ischemic lesion in tPA-/- mice [106], and
either a beneficial [107] or even a lack of effect [108] of rtPA treatment on the volume of the
ischemic lesion following tMCAo.

This discrepancy was dramatically brought to the forefront of the scientific discussion
by the publication of a National Institute of Neurological Disorders and Stroke (NINDS)-
led clinical study showing that treatment with recombinant tPA within 3 h of the onset
of symptoms was associated with complete or nearly complete recovery in neurological
function in a significant number of acute ischemic stroke patients [75,109], and by the
subsequent incorporation of rtPA in the protocols used for the treatment of these pa-
tients [110]. Notably, although treatment with rtPA also increases the risk of intracerebral
hemorrhage [109] and augments the permeability of the NVU [89], to this date no clinical
study has shown a neurotoxic effect caused by rtPA treatment. The translational impact of
this disagreement between basic and clinical researchers has been heightened by the obser-
vation that, following its intravenous administration, rtPA crosses through the blood–brain
barrier and permeates the ischemic tissue [111]. In other words, if findings published by
basic researchers are true, then clinicians are treating acute ischemic stroke patients with a
neurotoxic agent. For obvious reasons this discrepancy needs to be resolved as it has called
into question the clinical translatability of basic science research.

Early studies proposed that tPA mediated excitotoxin-induced neuronal death, which
is a pivotal mechanism of cell death in the ischemic brain. Indeed, it was found that genetic
deficiency of tPA attenuated kainic acid-induced hippocampal cell death [112] via plasmin-
induced proteolysis of laminin in the extracellular matrix [113], and that tPA-/- mice were
resistant to KA-induced seizures [112]. This study was followed by work from a different
group of researchers that measured the volume of the ischemic lesion in rodents injected
with NMDA into the striatum and then intravascularly treated with 10 mg/Kg/IV of
rtPA [114]. These investigators found that rtPA treatment enhanced the harmful excitotoxic
effect of NMDA, which was interpreted as another demonstration of a neurotoxic effect of
tPA. In contrast, a different group of investigators using a similar experimental paradigm
but a different dose of rtPA (0.9 mg/Kg/IV, the same dose used to treat acute ischemic
stroke patients), found an opposite effect: a decrease in the volume of the necrotic lesion in
rtPA-treated animals [115]. Furthermore, they also found that the damage induced by the
intrastrial injection of NMDA was significantly attenuated in mice overexpressing tPA only
in neurons. Additionally, it was soon clear that the intracerebral injection of an excitotoxin
(kainic acid) caused a transient increase in the activity of tPA in cells of the hippocampal
CA1 layer that survived the excitotoxic injury [116], and this was followed by a report
indicating that tPA protected hippocampal cells from the harmful effects of the excitotoxic
injury [117].

This led a different group of investigators to quantify neuronal survival in cerebral
cortical neurons incubated with NMDA in the presence of 0–500 nM of either proteolytically
active tPA or a mutant of tPA with an alanine for serine substitution at the active site
Ser481 that rendered it unable to catalyze the conversion of plasminogen into plasmin
(proteolytically inactive tPA) [115]. These experiments revealed that tPA caused a modest
increase in NMDA-induced neuronal death only at doses greater than 100 nM, which are not
found in in vivo systems, even after the intravenous administration of rtPA. Furthermore,
it was discovered that at concentrations found in the ischemic brain, tPA attenuated
NMDA-induced neuronal death by a mechanism that did not entail plasmin generation
but required the co-receptor function of a member of the low-density lipoprotein receptor
(LDLR) family, most likely LRP1. In an attempt to explain these discrepancies, it was
proposed that selective activation of NMDA receptors by single-chain but not two-chain
tPA is responsible for the neurotoxic effect of tPA [118], and therefore that treatment with



Int. J. Mol. Sci. 2021, 22, 4380 9 of 21

two-chain tPA is more efficient than single-chain tPA to reduce the volume of the ischemic
lesion and promote functional recovery after the experimental induction of an ischemic
stroke [119]. Together, these results show that a causal link between tPA and cerebral
ischemia- and excitotoxin-induced neuronal death was difficult to establish, as it seemed
to depend on the chemical structure and dose of rtPA as well as the specific experimental
paradigm used in each report.

The resultant renewed interest of the scientific community to understand the role of
neuronal tPA in the ischemic brain led a group of investigators using an in vitro model
of oxygen and glucose deprivation (OGD) to discover that treatment with 5 nM of rtPA
prevented cell death in cerebral cortical neurons exposed to 55 min of OGD conditions,
and that this effect was mediated by LRP1 and open synaptic NMDA receptors [104].
Remarkably, the detection of a maximal neuroprotective effect within the first three hours
after OGD bears a notable resemblance with the maximal neurological recovery observed
in acute ischemic stroke patients treated with rtPA within three hours of the onset of
symptoms [75]. The obvious lack of a clot in this in vitro system indicated that a mechanism
other than thrombolysis mediates tPA’s neuroprotective effect, and this possibility was
confirmed by the finding that treatment with recombinant tPA after tMCAo also decreased
the volume of the ischemic lesion in animals genetically deficient in plasminogen (Plg-/-).
These data indicate that tPA has a neuroprotective effect in the ischemic brain that is not
mediated by the generation of plasmin and instead requires the co-receptor function of the
NMDAR and a member of the LDLR family.

4.4.2. Urokinase-Type Plasminogen Activator

The role of uPA in the ischemic NVU is less well understood. Indeed, early studies
with an animal model of permanent cerebral ischemia induced by occluding a distal branch
of the middle cerebral artery with a surgical suture showed a decrease in the volume of the
ischemic lesion in mice genetically deficient in uPAR [105] but not uPA [120]. Interestingly,
using a similar animal model of cerebral ischemia, a different group of investigators
detected a large increase in uPA-catalyzed proteolysis 72 h after the onset of the ischemic
injury [121]. This was followed by the observation that the concentrations of uPA in
the culture medium of cerebral cortical neurons remained unchanged during 60 min of
exposure to OGD conditions [61].

However, in an unexpected turn of events, it was found that these neurons released
large amounts of uPA after they were returned to normoxic conditions. Importantly, this
uPA did not seem to have an effect on cell death, as there was no difference in neuronal
survival between Wt and uPA-/- neurons exposed to OGD conditions [61]. The in vivo
significance of these observations was supported by the finding that although cerebral
ischemia did not have an effect on the abundance of uPA during the acute phase of the
ischemic injury, the expression of uPA in the ischemic tissue increased during the recovery
period.

The finding that the delayed release of uPA following a hypoxic/ischemic injury
did not have an effect on neuronal survival or the volume of the ischemic lesion, led
researchers to investigate if uPA plays a role in neurorepair. Noticeably, this possibility was
supported by the observation that compared to wild-type (Wt) littermate controls, uPA-/-

and uPAR-/- mice had a protracted recovery in neurological function following tMCAo,
and that treatment with ruPA or the release of endogenous uPA prompted functional
recovery in Wt and uPA-/-, but not in uPAR-/- mice [60,61].

Further studies showed that the release of uPA promoted the recovery of axonal
boutons and post-synaptic terminals disassembled by the ischemic injury. More specifically,
it was found that by regulating the expression and activity of GAP-43, neuronal uPA
promoted the regeneration of axons damaged by the ischemic injury [122]. Furthermore, by
its ability to regulate the expression of ezrin, uPA was able to reorganize the cytoskeleton
of the post-synaptic density, prompting the recovery of dendritic spines that disappeared
in the earlier stages of the ischemic insult [61]. In line with these observations, in vivo
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studies indicated that intravenous treatment with recombinant uPA 24 h after the onset of
the ischemic injury increased the number of synaptic contacts in the area that surrounds
the necrotic core [57].

In summary, the data available to this date indicate that the expression of uPA and
uPAR increases in the recovery stages of an ischemic stroke, and suggest that uPA binding
to uPAR plays a central role in the process of neurorepair following an acute ischemic
injury. These observations are supported by reports from other groups indicating that
uPAR modulates peripheral nerve regeneration after a crushed nerve [67], and that genetic
deficiency of uPA aggravates the motor deficit and increases neuronal death in an animal
model of traumatic brain injury [121].

5. Plasminogen Activators in Neurodegenerative Disorders

The concept of neurodegenerative disorders encompasses several clinical entities
including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral scle-
rosis (ALS), all characterized by the progressive decline of neuronal function. Remarkably,
a rapidly growing knowledge of the pathophysiology of these disorders has led to two
important conclusions. First, that they are not caused by isolated neuronal pathology, but
instead that a dysfunctional NVU is a contributory factor in many of them [122,123]; and
second, that a dysfunctional plasminogen activating system plays a still poorly understood
role in their pathophysiology. Together, the data reviewed below underscore the relevance
of the interaction between the plasminogen activating system and neurodegeneration,
and how research on this interaction may unveil potential targets for the development of
strategies for their prevention and treatment.

5.1. Plasminogen Activators in Alzheimer’s Disease

AD affects approximately 46.8 million people worldwide, and this number is expected
to reach 131.5 million by 2050 [124]. It is a dual proteinopathy, that accounts for almost
60–80% of all dementias, and is characterized by the extracellular deposition of Aβ 1–40
and 1–42 fibrils in neuritic plaques and intracellular aggregates of hyperphosphorylated
tau in neurofibrillary tangles (NFT). Importantly, a substantial number of studies have
found that even in the early stages of this disease the NVU is dysfunctional. Accordingly, a
long-time accepted neurocentric theory of the genesis of AD has slowly been integrated
into a more holistic model that includes all the cellular and non-cellular components of
the NVU.

5.2. Endothelial Cells

There is ample evidence implicating endothelial cell dysfunction in the pathophysi-
ology of AD. Indeed, virtually all AD patients exhibit endothelial cell degeneration and
abnormal thickening of the perivascular basement membrane in zones with Aβ deposi-
tion [125]. These morphological changes underlie the reduction in cerebral blood flow,
and impaired cerebrovascular reactivity and neurovascular coupling observed even in
early stages of the disease [126,127]. Importantly, the few studies published to this date on
plasminogen activators and endothelial cells in AD indicate that although Aβ does not have
an effect on the release of endothelial tPA [19], deficiency of this plasminogen activator,
likely caused by increased PAI-1, underlies the impairment in neurovascular coupling
observed in mice expressing the Swedish mutation of the amyloid precursor protein (APP;
tg2576) [128]. It has also been postulated that plasminogen derived from the intravascular
space causes an inflammatory response and Aβ deposition. More specifically, it has been
reported that depletion of plasminogen in the intravascular space attenuates microglial
activation and improves AD pathology in mice transgenic for human APP/Presinilin 1
with five early-onset familial AD mutations [78]. In contrast with these studies, the role
of uPA in endothelial cell dysfunction in AD has been addressed by fewer investigators.
However, it has been reported that Aβ induces the expression of uPA in cultured human
cerebrovascular smooth muscle cells [129], and that LRP1 in endothelial cells regulates
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the efflux of Aβ into the intravascular space [130]. The translational relevance of these
observations, performed in the murine brain, should be understood in the light of studies
indicating that human brain endothelial cells do not express LRP1 [131].

5.3. Astrocytes

Several studies have reported an association between early astrocytic activation [132]
and poor prognosis in advanced phases of this disease [133]. Interestingly, this pro-
cess seems to affect only a sub-population of astrocytes with an increased abundance
of aquaporin-4 in their end-feet processes [134]. This is of special interest, because the
interaction between astrocytic end-feet processes and endothelial cells modulates the per-
meability of the NVU [135]. In line with these observations, in vitro and in vivo studies
have revealed an increase in the permeability of the NVU in different animal models of
AD [129] and in the brain of AD patients [136]. Finally, astrocytes are tightly associated with
Aβ catabolism, and these cells display an abnormal response upon exposure to Aβ [137].
Strikingly, no studies have directly addressed the specific role of astrocytic tPA and uPA in
the pathogenesis of Alzheimer’s disease.

5.4. Microglia

Microglial activation in the brain of AD patients [138] has been linked to the triggering
of a neuroinflammatory response that promotes Aβ-containing plaque formation and
neuronal degeneration [139]. However, more recent studies have revealed that microglial
activation in AD is a heterogenous process, and in line with these observations, specific
and well-differentiated subpopulations of microglia also seem to have a protective effect
in the brain of AD patients [140]. Furthermore, it has been reported that the plasminogen
activating system modulates the activation of microglia in AD [141] and that treatment
with rtPA triggers the activation of the above-mentioned neuroprotective microglial pheno-
type [142]. In contrast, the role of uPA in microglial activation in AD has been less well
studied. However, it has been reported that Aβ-treated human microglia upregulate uPA
and uPAR [143] and that uPAR is a marker of microglial activation in the brain of AD
patients [144].

5.5. Neurons

The amyloid hypothesis of AD is a neurocentric model in which Aβ deposition leads to
progressive tau hyperphosphorylation, synaptic dysfunction and neuronal loss. However,
despite its importance and long-time acceptance, a growing body of experimental evidence
suggests that not only neurons, but all cellular and non-cellular elements of the NVU, play
key roles in the pathogenesis of this disease [145]. Independently of these considerations,
knowledge gathered over the last 3 decades has resulted in a better understanding of the
biochemical process that leads to the production and accumulation of Aβ. More specifically,
the proteolytic processing of APP by α-secretase on the cell membrane generates soluble
APPα, which has been implicated in neuronal plasticity and synaptogenesis [146]. However,
those APP molecules that are not processed by α-secretase are endocytosed and cleaved by
β-secretase 1 (BACE1) and γ-secretase to generate Aβ 1–40 and 1–42 peptides [147–149],
which have a harmful effect on cell survival and synaptic structure and function [150,151].
Inasmuch as our understanding of this process has grown, it has led to the discovery of
different therapeutic strategies to minimize Aβ deposition that have been successfully
tested in animal models of AD [152], but unsuccessful [153] or only partially effective in
AD patients [154].

The last three decades of research on the role of the plasminogen activating system
in the pathophysiology of AD have focused almost exclusively on the ability of tPA and
uPA to cleave Aβ deposits. However, recent studies have also discovered a role for uPA
in the pathogenesis of synaptic dysfunction in AD that does not require the conversion of
plasminogen into plasmin.
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5.5.1. Plasminogen Activators and the Formation of Aβ Deposits

A role for plasminogen activators in the pathogenesis of AD was suggested by
in vitro studies showing that plasmin triggers α-secretase-induced cleavage of Aβ in lipid
rafts [155] and cleaves insoluble Aβ fibrils [156,157]. This was followed by work revealing
a reduction in the expression and activity of plasmin in AD brains [158], most likely due to
a decrease in tPA activity [157]. These observations were contested by a different group
of investigators that detected normal concentrations of plasminogen and plasmin in the
brains of AD patients [159], and postulated that the reported decrease in plasmin was
actually due to the disruption of lipid rafts by abnormal cholesterol metabolism in the
neuronal membrane [160].

Most of the studies on the role of plasminogen activators on the formation of Aβ

deposits have been performed with tPA. Hence, it has been found that insoluble Aβ

activates tPA [161] and increases the expression of tPA mRNA in cerebral cortical neurons,
purportedly as an attempt to trigger plasmin-induced cleavage of extracellular insoluble
Aβ-containing plaques [158]. In discrepancy with these studies, in vivo studies with
mouse models of AD have revealed that chronic elevation of Aβ actually decreases tPA
activity by enhancing the inhibitory effect of PAI-1 on tPA, and that the intracerebral
injection of Aβ causes neuronal degeneration in animals genetically deficient in either tPA
or plasminogen [162].

More specifically, the expression of PAI-1 is increased in the cerebrospinal fluid [163]
and the brains of AD patients [164]. The clinical relevance of these observations is under-
scored by experimental work indicating that the genetic deletion of PAI-1 in the brain of
a murine model of AD reduces the deposition of Aβ by increasing tPA-induced plasmin-
mediated cleavage of Aβ-containing plaques [164]. Together, these data have led to the
proposal of a model in which increased PAI-1 activity in the brain of AD patients abrogates
tPA-induced plasmin-triggered cleavage of Aβ deposits. In seeming contradiction with
a protective role of tPA in AD, other studies have shown that this plasminogen activator
actually mediates the neurotoxic effect of Aβ via ERK 1

2 activation [165]. The role of uPA
on the formation of Aβ deposits has been less well studied. Nevertheless, it has been
reported that Aβ increases the abundance of uPA mRNA [156], and that as described for
tPA, uPA also induces plasmin-mediated cleavage of insoluble Aβ-containing extracellular
plaques [166].

5.5.2. Role of Plasminogen Activators in Synaptic Dysfunction in AD

The idea that the extracellular accumulation of insoluble Aβ peptides is the cause of the
cognitive decline observed in AD patients [167] has been challenged by neuropathological
and clinical studies indicating that the development of cognitive deficits in these individuals
correlates with abnormalities in synaptic structure and function more than with the number
of tangles and insoluble Aβ-containing plaques [168,169]. This concept is of significant
translational importance, because synaptic dysfunction is an early event in the pathogenesis
of AD that is amenable to therapeutic interventions to prevent its development.

Our knowledge of the synaptic role of Aβ has increased significantly during the last 30
years. Hence, we know that the production of Aβ increases during neuronal activity [150],
and that while at low concentrations, soluble Aβ induces presynaptic facilitation, at high
concentrations triggers post-synaptic depression [170] by decreasing the abundance of
glutamatergic receptors in the postsynaptic density [161,171] and enhances the excitotoxic
effect of glutamate by blocking its reuptake from the synaptic cleft [172]. Additionally, high
concentrations of Aβ impair long-term potentiation (LTP) and enhance long-term depres-
sion (LTD) by blocking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and NMDA receptor function [173], and augment the excitotoxic effect of glutamate by
blocking its reuptake from the synaptic cleft [172]. Importantly, increased soluble Aβ has
been linked to synaptic depression and the disruption of neuronal network activity in the
brains of AD patients [171]. Furthermore, it has been reported that uPA antagonizes the
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harmful effect of Aβ on synaptic structure and function by a mechanism independent of
its ability to trigger proteolytic cleavage of Aβ-containing plaques [68].

Recent studies have shown that cleavage of Aβ-containing plaques is not the only
role of uPA in AD brains. Hence, it has been found that the expression of uPA, but not
of its receptor (uPAR), is decreased in the synapses of AD patients and 5XFAD mice
(express human APP with the Swedish (KM670/671NL), Florida (I716V) and London
(V717I) mutations together with a mutant presenilin 1 (M146L, L286V) under the control of
the murine Thy-1 promoter), by the ability of Aβ to halt the transcription of uPA mRNA
in neurons but not in astrocytes [68]. The translational importance of these findings is
supported by observations indicating that treatment with recombinant uPA abrogates the
harmful effect of soluble Aβ on synaptic structure and function, via its ability to induce the
expression of neuronal cadherin (NCAD). Remarkably, in contrast with the reported effect
of tPA and uPA on the proteolytic cleavage of Aβ-containing plaques, the effect of uPA
on the synapses of AD patients and animal models of AD does not require the generation
of plasmin.

5.5.3. Plasminogen Activators, Physical Activity and Alzheimer’s Disease

Physical activity has a direct effect on the expression and activity of components of the
plasminogen activating system. More specifically, 6 months of intensive physical activity
increase the intravascular concentration of tPA and uPA, and this effect is accompanied by
a substantial decrease in the levels of PAI-1 [15,174]. These observations are of significant
importance when interpreted in the context of studies showing that physical activity
decreases the risk of AD [175] and improves the attention span, memory and executive
functioning of healthy individuals [176]. Thus, it is tempting to postulate that plasminogen
activators mediate the protective effect of exercise on cognitive function and the risk of
developing AD. However, although scientifically plausible, to this date there are no data to
support this hypothesis.

5.6. Plasminogen Activators in Parkinson’s Disease

Parkinsonism is a clinical syndrome characterized by bradykinesia, resting tremor,
rigidity and postural and gait impairment. Most cases of parkinsonism are caused by
Parkinson’s disease (PD), which is a neurodegenerative disease that affects 3% of the pop-
ulation older than 65 years of age [177]. The neuropathological hallmarks of this disease
are the loss of dopamine-containing neurons in the substantia nigra and the presence of
α-synuclein-containing intracellular inclusions. The extracellular levels of α-synuclein
depend not only on its release from neurons, but also on its removal by proteolytic degrada-
tion. It is unclear if α-synuclein induces the expression or activity of tPA or uPA. However,
plasmin cleaves and degrades α-synuclein, and α-synuclein upregulates PAI-1 [178]. It
has thus been proposed that an excess of PAI-1 in the brains of PD patients prevents
plasmin-induced clearance of α-synuclein aggregates [179]. The translational relevance of
these findings is supported by the fact that increased levels of PAI-1 have been linked to a
worse clinical prognosis in PD patients [180]. Despite the importance of these observations,
to this date it is unclear if tPA- or uPA-catalyzed plasmin generation plays a role in the
pathogenesis of this disease.

5.7. Plasminogen Activators in Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by a
progressive decline in motor function caused by weakness and spasticity without sensory
loss. Knowledge on the role of plasminogen activators in the pathogenesis of ALS is still in
its earlier stages. However, it has been reported that plasminogen from ALS patients, and
recombinant tPA and plasmin, induce motoneuron degeneration in BALB/c mice [181].
Likewise, experimental work with G93 mice (with a SOD1 mutation linked to familial
ALS) and samples from ALS patients revealed that the abundance of uPAR increased in
the ventral horn of the spinal cord of ALS patients and G93 mice, along with enhanced
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uPA-dependent plasminogen activation in advanced stages of this disease. Remarkably,
treatment with an inhibitor of uPA prolonged survival in these animals [182].
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