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Abstract

Knowledge of the impact of pesticides on predators is crucial for developing integrated pest

management (IPM) programs. Amblyseius swirskii (Acari: Phytoseiidae) is a predatory mite

used to control several species of pest including Tetranychus urticae (Acari: Tetranychidae)

and arthropods. T. urticae is a major pest of multiple greenhouse-grown and field crops

including apples in Iran. Lethal and sublethal effects of fenpyroximate and thiacloprid were

investigated on A. swirskii, using these chemicals separately at recommended rates or in

combination at reduced rates. Recommended tested rates of both pesticides negatively

influenced the biological parameters of A. swirskii such as the net reproductive rate (R0) and

the intrinsic rate of increase (r). However, the combined treatment of the two pesticides at

their reduced rates was less hazardous to A. swirskii. Our findings indicate that the com-

bined use of these chemicals may be compatible with IPM programs utilizing A. swirskii as

biological control tool against phytophagous mites and other pests. However, semifield and

field studies to investigate the effects of reduced rate treatments of fenpyroximate and thia-

cloprid alone and in combination on T. urticae and A. swirskii are required for developing

IPM programs.

Introduction

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a wide-

spread, destructive and polyphagous pest of agricultural crops and ornamental plants world-

wide [1–3]. Sever infestations could negatively influence quality and quantity of the fruit and

more so for fresh production [4,5]. Predatory mites of the family Phytoseiidae are effective nat-

ural enemies of spider mites [6,7,8]. Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae)

is a key predator of several major pests of agricultural crops and it is commercially available as

a biological control agent. This species can develop and reproduce on a wide range of pests,

including mites, thrips, whiteflies and moth eggs, as well as on various kinds of pollen [9–15].
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Biological control and selective insecticides are important for developing an Integrated Pest

Management (IPM) program and sustainable production system [16–18]. Use of biological

control agents with selective pesticides could be an effective strategy to control pests and

reduce the use of negative effects of synthetic pesticides. However, the use of conventional

insecticides is common in several agro-ecosystems [19]. The sole reliance on synthetic pesti-

cides could induce pest resistance, increase production cost and negatively impact environ-

ment, ecological services and human health [20–23]. Exposure to lethal or sublethal

concentrations of pesticides may impact behavior, developmental rate, longevity, fecundity

and sex ratio of the target pest species but also of non-target species, either harmful or benefi-

cial [24–29]. Application of demographic analysis at the population level takes into account all

the aforementioned effects that a toxicant might have on the target species [30,31,32]. This

approach considers both lethal and sublethal effects and incorporate them into one endpoint,

the intrinsic rate of natural increase [31,33,34], which is useful in detecting subtle, individual-

level effects of contaminants that alter the growth of populations even at rates below the lethal

concentration [35]. Few studies have been conducted to evaluate population growth rates of

insect natural enemies in response to chemicals [36–40]. Therefore, knowledge of the toxicity

of pesticides to beneficial organisms is important for effective pest management [29, 41].

Fenpyroximate and thiacloprid are widely used as acaricide and insecticide against many

mites and insect pests of agricultural crops and ornamentals. The negative effects of fenpyroxi-

mate and thiacloprid on other beneficial mites and insects were reported [42,43,44]. However,

evaluations against A. swirskii are limited. Only fenpyroximate was tested and fresh residues

caused increased mortality of adults and larvae and decreased fecundity at high concentration

[45].

Bearing this context in mind, we investigate lethal and sublethal effects of fenpyroximate

and thiacloprid in independent treatments at the recommended rates, as well as in a combina-

tion at reduced rates, calculated with the non-linear programing on A. swirskii [46]. The non-

linear programing is an analytical approach which helps identify and optimize limited produc-

tion resources, under restricting conditions to obtain the most feasible benefit [47]. The

knowledge of the effects of fenpyroximate and thiacloprid on A. swirskii could be useful to

IPM programs against T. urticae [29].

Materials and methods

Rearing of mites

The colony of T. urticaemites was initiated from individuals collected from apple orchards of

Urmia (West Azerbaijan province of Iran, in August and September 2015) and reared on bean

plants (Phaseoulus vulgaris L. var. Talash) (Fabales: Fabaceae). No specific written permissions

were required for field collections of mites because the owner had given us verbal permission

to work in his orchard and make the collections. No permit or specific permission was

required, because this study did not involve endangered or protected species. Amblyseius swirs-
kii was provided by Koppert Biological Systems (Berkel en Rodenrijs, The Netherlands) and

was reared on T. urticae on leaf disks of bean plants. The leaves were placed upside down on a

wet sponge with a layer of cotton on the top in plastic trays with water (23×13 cm) and held in

a climatic chamber at 25±1˚C, 70±5% RH and a photoperiod of 16:8 (L:D) h. All experiments

were conducted under these laboratory conditions.

Pesticides

Fenpyroximate, commercial formulation Ortus 5% suspension concentrate, was provided by

AGROXIR, Iran. Foliar sprays of fenpyroximate are used to control both immature and adult
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stages of mites [48]. Fenpyroximate is a mitochondrial electron transport inhibitor (METI)

and affects target species by contact and ingestion. This pesticide is registered for the control

of the European red mite, Panonychus ulmi Koch (Acari: Tetranychidae), and the two-spotted

mite (T. urticae) on pome fruits, citrus, grapes and hops in several countries. Thiacloprid,

commercial formulation Calypso 48% suspension concentrate, was provided by Bayer Crop

Science, Germany. This chemical disrupts the nervous system of the target organism by inhib-

iting nicotinic acetylcholine receptors. Thiacloprid is used in the agricultural crops such as cot-

ton and pome fruits to control a variety of sucking insects. Aphids and whiteflies are the

primary target in cotton and psyllid, codling moth and plum Curculio in pome fruits [49].

Lethal effect on adults

The acute toxicity and LC50 determinations were made on adult mites. In contact bioassay

tests, commercial formulation of fenpyroximate and thiacloprid was applied at concentration

of 0, 6, 11, 18, 30 and 50 mg a.i. liter-1 and 0, 6, 9, 13, 20 and 30 mg a.i. liter-1, respectively.

Each concentration was replicated five times, with 10 individuals per replicate. Required solu-

tions were prepared in distilled water. The concentrations of the pesticides were chosen based

on the maximum field recommended concentration (MFRC) of these commercial compounds

in Iran. The bean leaf discs (Ø 2.5 cm) were dipped in the tested pesticides’ solution for 10 s

and allowed to dry for about three h under laboratory condition. The control leaf discs were

dipped in distilled water. Mortality was recorded after 24 h of exposure. Mites were considered

dead if they did not move when prodded with a soft paint brush.

Sublethal effects on the progeny

The sublethal effects of fenpyroximate and thiacloprid were evaluated on the fecundity, sur-

vival and development of the progeny of the treated A. swirskii. The concentrations of the pes-

ticides were prepared based on the MFRC in Iran. Fenpyroximate and thiacloprid in the

independent treatments were used at 50 mg a.i. liter-1 and 30 mg a.i. liter-1, respectively, and in

combination treatment at reduced rates of 17.2 mg a.i. liter-1 and 0.8 mg a.i. liter-1, respec-

tively. These rates were determined using the non-linear programming framework for bean

plants to estimate the optimum rates of two pesticides in the mixture to cause mortality of

more than 50% to T. urticae and less than 50% to A. swirskii [46].

Mites were tested on freshly-excised bean leaf discs treated and control placed upside down

in 30-ml transparent plastic cups containing water agar mixture (10%). The bean leaf discs

were dipped for 10 s in the solution of each treatment (fenpyroximate, thiacloprid, fenpyroxi-

mate + thiacloprid combined at reduced rates) and in distilled water for control and allowed

to dry for 3 h [50]. Cohort of fifty 24-h old females of A. swirskii from untreated bean plants

was placed on leaf discs of each treatment and control. After 24 h, forty surviving females from

each treatment and control were moved to untreated bean leaf discs at one per disc. Forty

females were selected due to mortality of few individuals in some treatments and to use equal

numbers across treatments. After 24 h, the eggs laid by each female from each of the experi-

mental arena were placed in new arena at one egg per disc per female. The cohort of 0–24 h

old eggs from each female was monitored through the development of nymphs and adults.

Developing nymphs were provided with an abundant supply of T. urticae as prey. Ten adults

of T. urticae were more than enough for the predator. The daily maximum food intake of one

predatory mite was four adult spider mites [SG, personal observations]. Experimental arenas

were checked daily to record survival and developmental time of the different life stages. The

leaves were replaced every three days if it was necessary. Each newly emerged female from the

four treatments (15–23 in each treatment) were coupled with an untreated male for mating

Biological and chemical control of mites
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under the conditions described above. Survival and fecundity was recorded until the death of

the last individual.

Statistical analysis

Mortality curves were estimated by probit analysis [51]. Raw data on the survival, longevity,

and daily fecundity of individual females were analyzed using a life-stage specific and TWO-

SEX life table using both sexes in computer program MSChart [52–54]. The means and stan-

dard errors of the population parameters were estimated by a Bootstrapping procedure with

10,000 replicates [55–57]. The bootstrap method generates a normal distribution. Bootstrap-

ping uses random resampling, otherwise a small number of replicates will generate variable

means and large standard errors. Some data were analyzed using one-way analysis of variance

(ANOVA) at P = 0.05. Differences between means were compared with the Tukey-Kramer

(P = 0.05) procedure [58].

Following Chi and Liu [52], the age-stage specific survival rate (sxj), where x is age and j is

the stage; the age-specific survival rate (lx); the age-specific fecundity (mx); the net reproductive

rate (R0); the intrinsic rate of increase (r); the finite rate of increase (λ); the mean generation

time (T) and the doubling time (DT) were calculated as follows:

lx ¼
Xb

j¼1

sxj

mx ¼

Pb

j¼1
sxjfxj

Pb

j¼1
sxj

Where β is the number of stages and fxj is age-stage specific fecundity (where x = age and

j = stage)

R0 ¼
X1

x¼0

lx mx

X1

x¼0

e� rðxþ1Þ lx mx ¼ 1

l ¼ er

T ¼
lnR0

r

DT ¼
ln2

r

Results

Lethal effect on adults

The median lethal concentration (LC50) values for A. swirskii adults exposed to fenpyroxi-

mate and thiacloprid, were 16.67 mg a.i. liter-1 and 35.21 mg a.i. liter-1, respectively

(Table 1). Mortality was significant in fenpyroximate (F = 104.66; df = 4, 20; P< 0.0001) and

thiacloprid (F = 46.04; df = 4, 20; P< 0.0001) treatments averaging 89% and 47% after 24 h

Biological and chemical control of mites
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exposure at highest concentrations, respectively (Fig 1). No mortality was recorded in the

control group.

Sublethal effects on the progeny

Overall biological parameters of the developing female and male progeny of females exposed

to sublethal concentrations of fenpyroximate and thiacloprid were significantly affected com-

pared with the control (Table 2). Duration of egg and larval stage of female and male from fen-

pyroximate alone treatment was significantly prolonged compared to those from control and

treatments of thiacloprid alone and combination (P< 0.0001). However, there was no differ-

ence between treatments of fenpyroximate alone and thiacloprid alone for egg stage of female.

Thiacloprid alone also prolonged the egg duration of female compared to control. Develop-

ment time of each sex was significantly prolonged by each of the three treatments compared

with control except combination against control for male (P< 0.0001). Female and male prog-

eny of the females treated with fenpyroximate alone took significantly longer time to develop

followed by those in thiacloprid alone, combination and control. Longevity of both sexes com-

pared with control was significantly reduced in the treatment of fenpyroximate alone followed

by thiacloprid alone and combination (P< 0.0001).

Fig 1. Mean (± SE) number of Amblyseius swirskii adults killed by residual concentrations of 6, 11, 18, 30 and 50

mg a.i. liter-1 for fenpyroximate and 6, 9, 13, 20 and 30 mg a.i. liter-1 for thiacloprid. A one-way ANOVA and

Tukey’s mean separation test (P = 0.05) was performed to compare adult mortality among concentrations. Letters

beside data points represent differences among concentrations of each pesticide.

https://doi.org/10.1371/journal.pone.0206030.g001

Table 1. Median lethal concentration (LC50) estimated using probit analysis for adult female Amblyseius swirskii exposed to fenpyroximate and thiacloprid for 24

h.

Pesticide 95% Confidence limits χ2 Df LC(50) Slope ± SE

Fenpyroximate 14.69–18.89 1.77 3 16.67 2.25 ± 0.20

Thiacloprid 27.49–53.58 0.36 3 35.212 1.70 ± 0.26

https://doi.org/10.1371/journal.pone.0206030.t001
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Treatment of thiacloprid alone resulted in significantly prolonged pre-oviposition time

compared with control (P< 0.0001, Table 3). Oviposition time was significantly reduced com-

pared with control in all three treatments most with fenpyroximate alone followed by thiaclo-

prid alone and combination (P< 0.0001, Table 3). Similar effect was observed for post-

oviposition period and fecundity (P< 0.0001).

Data on the age-specific survival rate (lx) and age-specific fecundity in all treatments are

provided in Figs 2 and 3. Total life span averaged 30 days for the untreated females and 24

days, 27.75 days and 28.64 days for the females treated with fenpyroximate alone, thiacloprid

alone and the combination at reduced rates, respectively. There was 2.5% mortality in the

immature stages in the combination treatment, with 97.5% chance of reaching adulthood com-

pared with control. In contrast, the mites treated with recommended concentrations of two

Table 2. Mean (±SE) developmental time, longevity and total life span (days) of offspring from females of Amblyseius swirskii from control or treatments of recom-

mended rates of fenpyroximate and thiacloprid alone or in combination at reduced rates.

Sex/stage Treatments

Fenpyroximate Thiacloprid Fenpyroximate+ Thiacloprid Control F (df,n)� P
Female

Egg duration 2.20 ± 0.13a 2.08 ± 0.15a 1.71 ± 0.13b 1.50 ± 0.14b 225.70 <0.0001

Larva duration 1.80 ± 0.25a 1.25 ± 0.13b 1.14 ± 0.10b 1.00 ± 0.00c 174.20 <0.0001

Protonymph 2.10 ± 0.18a 1.75 ± 0.13b 2.00 ± 0.15ab 2.00 ± 0.15ab 27.90 <0.0001

Deutonymph 2.10 ± 0.10a 2.00 ± 0.12a 2.14 ± 0.10a 2.00 ± 0.15a 7.20 0.0003

Developmental time 8.20 ± 0.29a 7.08 ± 0.19b 7.00 ± 0.23b 6.50 ± 0.23c 256.50 <0.0001

Longevity 15.80 ± 0.39d 20.67 ± 0.31c 21.64 ± 0.37b 23.50 ± 0.29a 2633.00 <0.0001

Total life span 24.00 ± 0.47d 27.75 ± 0.37c 28.64 ± 0.34b 30.00 ± 0.23a 1179.00 <0.0001

Male

Egg duration 2.25 ± 0.16a 1.89 ± 0.11b 1.70 ± 0.15b 1.60 ± 0.16b 83.90 <0.0001

Larva duration 2.00 ± 0.27a 1.33 ± 0.17b 1.20 ± 0.13b 1.30 ± 0.15b 50.00 <0.0001

Protonymph 2.00 ± 0.27ab 1.78 ± 0.15b 2.00 ± 0.00a 2.00 ± 0.00a 27.00 <0.0001

Deutonymph 2.12 ± 0.12a 2.00 ± 0.00a 2.00 ± 0.15a 1.60 ± 0.22b 6.14 <0.0011

Developmental time 8.38 ± 0.32a 7.00 ± 0.00b 6.90 ± 0.28bc 6.50 ± 0.40c 157.40 <0.0001

Longevity 12.50 ± 0.33d 19.33 ± 0.29c 20.90 ± 0.55b 22.50 ± 0.54a 2111.00 <0.0001

Total life span 20.88 ± 0.35d 26.33 ± 0.29c 27.80 ± 0.39b 29.00 ± 0.33a 2685.00 <0.0001

Means followed by the same letter in the same row are not significantly different (Tukey-Kramer, P = 0.05)

�F: female (3,75), male (3,56)

https://doi.org/10.1371/journal.pone.0206030.t002

Table 3. Mean (±SE) reproductive period and total fecundity of offspring from females of Amblyseius swirskii from control or treatments of recommended rates of

fenpyroximate and thiacloprid alone or in combination at reduced rates.

Parameters Treatments

Fenpyroximate Thiacloprid Fenpyroximate+ Thiacloprid Control F (df,n)� P
Pre-oviposition (day) 3.30 ± 0.15ab 3.50 ± 0.15a 3.21 ± 0.11b 3.14 ± 0.10b 381.05 <0.0001

Oviposition (day) 6.70 ± 0.26d 10.25 ± 0.25c 11.94 ± 0.30b 13.86 ± 0.25a 2199.64 <0.0001

Post-oviposition (day) 3.70 ± 0.14d 4.77 ± 0.12c 5.44 ± 0.13b 6.37 ± 0.12a 459.05 <0.0001

Total fecundity

(no. eggs)

6.70 ± 0.25d 10.42 ± 0.30c 12.36 ± 0.35b 14.79 ± 0.40a 1562.25 <0.0001

Means followed by the same letter in the same row are not significantly different (Tukey-Kramer, P = 0.05)

�F (3,75)

https://doi.org/10.1371/journal.pone.0206030.t003
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pesticides showed highest mortality in immature stages, with 85 and 92.5% chances of reaching

adulthood for fenpyroximate and thiacloprid, respectively.

A maximummx of 0.84 eggs/female/day was observed on day 11–13 of the untreated mites.

For fenpyroximate alone, thiacloprid alone and combination treatmentmx was approximately

0.55, 0.65 and 0.76 eggs/female/day, respectively, at 15, 14 and 14 day of the life span, respec-

tively (Fig 3). Compared to the control, the fenpyroximate and thiacloprid treatments

increased the duration of both egg and larval stages, and the pre-oviposition period. Male

adults emerged earlier than females. The highest female survival rate was observed in the com-

bination treatment and on average 56% of the eggs developed to the adult stage (Fig 4).

There was significant negative effect of the recommended rates of fenpyroximate and thia-

cloprid applied alone on the population parameters including intrinsic rate of increase (r), the

finite rate of increase (λ), the net reproductive rate (R0), the gross reproductive rates (GRR),

the mean generation time (T) and the doubling time (DT) (P< 0.0001, Table 4). However the

effect of the combination treatment containing reduced rates of both pesticides compared to

control were not statistically significant except for increase in DT.

Discussion

Determination of the compatibility of pesticides with natural enemies of plant pests is crucial

for developing effective IPM strategies [24,59,60]. Assessment of the toxic effects of pesticides

on natural enemies by measuring mortality rate alone underestimate the residual effects of the

pesticides [61,62,63]. Knowledge of the population level effects of the pesticides on beneficial

organisms is needed for developing integrated and sustainable pest management programs.

Fenpyroximate and thiacloprid and several others pesticides are often used in combination

Fig 2. Age-specific survival (lx) of the population of Amblyseius swirskii females from control or treatments of

recommended rates of fenpyroximate and thiacloprid alone or in combination at reduced rates. lx represents the

probability that an egg will survive to age x, and the curve of the age-specific survival rate is a simplified form of the

curves of age-stage survival rate, regardless of developmental stage.

https://doi.org/10.1371/journal.pone.0206030.g002
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and therefore selection of proper treatments is important [24,64]. Our study is the first evalua-

tion of the effects of recommended field rate of fenpyroximate and thiacloprid applied alone

and combination of the reduced rates of both pesticides on the demographic parameters of A.

swirskii. The recommended rates prolonged egg and larval development of A. swirskii and

reduced total life span. The combination treatment also reduced total life span. These effects

may result in a reduced population growth of this predator as observed with reduced net

reproductive rate and intrinsic rate of increase particularly at recommended rates, which

could be significant to reduce biocontrol of pest mites. Overall, fenpyroximate had the stron-

gest negative effect on A. swirskii followed by thiacloprid, whereas effects were strongly

reduced or absent in the combination treatment of the two pesticides at reduced rates. Similar

effects were observed on the eggs and larval development of A. swirskii when exposed to LC30

concentrations of fenazaquin, another insecticide with a mode of action similar to fenpyroxi-

mate [27]. The low-concentration strategy when effective against pests and compatible with

biological control agents could be useful within an IPM program and to reduce selection pres-

sure and the development of resistance [28,65]. There were no adverse effects of sublethal con-

centrations of spirodiclofen on developmental time, longevity and total life span of both sexes

of A. swirskii [66]. Differences in phytoseiid species, populations, experimental method, pesti-

cide mode of action, formulations and concentrations could be responsible for different results

between studies. Fenpyroximate and fenazaquin functions as METI, thiacloprid acts on the

nicotinic acetylcholine receptor (nAChR) [67,68,69] and spirodiclofen inhibits the acetyl-CoA

carboxylase [70].

Reproductive variables of A. swirskii in all treatments except pre-oviposition period in the

fenpyroximate treatment at recommended rate and combination treatment were reduced

compared to the control. A negative impact of these and some other pesticides used at different

rates on predatory mites including A. swirskii was also observed by other researchers. Lopez

et al. [45] tested low lethal and sublethal concentrations of the proposed average field rate in

bell peppers against A. swirskii under laboratory conditions and found that survival increased

Fig 3. Age-specific fecundity (mx) of the population from Amblyseius swirskii females from control or treatments

of recommended rates of fenpyroximate and thiacloprid alone or in combination at reduced rates.

https://doi.org/10.1371/journal.pone.0206030.g003
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Fig 4. Age-stage specific survival rate (sxj) of the population from Amblyseius swirskii females from control or

treatments of recommended rates of fenpyroximate and thiacloprid alone or in combination at reduced rates.

https://doi.org/10.1371/journal.pone.0206030.g004
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and fecundity decreased with the increase in concentration. Fecundity of Phytoseius plumifer
Canestrini and Fanzago (Acari: Phytoseiidae) also decreased substantially with the increasing

sublethal concentrations of fenpyroximate [71]. However, sublethal concentrations of spirodi-

clofen had no significant effects on the oviposition period and fecundity of A. swirskii [66].

Fecundity of Phytoseiulus persimilis Athias-Henroit (Acari: Phytoseiidae) was reduced when

treated with sublethal concentrations of fenpyroximate [72]. Sublethal effects of fenpyroximate

on P. plumifer and of fenazaquin on A. swirskii were also reported [27,71]. However, mortality

of Neoseiulus cucumerisOudemans (Acari: Phytoseiidae), Typhlodromips montdorensis Schi-

cha (Acari: Phytoseiidae) and A. swirskii from direct applications and dry residues of thiaclo-

prid and pymetrozine was similar to the control [73].

The age specific survival and fecundity of A. swirskii were reduced in the full rate treatments

of fenpyroximate and thiacloprid but not much in the combination treatment at reduced rates.

Exposure of P. plumifer to fenpyroximate and abamectin at the highest recommended field

concentration produced similar effects [74]. Fecundity of acequinocyl exposed Typhlodromus
pyri Scheuten (Acari: Phytoseiidae), was also reduced [75], however, fecundity and some other

demographic parameters of A. swirskii exposed to spirodiclofen were not influenced suggest-

ing that sublethal concentrations may not affect the population parameters of offspring from

treated A. swirskii [66]. Due to the variability in the developmental rate among individuals, the

survival curve of predatory mites treated with pesticides showed significant stage over-lapping

in our study and others [26,27,66]. Some of the discrepancies in findings between studies

could be due to use of different pesticide and the mite response to those.

Our results revealed significant differences in population growth and reproductive rates

between the treated and untreated females of A. swirskii. The population parameters including

the intrinsic rate of increase (rm), finite rate of increase (λ), net reproductive rate (R0) and

gross reproductive rate (GRR) of the A. swirskii were reduced in the full rate treatments of fen-

pyroximate and thiacloprid compared with the mites in control but not in the combination

treatment. A noticeable reduction of these population parameters was observed with fenpyrox-

imate than thiacloprid. Similar effects of these and some other pesticides against A. swirskii
and other species were also observed by other researchers. For example, adverse impacts of

chlorantraniliprole, cyantraniliprole and lambda-cyhalothrin on the rm of Chrysoperla carnea
(Stephens) (Neuroptera: Chrysopidae) and Trioxys pallidus (Haliday) (Hymenoptera: Braconi-

dae) [76]; and of lethal concentrations of spiromesifen and spirodiclofen on the rm of Neoseiu-
lus californicusMcGregor (Acari: Phytoseiidae) [28]. However, frequent sprays of hexythiazox

had no significant effect on rm of P. persimilis for several generations [77]. Hamedi et al. [71]

Table 4. Mean (±SE) population parameters of the females of Amblyseius swirskii from control or treatments of recommended rates of fenpyroximate and thiaclo-

prid alone or in combination at reduced rates.

Population parameters Treatments

Fenpyroximate Thiacloprid Fenpyroximate+ Thiacloprid Control F (df,n)� P
Intrinsic rate of increase, r (day-1) 0.06 ± 0.016c 0.09 ± 0.01b 0.12 ± 0.01ab 0.13 ± 0.01a 266.77 <0.0001

Finite rate of increase, λ (day-1) 1.06 ± 0.017c 1.10 ± 0.01b 1.13 ± 0.01ab 1.14 ± 0.01a 267.26 <0.0001

Net reproductive rate, R0 (offspring) 2.68 ± 0.66c 5.00 ± 1.04b 6.92 ± 1.24ab 8.28 ± 1.48a 233.27 <0.0001

Gross reproductive rate, GRR (offspring) 3.83 ± 0.79c 5.95 ± 1.14b 7.22 ± 1.26ab 8.62 ± 1.50a 112.67 <0.0001

Mean generation time, T (day) 16.31 ± 0.60a 16.16 ± 0.29a 16.11 ± 0.29ab 15.95 ± 0.26b 86.66 <0.0001

Doubling time, DT (day) 11.46 ± 0.15a 6.96 ± 0.26b 5.77 ± 0.21c 5.23 ± 0.25d 146.54 <0.0001

Means followed by the same letter in the same row are not significantly different (Tukey-Kramer, P = 0.05)

� F (3,156)

https://doi.org/10.1371/journal.pone.0206030.t004
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demonstrated that P. plumifer treated with LC10, LC20 and LC30 concentrations of fenpyroxi-

mate had significantly reduced λ than the untreated mites also observed in similar studies

against N. californicus [78]. Our findings of reduced R0 and GRR of A. swirskii in the treat-

ments of full rates were similar to other reports indicating that the lethal and sublethal concen-

tration of acaricides significantly reduced the R0 of phytoseiids [26,27,28,79]. The full

treatments of fenpyroximate and thiacloprid prolonged the mean generation time (T) of A.

swirskii compared with control but not when combined at the reduced rates. Similar effect on

A. swirskii was seen with the sublethal concentration of fenazaquin [27]. Noticeably prolonged

doubling time (DT) of A. swirskii was observed from exposure to full rate treatments of fenpyr-

oximate and thiacloprid than combination treatment of their reduced rates.

Fenpyroximate and thiacloprid at recommended rates compared to the control negatively

influenced the biological parameters of A. swirskii. The combination of the reduced rates of

both pesticides was less hazardous to A. swirskii and may be useful within an IPM program uti-

lizing A. swirskii for biological control of phytophagous mites and other pests. However, semi-

field and field studies are needed to investigate the level of compatibility between the

concentrations of fenpyroximate and thiacloprid and A. swirskii and to assess their efficiency

in controlling T. urticae.
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