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ABSTRACT: Cancer is one of the most dangerous threats to human health.
Accurate identification of anticancer peptides (ACPs) is valuable for the
development and design of new anticancer agents. However, most machine-
learning algorithms have limited ability to identify ACPs, and their accuracy is
sensitive to the amount of label data. In this paper, we construct a new technology
that combines active learning (AL) and label propagation (LP) algorithm to solve
this problem, called (ACP-ALPM). First, we develop an efficient feature
representation method based on various descriptor information and coding
information of the peptide sequence. Then, an AL strategy is used to filter out the
most informative data for model training, and a more powerful LP classifier is cast
through continuous iterations. Finally, we evaluate the performance of ACP-
ALPM and compare it with that of some of the state-of-the-art and classic
methods; experimental results show that our method is significantly superior to
them. In addition, through the experimental comparison of random selection and AL on three public data sets, it is proved that the
AL strategy is more effective. Notably, a visualization experiment further verified that AL can utilize unlabeled data to improve the
performance of the model. We hope that our method can be extended to other types of peptides and provide more inspiration for
other similar work.

1. INTRODUCTION

In recent years, the incidence and mortality of cancer have
shown a gradual upward trend, and it is one of the main
diseases threatening human life. Although cancer can be
treated using traditional physical and chemical methods,
including targeted therapy, chemotherapy, and radiation
therapy, these methods are expensive and inefficient.1,2

Besides, some anticancer drugs have shown adverse effects
on normal cells, and cancer cells can develop drug
resistance.3−6 Therefore, the discovery and rational design of
more effective therapeutic drugs are urgently needed.
Anticancer peptides (ACPs) are usually short peptides with a
length of 5−30 amino acids and are natural agents with high
efficacy, selectivity, and specificity; as such, they have been
widely recognized as one of the safest and most reliable
anticancer therapeutics over the years.7 Currently, a large
number of ACP-based drugs are being evaluated in various
stages of clinical trials.8,9 In this context, identifying ACPs from
large-scale protein sequences is crucial.10,11

Unfortunately, wet-laboratory experimental identification
and development of novel ACPs are extremely cost-ineffective
and time-consuming.12,13 Therefore, more and more research-
ers focus on developing data-driven computational methods,
such as machine learning (ML), to identify ACPs. According
to the key technology of ML, mainstream computational
identification methods of ACPs can be usually divided into two

categories: mining feature information and designing efficient
classifiers. The earliest, developed by Tyagi et al.,14 is an ACP
predictor that uses amino acid and dipeptide composition
(AAC and DC). Subsequently, Hajisharifi et al.15 proposed a
new feature representation method, which not only includes
pseudo-amino acid composition but also increases the local
correlation and sequence information of residue. Recently, Wei
et al.4 extracted feature descriptors about the amino acid
composition and physical and chemical properties of ACPs and
achieved satisfactory performance. In another work, Rao et al.7

proposed the use of multiview information to further improve
the feature representation of the learning scheme, which is
significantly superior to the existing prediction tools.
In addition to the above-mentioned methods of mining ACP

feature information, another part of the research involves
exploring potential classifiers. For example, Manavalan et al.16

applied support vector machine (SVM) and random forest
(RF) to identify ACPs. You et al.17 implemented a deep long
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short-term memory (LSTM) model to identify ACPs and non-
ACPs. In addition, Liang et al.18 improved potential models by
conducting comparative experiments on classic models, such as
SVM, Naive Bayesian, Light Gradient Boosting Machine
(lightGBM), and k-nearest neighbors (KNNs). Recently,
Muhammod et al.19 proposed a new multihead deep
convolutional neural network model, which further leveraged
deep learning for ACP identification and obtained excellent
experimental results. The last few years have witnessed the
development of computation-based methods, especially related
to ML.
Although ML has achieved considerable success, the

identification of ACPs still presents non-negligible challenges.
First, ACPs are too short to capture specific information, and
straightforward integration of various types of feature
descriptors leads to dimensional disasters. Second, most
established ML models usually face the dilemma of data
starvation and require a large amount of expensive labeled data.
Finally, further improving the accuracy and robustness of ACP
identification is necessary to realize their real medical
applications. Fortunately, through selecting the data points
whose labels would be most informative in the learning task,
AL not only addresses data deficiency but also improves the
model accuracy, and it has been successfully applied in many
tasks.20−28 Combinations of AL and semisupervised techniques
have been proposed in the literature and are somewhat
prosperous when applied to a particular context.29−33 In view
of the promising potential shown by AL and semisupervised
scheme, they are expected to solve the issues of ACP
identification.
Therefore, we designed a novel framework called the active

label propagation model (ACP-ALPM) for ACP identification
by taking advantage of both labeled and unlabeled peptides.
First, we designed a novel feature representation method of
ACPs, which not only contains sequence order, local
correlation, and residue information but also supplements
efficient one-hot encoding information. Thereafter, we
introduced a semisupervised label propagation (LP) algorithm
as a benchmark model and incorporated AL strategies to
continuously update and optimize the model by iteratively
choosing the most informative data. Finally, we compared
ACP-ALPM with 12 advanced methods and 6 well-designed
methods, and the results showed that our method had
advantages in identifying ACPs. In addition, the implementa-
tion of ablation analysis on three data sets showed that AL
played an important role in ACP-ALPM.

2. RESULTS

2.1. Evaluation Metrics. To measure the performance, we
selected seven classic metrics widely used in two-class
identification problems, including accuracy (Acc), recall,
sensitivity (Sens), specificity (Spec), precision (Prec), F1-
score, and Matthews correlation coefficient (MCC). They are
calculated as follows
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where TN is the true negative number, TP is the true positive
number, FN is the false negative number, and FP is the false
positive number. The area under the curve (AUC) was also
adopted to evaluate the performance of the model.

2.2. Experimental Setup. Our model had a key parameter
α, which controlled the radial distance range. Thus far, the
parameter in our experiments was tuned based on the
performance over a hold-out set. We tested the sensitivity of
the model to the choice of parameter. As shown in Table 1,
when the parameter α was 0.3, the model had the best effect.
In addition, we heuristically set the parameter N to 50 and k to
5. Then, we discussed the influence of parameter epoch on the
model. Figure 1 shows that when the epoch is too small, the
accuracy rate is not optimal, and when the epoch is too large,
the accuracy rate begins to decrease. When the epoch is 13, the

Table 1. Influence of Parameter Gamma on the Model Performance

gamma 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38

ACC 0.80 0.84 0.78 0.86 0.82 0.92 0.85 0.83 0.84 0.88
AUC 0.76 0.75 0.73 0.81 0.86 0.88 0.76 0.77 0.83 0.85

Figure 1. Influence of parameters epoch on ACC of ACP-ALPM.
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training data interval is 180−200, and the accuracy rate is
optimal.
In addition, we randomly split 80% of our data into the

training set and 20% into the test set. To prove the
generalization of the model, we also conducted comparative
experiments on additional data sets ACP740 and ACP240.
2.3. Performance Comparison with Different Classi-

fiers. To evaluate the identification ability of the proposed
ACP-ALPM, we compared the performances of six different
classifiers on the benchmark data set ACP500, three of which
were classic deep-learning and ML models, and the three
others combined the AL strategy based on selected comparison
models. In detail, we adopt the ACP-ALPM scheme but
replace the label propagation network with adaptive boosting
(Adaboost), deep neural networks (DNNs), and k-nearest
neighbors (KNNs); finally, we obtained AAdaboost, ADNN,
and AKNN as complementary comparison models. The
experimental comparison results of ACP-ALPM and the six
other methods are reported in Table 2 and Figure 2A.

As shown in Figure 2A and Table 2, the performance of the
proposed ACP-ALPM was significantly better than that of the
other models. Specifically, the values of Acc, recall, Prec, F1-
score, and AUC of our method were 0.920, 0.957, 0.882, 0.918,
and 0.922, respectively. Compared with models without AL,
the values of Acc, recall, Prec, F1-score, and AUC increased by
7.0−9.0, 7.7−9.8, 5.2−5.7, 6.4−7.1, and 7.2%−10.0%,
respectively. Our model was superior to the models with AL;
the values of Acc and AUC improved by 3.0−4.0 and 4.2−
5.3%, respectively. The model that uses AL is generally
superior to the ordinary model; for instance, the values of Acc,
Prec, F1-score, and AUC of ADNN are 0.870, 0.870, 0.860,
and 0.869, respectively, which are 2.0, 4.0, 0.6, and 1.9% higher
than those of DNN. The results indicate that ACP-ALPM has
a stronger ability than the other classifiers for identifying true
ACPs from non-ACPs, and AL provides a vital contribution to
identification performance.

2.4. Performance Comparison with State-of-the-Art
Methods. To validate the superiority of ACP-ALPM, we
compared its performance with some state-of-the-art methods,
including AntiCP,14 Hajisharifi’s method,15 iACP,34 ACPred-
FL,4 DeepACP,35 PEPred-Suite,36 ACPred-Fuse,7 ACP-DL,17

and ACP-MHCNN.19 Among them, AntiCP represents two
predictors composed of amino acids and dipeptides, and
DeepACP represents the classifiers generated by the recurrent
neural network. For a fair comparison, all approaches were
trained and tested on the ACP500 data sets. Table 3 illustrates
the predictive performance in terms of five metrics (Sens, Spec,
Acc, MCC, and AUC) on this data set, and Figure 3A shows
the overall effect of considering these five performances. As
shown in Table 3 and Figure 3A, the performance of the
proposed ACP-ALPM was significantly better than those of the

Table 2. Comparison of ACP-ALPM and the Other Six
Methods on ACP500

methods Acc recall Prec F1-score AUC

DNN 0.850 0.880 0.830 0.854 0.850
ADNN 0.870 0.851 0.870 0.860 0.869
KNN 0.830 0.855 0.869 0.862 0.822
AKNN 0.880 0.881 0.912 0.897 0.880
Adaboost 0.830 0.870 0.825 0.847 0.826
AAdaboost 0.870 0.850 0.927 0.887 0.875
ACP-ALPM 0.920 0.981 0.883 0.930 0.915

Figure 2. Multiangle comparative experiment of ACP-ALPM. (A) Results of the ACP500 data set for overall performance comparison of ACP-
ALPM and different classifiers (DNN, KNN, Adaboost, DNN with active strategy, KNN with active strategy, Adaboost with active strategy). (B)
Overall performance comparison of the proposed active selection (AS) strategy of ACP-ALPM and random selection (RS) scheme on ACP500,
ACP240, and ACP740 data sets.
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other methods. For example, the values of Sens, Acc, and MCC
of our ACP-ALPM were 0.981, 0.920, and 0.940, respectively,
which were 5.0−40.9, 1.0−21.4, and 12.0−51.2%, respectively.
Although our AUC was not the highest, it was only slightly
lower (by 0.5%) than the best AUC of DeepACP. Additionally,
our method’s Spec indicator was better than the majority of
the methods. As such, ACP-ALPM can identify ACPs more
precisely than the existing methods. In addition, our method
has an advantage in running speed, and the experiment takes
about 13 s.
2.5. Contribution Analysis for Different Sequence

Representations. To demonstrate that our method has
abundant and effective feature information to achieve better

performance, we conducted feature contribution analysis.
Under this experimental setting, we compared our method
with four different combination experiments, and the
corresponding results are reported in Table 4 and Figure 3B.

As shown in Table 4, for the ACP500 data set, among the
four representation combinations (nos. 1, 2, 3, 4), the
representation binary profile feature (BPF) information
contributes more to our model than AAC, DC, and parallel
correlation pseudo-amino acid composition (PC-PseAAC)
information, which shows the ability of BPF to capture short
peptide sequences and distinguish ACPs. Figure 3B shows that
the feature representation of our proposed method (no. 5)
performs better than those of the four other feature
representation methods on overall evaluation metrics.

Table 3. Performance Comparisons of our Proposed ACP-
ALPM with the Existing Methods

methods Sens Spec Acc MCC AUC

AntiCP_AAC 0.668 0.784 0.726 0.455 0.824
AntiCP_DC 0.716 0.776 0.746 0.493 0.825
Hajisharifi et al. 0.672 0.836 0.754 0.515 0.831
iACP 0.572 0.840 0.706 0.428 0.809
ACPred-FL 0.716 0.844 0.780 0.565 0.846
CNN-RNN 0.720 0.817 0.768 0.539 0.871
CNN 0.780 0.793 0.786 0.573 0.903
DeepACP(RNN) 0.780 0.878 0.829 0.662 0.920
PEPred-Suite 0.728 0.880 0.804 0.615 0.860
ACPred-Fuse 0.772 0.876 0.824 0.652 0.882
ACP-DL 0.890 0.805 0.847 0.620
ACP-MHCNN 0.976 0.842 0.910 0.820
ACP-ALPM 0.981 0.848 0.920 0.940 0.915

Figure 3. Comparative experiment of ACP-ALPM on ACP500. (A) Overall performance comparison of the proposed ACP-ALPM and 12 state-of-
the-art predictors on the ACP500 data set. (B) Overall performance comparison of five different feature combination methods, among which no. 5
is the method adopted by ACP-ALPM.

Table 4. Five Combinations of Four Sequence
Representations Explored in This Researcha

combination Acc recall Prec
F1-
score AUC

1 AAC + DC + PC-
PseAAC

0.720 0.855 0.701 0.770 0.705

2 AAC + DC + BPF 0.890 0.878 0.896 0.887 0.890
3 AAC + PC-PseAAC +

BPF
0.900 0.983 0.864 0.919 0.884

4 DC + PC-PseAAC +
BPF

0.910 0.957 0.863 0.907 0.913

5 AAC + DC + PC-
PseAAC + BPF

0.920 0.981 0.883 0.930 0.915

aNote: no. 5 represents the feature representation of our proposed
method.
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2.6. Comparison Experiments with Random Data
Selection. The AL strategy of ACP-ALPM requires labels
iteratively based on the distribution of peptides instances and
the learned decision function that is refined at each iteration.
The random selection strategy simply requests labels through a
method of random shuffling and reslicing. To illustrate the
effectiveness and robustness of our strategy, we conducted a
comparative experiment of active selection (AS) and random
selection (RS) on three benchmark data sets (ACP500,
ACP240, and ACP740). The experimental results are
presented in Table 5 and Figure 2B.

It can be seen from Table 5 and Figure 2B that in the three
data sets, the performance of the AS we adopted is significantly
better than that of RS as a whole. Although the value of recall
of AS-ACP240 was not as high as that of RS-ACP240, it was
slightly worse than that of RS-ACP240. It should be noted that
RS-ACP240 means the method of adopting a random selection
(RS) strategy on the ACP240 data set. Therefore, it can be
concluded that the data selection strategy is closely associated
with the model identification performance. Active learning
strategies can filter out information-rich data for the model,
and a stronger classifier can be built; random selection
strategies may generate more noisy data, which will affect the
quality of model identification.
2.7. Impact of AL on ACP-ALPM. Additional evaluation

comparison experiments were performed on ACP500,
ACP240, and ACP740 to demonstrate the necessity of AL
and the universal superiority of ACP-ALPM to other data sets.
The comparison between ACP-ALPM and non-ACP-ALPM is
presented in Table 6. The key difference between non-ACP-
ALPM and ACP-ALPM is the absence of an AL strategy, that
is, the training set data is fed all at once.
Table 6 shows the experimental results of the ACP500,

ACP240, and ACP740 data sets. The five evaluation indicators
(Acc, recall, Prec, F1-score, and AUC) indicate that ACP-
ALPM outperforms the non-ACP-ALPM method on the
benchmark data set ACP500. In addition to the superior
performance on the benchmark data set, the experimental
results of the additional two data sets again reflect the
contribution of AL to the model. Compared with the

evaluation values of non-ACP-ALPM, the value of Acc of
ACP-ALPM was increased by 6.3 and 5.3% on the ACP240
and ACP740, respectively; the value of recall of ACP-ALPM
was increased by 0.7 and 7.8% on the ACP240 and ACP740,
respectively; the value of Prec of ACP-ALPM was increased by
8.8 and 1.7% on the ACP240 and ACP740, respectively; the
F1-score of ACP-ALPM was increased by 5.2 and 4.1% on the
ACP240 and ACP740, respectively; and the value of AUC of
ACP-ALPM was increased by 6.3 and 6.0% on the ACP240
and ACP740, respectively. These outstanding results exhibit
the generalization ability and robustness of the AL strategy of
ACP-ALPM.

2.8. Visualization Analysis of ACP-ALPM. Our method
is based on uncertain sampling iterations of selecting data
nodes from the data pool and learning classification through
the propagation of labels between similar nodes. To explain the
active label propagation mechanism between data nodes, we
visualized the distribution and variation process of nodes, as
shown in Figure 4. Blue represents positive samples, magenta
represents negative samples, squares represent marked data,
and circles represent unmarked data. Labeled data can
propagate labels to unlabeled data, which increases the number
of labeled data.
As shown in Figure 4, first, it can be observed that the

overall data points are increasing, which indicates that active
learning is filtering more data for the label propagation
network to learn. Secondly, by observing each subgraph in
order, we can find that the square data points obviously
increase gradually, and the circular data points decrease, which
means that the unlabeled samples are marked with the
corresponding labels. Finally, observing Figure 4A−D, we
found that there are obvious changes between the pictures, and
the experimental performance is indeed significantly improved.
Observing Figure 4D−F, we find that the picture changes are
no longer obvious, and the model tends to converge.
In addition, the regional distribution of positive and negative

samples has obvious distances, which verifies that AL can
utilize unlabeled data to assist the LP network in effective
labeling.

3. DISCUSSION

Currently, many peptide-based therapies are being evaluated in
terms of their efficacy to treat various tumor types across
different phases of preclinical and clinical trials, resulting in
peptides becoming an important alternative anticancer
therapeutic agent. Here, we proposed a calculation method
for the identification of anticancer peptides based on AL, called
ACP-ALPM. Unlike traditional machine-learning methods, AL
can make full use of unlabeled data and wisely choose the most
informative data. Coupled with the label propagation algorithm
to generate a powerful anticancer peptide classifier.
We selected some state-of-the-art methods for experimental

comparison, which only extracted the information of labeled
data, and the experimental results showed that our method had

Table 5. Comparison of ACP-ALPM and Random Selection
on the ACP500 Data Seta

Acc recall Prec F1-score AUC

RS-ACP240 0.812 0.966 0.778 0.862 0.772
AS-ACP240 0.915 0.938 0.882 0.909 0.844
RS-ACP740 0.811 0.892 0.767 0.825 0.811
AS-ACP740 0.878 0.959 0.824 0.886 0.879
RS-ACP500 0.850 0.932 0.774 0.845 0.859
AS-ACP500 0.920 0.981 0.833 0.930 0.915

aNote: AS-ACP500, AS-ACP240, and AS-ACP240 use the AL strategy
of ACP-ALPM.

Table 6. Comparison of ACP-ALPM and Non-ACP-ALPM on Three Benchmark Data Sets

ACP-ALPM non-ACP-ALPM

data sets Acc recall Prec F1-score AUC Acc recall Prec F1-score AUC

ACP500 0.920 0.981 0.883 0.930 0.915 0.870 0.880 0.863 0.871 0.870
ACP240 0.875 0.938 0.882 0.909 0.844 0.812 0.931 0.794 0.857 0.781
ACP740 0.878 0.959 0.824 0.886 0.879 0.825 0.887 0.807 0.845 0.819
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better performance in identifying anticancer peptides. More
importantly, extensive benchmark tests show that compared
with randomly selected label propagation algorithms, AL
strategies contribute more to ACP-ALPM, which strongly
demonstrates the effectiveness of fusion AL strategies. In
addition, we visualized the process of ACP-ALPM data
selection and label propagation and increased the interpret-
ability of the model’s operating mechanism.

In short, ACP-ALPM is a powerful method that can be
extended to a wide range of biochemical applications with a
simple adjustment of parameters and can be used to identify
the types of training data. In the future, we envision using more
efficient algorithms to optimize the data screening process of
active learning, such as clustering algorithms to further
improve the performance of the model.

Figure 4. Visualization results (A−F) on the benchmark data set ACP500 of active label propagation.
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4. CONCLUSIONS

In this article, we have proposed a new framework that
combines AL strategies and LP algorithms to identify
anticancer peptides more accurately and efficiently than the
latest methods.
Specifically, we propose a novel feature representation

scheme to effectively represent ACP sequences, which includes
sequence-based feature descriptors (AAC and DC), local
correlation of residues’ information (PC-PseAAC), and
abundant one-hot encoding information (BPF). Then, we
design the active label propagation network to learn feature
information, which is a graph-based semisupervised learning
method to obtain the label information of unlabeled nodes
from the label information of the labeled nodes, and integrate
AL strategies to reduce the probability of error propagation.
Experimental results demonstrated that (1) in terms of the
presented evaluation indicators, ACP-ALPM is superior to the
state-of-the-art and classic methods in identifying anticancer
peptides; (2) our proposed feature combination representation
leads to better identification performance; and (3) compared
with random selection and not using AL strategies, LP
algorithms integrated with AL have stronger identification
capabilities. Overall, ACP-ALPM is an efficient, robust, and
generalizable method.
As an implementation of this work, we have also made a free

and open code of ACP-ALPM for the wider research
community to use. ACP-ALPM can deal with the identification
of other peptides, and only a simple parameter adjustment can

achieve good results. In the future, we will try to explore
multidimensional or multiangle anticancer peptide character-
istics and optimize active learning strategies to better integrate
with advanced and popular frameworks.

5. MATERIALS AND METHODS

In this section, we present a description of the framework of
ACP-ALPM, and the specific workflow is shown in Figure 5.

5.1. Data Set. In this study, we used two groups of ACP
data sets from the existing literature to evaluate the ACP-
ALPM performance. A set of data sets designed to train the
target model and test the performance of the model was named
ACP500, and other data sets used to prove the universal
advantages of ACP-ALPM were named ACP740 and ACP240.
The amino acid distributions of the three benchmark data sets
are shown in Figure 6.
For the first data set ACP500, we randomly sampled the

benchmark data set established by Wei et al.4 and obtained 250
experimentally validated positive samples and 250 negative
samples. The positive and negative samples of these data are
balanced and underwent CD-HIT37 deredundancy processing.
We further constructed the second data set downloaded

from the study of Yi et al.17 ACP740 and ACP240 contained
376 and 129 positive samples and 364 and 111 negative
samples, respectively. Similarly, these data sets used the tool
CD-HIT37 to remove sequences with more than 90%
similarity.

Figure 5. Overall framework of ACP-ALPM. (A) Construct distinctive feature vectors on three public data sets. (B) Label of the current unlabeled
node (positive sample or negative sample) is determined by the labeled sample (positive sample and negative sample) and the unlabeled sample
(positive sample and negative sample). (C) Label propagation process integrated with AL. First, we train an initial LP model based on uncertain
sampling and predict the data to gain the labeling results. Then, according to the probability distributions provided by the classifier, we select the
most informative data to feedback to the training set and repeat the entire process model until the model converged.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c03132
ACS Omega 2021, 6, 23998−24008

24004

https://pubs.acs.org/doi/10.1021/acsomega.1c03132?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03132?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03132?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03132?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c03132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5.2. Feature for Peptide Sequence. 5.2.1. Amino Acid
Composition (AAC). AAC38 is a means to calculate the
frequency of each type of amino acid in a protein or peptide
sequence, which is represented by characters as shown in the
formula

F P f f f f( ) ( , , , ... )1 1 2 3 20= (2)

f
c

i
i=

(3)

where ci is the number of type i appearing in the peptide, is
the length of the peptide, and f i is the percent composition of
amino acid type i. The dimension of the AAC descriptor is 20.
5.2.2. Dipeptide Composition (DC). DC38 refers to the

frequency at which two amino acids in a protein sequence
constitute a dipeptide. It is defined as

F
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where Nαβ is the number of dipeptides represented by amino
acid types α and β and N is the total number of amino acids in
the character sequence of a given peptide. The dimension of
the DC descriptor is 400.
5.2.3. Parallel Correlation Pseudo-Amino Acid Composi-

tion (PC-PseAAC). PC-PseAAC is a pseudo-amino feature
extraction method based on protein molecular character
sequence first proposed by Chou.39 Given any protein
sequence P, it can be numerically represented by a feature
vector composed of 20+ λ-dimensional pseudo-amino acids as
indicated by formula 5
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where fα is the occurrence frequency of the 20 native amino
acids in the peptide; w is the weight factor ranging from 0 to 1;
and δβ is the correlation factor of the β-tier residue of given P
protein sequence that is defined as
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where B(Vα), H(Vα), and S(Vα) are the standardized
hydrophobicity value, hydrophilicity value, and side-chain
mass of Vα, respectively. The dimension of the PC-PseAAC
descriptor is 25.

5.2.4. Binary Profile Feature (BPF). The primary structure
of a protein is composed of 20 kinds of amino acids.40 Binary

Figure 6. Amino acid distribution map of ACP500, ACP740, and ACP240. (A) Distribution of the number of 20 amino acids on three different
data sets. (B) Distribution of the proportion of 20 amino acids on three different data sets. (C) Statistics of amino acid distribution on three
different data sets.
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profile feature (BPF)4 is defined as the 0/1 feature code for
each amino acid type. Each amino acid in each sequence is
defined as a one-hot number code of length 20. For instance,
the first amino acid type A can be encoded as (1,0,0,...,0), the
last amino acid type Y can be encoded as (0,0,0,...,1), and so on
until the binary coding vector of the entire peptide sequence
can be obtained. In addition, to obtain excellent experimental
results, we set the N-terminal length l of the peptide to 10 and
obtained a 200-dimensional BPF feature vector. Since BPF
encodes each amino acid in the sequence, BPF can usually
capture more distinctive and specific information than other
methods.
We not only encoded peptides based on sequence-based

feature descriptors (AAC and DC) but also considered the
local correlation of residues and sequence order information
(PC-PseAAC). To enrich our features and make them more
efficient, we added a proven feature technique, that is, we
converted peptide sequences into binary map features, which
can be seen as one-hot-encoding of categorical variables.
Finally, we represented each ACP sequence with a 645-
dimensional conjoined feature vector.
5.3. Label Propagation (LP) Network with AL. We

proposed a novel active label propagation network for ACP
identification. First, only randomly selected scrambled small
sample data is used to train the label propagation model, and
then the model predicts some unlabeled samples. Then,
according to the predicted probability, the most informative
samples are selected and placed in the training pool for the
next model training. And so on, through a continuous selection
of samples and iterative training model until the model
converges.
5.4. Label Propagation with a Graph. The LP algorithm

is a kind of semisupervised graph-based algorithm that
constructs a graph by mapping samples to nodes, defines
node similarity, and spreads label classification among similar
nodes.41 It is suitable for classification problems with few
labeled data.
In the first step, we defined the labeled data with categories

and unlabeled data without categories as L ={(x1,y1),(x2,y2),...,
(xl,yl)},yl ∈ {1,2,...,η} and U = {xl+1,xl+2,...,xl+u}, respectively,
where l = u, n = l + u is the sample size and η is the number of
categories (η was set to 2 in our work). Semisupervised
learning refers to using L and U to predict the label
{yl+1,yl+2,...,yn} of {xl+1,xl+2,...,xn}.
In the second step, without the loss of generality, we used G

= (ν,e) to represent an ACP network, where ν is a set of nodes
representing proteins and E is the corresponding edge set
between proteins. The radial basis function (RBF) is usually
used to define the similarity w of two edges

w
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2
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= −

|| − ||i
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jjjjjj

y
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where α is the width scale parameter, which controls the radial
range of the function. The LP algorithm propagates labels
through the edges between nodes. The greater the weight of
the edge, the higher the similarity of nodes and the greater the
probability of LP.
In the third step, the probability transition matrix is defined

as follows

P p i j
W

W
( )ij

ij

k
n

ik1

= → =
∑ = (10)

where Pij is the probability of node i propagating the label to
node j. Finally, all nodes update the soft label according to the
probability transition matrix until the preset number of
iterations or convergence. All in all, we embed the feature
vector of each anticancer peptide and non-anticancer peptide
into the network as a node and use the radial basis function to
measure the similarity distance between the nodes as the edge
weight of the network. The label propagation algorithm
spreads the label in the network according to the probability
conversion matrix until the node label in the network no longer
changes.

5.5. AL for Data Selection. In the initial iteration of the
LP algorithm, the performance was significantly improved.
However, it unexpectedly started to decrease afterward.42 An
intuitive explanation for the decline in LP’s accuracy is the
errors accumulating over the initial iterations that overwhelm
the propagation of informative labels in the subsequent
iterations. This suggests coupling LP’s label update with AL.
The key to LP is the data selection strategy.20 Several

strategies can usually be used to select a small set of samples,
which must be annotated by a specialist, constituting the
labeled part of the training set. However, the selected strategy
should be able to select the samples with the most information
(diversity and uncertainty) to obtain a robust classifier
quickly.43,44 In our experiments, we considered uncertain
sampling and boundary data points for data selection.
Uncertain sampling strategy tends to select the samples
whose category is least determined by the current classifier
for labeling.43,45 When the model classifies samples, there will
be samples close to the decision boundary that are similar and
difficult to be classified correctly. We choose these kinds of
boundary data points as information-rich samples for the
model to learn. The detailed process is illustrated in Algorithm
1.
Specifically, instead of feeding all of the labeled data at once

for model training, we randomly sampled N data to train and
obtain the initial model (line 2). The initial model predicted all
samples and provided the label probability, and we performed
minimum confidence maximum label negative sorting on
probabilities to form an ordered edge list (line 6). The k least
confident edges at a time were obtained from the ordered list
of edges and joined the training pool (line 7). We selected the
k samples according to the following formula

x P y xarg max(1 max ( ))k
x y l k

lp l
1,0 , 1,2,..., 1

= − |
∈{ } ∈{ − } (11)

where xl is the label data and Plp(y|xl) is the posterior class

probabilities calculated by the LP algorithm. Newly labeled
data (xk,yk) were added to the training set (line 8) and
removed from the unlabeled pool (line 9), which was no
longer used in the next prediction. Then, a new LP model-
based supplementary labeling data were trained (line 10). The
whole process was repeated until the algorithm converged or
reached the specified number of iterations (line 11). The
values of N and k are discussed in Section 2.2.
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In a nutshell, AL chose the most informative in the learning
task and the LP algorithm used these carefully selected data to
identify peptides. In addition, in the experimental part, we use
the model in the sklearn learning library and applied the grid
search to adjust the parameters as our comparison model.
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