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Abstract: With the increasing deployment of IoT devices and applications, a large number of devices
that can sense and monitor the environment in IoT network are needed. This trend also brings
great challenges, such as data explosion and energy insufficiency. This paper proposes a system
that integrates mobile edge computing (MEC) technology and simultaneous wireless information
and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted
IoT applications. A novel optimization problem is formulated to minimize the total system energy
consumption under the constraints of data transmission rate and transmitting power requirements
by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest
weight factor. Since the problem is non-convex, we propose a novel alternate group iteration
optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and
alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical
simulations validate that the energy consumption of our proposed design is much lower than the
two benchmark algorithms. The relationship between system variables and energy consumption of
the system is also discussed.

Keywords: mobile edge computaing; simultaneous wireless information and power transfer; energy
minimization; 5G; wireless sensing network; IoT

1. Introduction
1.1. Backgroud

The 5G enabled Internet of Things (5G-IoT) [1–4] connects the real world with the
internet world and human civilization is currently transforming from informatization to
intelligence. The four abilities of 5G communication system, namely massive capacity, ultra-
low latency, high reliability and extensive connection, are the key driving forces for the
development of IoT [5,6]. The integration of 5G and WSN-assisted IoT not only strengthens
the connection between the real world and the internet world, but also widens the scope
of IoT services such that IoT can not only serve the smart city [7] but also penetrate into
agriculture [8], medical care [9], transportation [10], industry [11] and other fields [12].
However, WSN-assisted IoT is facing grand challenges and the huge amount data traffic
brought by great number of IoT devices and sensors can impose an enormous burden on
the network, resulting in higher service delays and reduced quality of service (QoS) [13].

Although the current terminal devices are equipped with high-performance hardware,
it is still difficult to meet the needs of computing intensive tasks, especially in the case
of ensuring low power consumption and low latency. Mobile Edge Computing (MEC)
technology is considered as a crucial solution for 5G-IoT [14,15]. With the help of MEC,
terminal devices can upload part of or all of the computing tasks to the edge computing
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platform for computing so as to reduce their own computing pressure and energy consump-
tion, improve the computing efficiency and performance and bring better QoS [16–18]. The
authors of [19] studied how the MEC enabled industrial verticals in 5G. Yang et al. [20]
analyzed the main features of MEC in the context of 5G and IoT and presented several
fundamental key technologies that enable MEC to be applied in 5G and IoT.

Despite the fact that MEC brings great benefits for IoT, it still faces an important
problem: how can we effectively and conveniently extend the lifetime of IoT devices in the
network? Simultaneous wireless information and power transfer (SWIPT) is considered as
the key technology to solve this problem. The principle of SWIPT system is that RF signals
can carry energy and information at the same time. It was first proposed by the author
of [21] in 2008. Rui Zhang et.al. [22] proposed two practical SWIPT receivers, which are
the time switching (TS) receiver and power splitting (PS) receiver. The TS receiver divides
the time slot into two parts, the RF signal received in the first part of time is used for
information demodulation and then the signal collected in the remaining time is used for
energy harvesting. The PS receiver divides the received RF signal into two parts and then
transmits them to the energy collector and information demodulator, respectively, so that
the information demodulation and energy harvesting can be realized simultaneously. Since
then, a lot of researches focus on the design and performance of the SWIPT systems [23,24].
The author of [25] proposes a more complex dynamic energy splitting receiver based on
the above two receivers framework. The author of [26] studied the trade off between the
harvested energy and forward data in SWIPT sensor networks. Tang et al. [27] proposed a
TS receiver design to maximize the energy efficiency in MIMO channels for IoT.

1.2. Related Works

As both SWIPT and MEC technologies benefit the IoT system, MEC deployed WSN
IoT network design with SWIPT has attracted increasing attention. In such new frame-
work, the communication and computation resource allocation as well as wireless energy
harvesting scheme are crucial for maximizing the system performance. The authors of [8]
studied an energy efficiency optimization scheme for OFDM transmission WSN in smart
agriculture. By jointly optimizing the power allocation and the pairing of subcarriers,
the optimization scheme can help to solve the problem of energy deficiency. An achiev-
able rate maximization problem was discussed in [28] for multiuser satellite IoT system
with SWIPT and MEC to overcome the limitation in battery capacity and computing
capability of IoT terminals. In [29], a UAV-enabled wireless powered MEC system was
investigated, where the offloading modes were optimized to reach the maximum computa-
tion rate under the power constraint and the UAV speed constraint. The authors of [30]
extended multi-access edge computing to support the long range (LoRa) system for IoT
applications. The novel framework allowed dynamic IoT deployment at the edge and life
cycle management.

With the development of artificial intelligence technology, reinforcement learning (RL)
methods are used to solve various communication problems in 5G and IoT systems. Aiming
at minimizing the difference between the distributed and demanded throughput for each
user, ref. [31] presented a novel deep reinforcement learning (DRL) scheme, which satisfied
the user requirements by power regulation. In [32], a RL based offloading scheme was
studied to select the edge device and the offloading rate for IoT devices. The distinguished
merit of this scheme is that the offloading policy can be optimized without knowledge
required in traditional schemes. A hybrid-decision-based DRL approach is proposed
in [33] to provide coordinated decisions of dynamic offloading scheme for multi-device
multi-server MEC-IoT systems with energy harvesting devices.

1.3. Contributions

In this paper, we investigate energy consumption minimization for SWIPT based mobile
edge computing in WSN assisted IoT System by using the optimization process. It is a
continuation of our previous work [34] that focused on the cellular system. However, this
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study focus on the WSN assisted IoT network. Different from existing works, an in-depth
research is carried to analyze the effects of computation task size, mobile node (including
wireless sensor node) number, antenna number and energy harvest weight factor on the
system energy consumption. The novelties of this work are summarized as follows.

(1) We design a novel WSN assisted IoT System, which integrates a MEC-deployed
and FD-deployed anchor node (AN) and multiple SWIPT-equipped mobile nodes (MNs).
The research problem of modeling is completely different from our previous work since
the transmission conditions and requirements between cellular communication system and
wireless sensor network are different. We aim to achieve the minimum energy consump-
tion by optimizing CPU frequency, power allocation, offloading weight factor and SWIPT
weight factor. Moreover, given the analysis of uplink, we provide the closed form expres-
sion of downlink rate and obtain the downlink transmission delay. Moreover, we optimize
the SWIPT weight factor, which will affect the energy consumption of downlink harvesting
and then affect the total system energy consumption. A more reasonable expression of
harvesting energy is provided, which is based on the SWIPT weight factor and downlink
time delay. In other words, the uplink and downlink parameters are jointly optimized.

(2) We formulate a more practical WSN energy minimization problem by jointly
optimizing the key decision variables in the system. Since the multiple variables to be
optimized are coupled and the original problem is non-convex, the optimization is quite
challenging. An efficient algorithm called alternate group iteration optimization (AGIO) is
proposed. We decompose the decision variables into three groups and divide the original
problem into three subproblems. Then, we alternately optimize each subproblem using the
interior point iteration method until the convergence.

The rest of the paper is organized as follows. Section 2 describes the system model and
analyzes the transmission process. Section 3 formulates the energy minimization problem.
Sections 4 and 5 present the algorithms to solve the problem and provides simulation
results. Section 6 concludes the paper.

2. System Model

Let us consider a SWIPT-MEC enabled WSN assisted IoT system as demonstrated
in Figure 1. There are N mobile nodes (MNs) including wireless sensor nodes denoted
as {D1, D2, . . . , DN} that are overwhelmed with computation tasks and one M-antenna
Full Duplex enabled anchor node (AN). Each MN deploys single antenna and a power
splitting (PS) SWIPT equipment to harvest energy. The PS receiver is capable of switching
between energy harvesting (EH) state and information decoding (ID) state. The anchor
node is equipped with a MEC server that can help MNs with the enormous amount of
computation tasks.

Assume that each MN can divide its computation task into two parts and one is
for local computing and the other is for offloading to the MEC enabled AN. The total
computation task size of Di is represented as Li bits and the offloading computation task
size is Lu

i bits, which satisfies Lu
i = αiLi, where 0 ≤ αi ≤ 1 is a offloading weight factor.

Since MN can decide how much computation task will be offloaded to AN, αi is a variable
to be optimized to achieve better performance.

The operation processes of the system can be illustrated in the following steps.
(1) During the uplink process, MN Di (i ∈ {1, . . . , N} ) offloads the computation task

Lu
i to the MEC server at AN.

(2) When the MEC server receives the offloading task, it immediately implements the
computation task. Due to the strong computation ability, MEC server can finish the offloading
computation task in a short time, which can be ignored compared to the other operation times.

(3) Since AN deploys FD technology when MN Di is offloading, AN can simultane-
ously download the computation result Ld

j from the MEC server to MN Dj (j ∈ {1, . . . , N},
j 6= i ), which shares the same frequency as the uplink MN Di. The computation result
satisfies Ld

j = β jLu
i , where 0 ≤ β j ≤ 1 is a weight factor.
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(4) After Dj receives the computation result, the PS receiver will perform energy
harvesting and information decoding according to the received RF signal.

(5) Mobile node Di will perform local computing on the remaining computaion task
when it finishes the offloading.

The above processes can be divided into three phases: the offloading phase, download-
ing phase and local computing phase. They are described in detail in the following analysis.

Anchor node (AN) 

with MEC server

Self 

interference

M-antenna

Computing task offloading

Wireless information and 

power transfer

1

uH

1

dH

2

uH

2

dH

3

uH

3

dH

1

d

NH −

1

d

NH −

4

uH

4

dH

u

NH

d

NH

0H

1D
2D

3D

4D

ND
1ND −

...

.
.
.

Figure 1. SWIPT-MEC enabled WSN assisted IoT System Model.

2.1. Offloading Phase

In the offloading phase, MNs {D1, D2, . . . , DN} that are overwhelmed by the com-
putation tasks will offload part of the tasks to AN. Without loss of generality, AN re-
ceives the offloading computation task Lu

i from MN Di during the time interval tu
i . Mean-

while, AN simultaneously downloads computation result Ld
j to Dj, where i ∈ {1, . . . , N},

j ∈ {1, . . . , N}, i 6= j. Thus, the received signal at AN is the following:

yu
i =

√
pu

i Hu
i su

i +
√

ηjH0(
√

pd
j sd

j ) + nAN, (1)

where pu
i and su

i are the transmitted power and transmitted signal of Di, pd
j and sd

j are
the transmitted power and the computation result signal transmitted from AN to MN
Dj. The two transmitted signals are assumed with normalized power, i.e., |su

i |
2 = 1 and

|sd
j |2 = 1. Hu

i ∈ CM×1 is the uplink channel from Di to AN and H0 ∈ CM×M is the
self-interference channel induced by FD transmission. ηj is the residual self-interference
(RSI) coefficient. The received noise is nAN ∼ CN(0, σ2

ANIM) .
According to the above expression, only the first part on the right side of Equation (1)

contains the target offloading task su
i , the seond part is the RSI due to FD transmission of

AN and the third part is the additive white Gaussian noise (AWGN) at AN. Thus, the signal
to interference plus noise ratio (SINR) can be represented as the following:

γu
i =

pu
i tr{Hu

i (H
u
i )

H}
ηpd

j tr{H0HH
0 }+ σ2

AN
, (2)
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where tr{.} represents the matrix trace. Then, we can obtain the transmission rate as the
following:

Ru
i = Blog2(1 + γu

i ), (3)

where B denotes the bandwidth allocated. Let Ru
min represent the minimum uplink trans-

mission rate requirement. Therefore, we can obtain the first constraint condition in this
system model shown as the following:

Ru
i ≥ Ru

min. (4)

Meanwhile, we can calculate the transmission time for offloading as follows.

tu
i =

Lu
i

Ru
i

. (5)

Thus, the energy consumed by Di at the offloading phase can be expressed as
the following:

Eo f f
i = pu

i
Lu

i
Ru

i
, (6)

and the resulting transmission energy consumed by all MNs is provided by the following.

Eo f f =
N

∑
i=1

Eo f f
i . (7)

2.2. Downloading Phase

Since AN is equipped with FD technology, it can download the computation result to
MN Dj and receive offloading task from other MN Di simultaneously. Thus, the received
signal at Dj is described as the following:

yd
j =

√
pd

j Hd
j sd

j + nd
j , (8)

where pd
j is the transmitted power AN uses for downloading the computation result to Dj.

nd
j is the AWGN with power σ2

j .
Here, we suppose that the co-channel interference can be canceled perfectly in the

receiver for the sake of simplicity.
Then, the signal to interference plus noise ratio (SINR) and the transmission rate at

MN Dj are the following.

γd
j =

pd
j tr{Hd

j (H
d
j )

H}
σ2

j
, (9)

Rd
j = Blog2(1 + γd

j ). (10)

Let Rd
min represent the minimum downlink transmission rate requirement and we can

obtain another constraint condition described as follows.

Rd
j ≥ Rd

min. (11)

Meanwhile, we can calculate the latency of the downlink transmission as follows.

td
j =

Ld
j

Rd
j

. (12)
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The PS receiver at Dj then divides the received RF signal into two parts; the θj
(0 ≤ θ ≤ 1) part is used for energy harvesting, while the rest (1− θj) part is used for
information decoding. We can obtain the harvest energy of Dj as follows.

Ehav
j = θj(pd

j tr{Hd
j (H

d
j )

H}+ σ2
j )t

d
j . (13)

Meanwhile, the energy consumption of AN can be calculated as the following.

EAN =
N

∑
j=1

pd
j td

j . (14)

2.3. Local Computation Phase

After offloading, MN operates on the remaining computation task. Let f n
i denote the

CPU frequency needed for the n-th CPU cycle of Di. The following constraint condition
should be met:

0 ≤ f n
i ≤ f max

i , ∀i (15)

where f max
i is the maximum CPU frequency of Di. Then, the time for local computation of

Di is the following:

tlocal
i =

C(Li−Lu
i )

∑
n=1

1
f n
i

, (16)

where C is the CPU cycles required for computing 1-bit of data. The energy consumption
of local computation is given by the following:

Eloc
i =

C(Li−Lu
i )

∑
n=1

κ( f n
i )

2, (17)

where κ is the effective capacitance coefficient based on the chip architecture [35]. Thus, we
can obtain the total local energy consumption as follows.

Eloc =
N

∑
i=1

Eloc
i . (18)

3. Problem Formulation

After we analyze the transmission process of the system, we can formulate an problem
which can optimize the system performance. This paper aims at minimizing the total
energy consumption of the system, while simultaneously ensuring the transmission re-
quirements. The total energy consumption of the system contains AN energy consumption
EAN , the offloading energy consumption Eo f f and the energy consumption of local com-
putation Eloc. In addition, we need to remove the harvest energy Ehav MNs can obtain.
Based on Equations (7), (13), (14) and (18), we can write the total energy consumption of
the system as the following.

Etotal = EAN + Eo f f + Eloc − Euh

=
N

∑
j=1

pd
j

Ld
j

Rd
j
+

N

∑
i=1

pu
i

Lu
i

Ru
i
+

N

∑
i=1

C(Li−Lu
i )

∑
n=1

κ( f n
i )

2

−
N

∑
j=1

θj(pd
j tr{Hd

j (H
d
j )

H}+ σ2
j )

Ld
j

Rd
j

(19)

Finally, the problem can be described as follows:
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(P1) min
f,pu ,pd ,α,θ

Etotal

s.t.



C1 : 0 ≤ α, θ ≤ 1
C2 : Ru

i ≥ Ru
min, ∀i

C3 : Rd
j ≥ Rd

min, ∀j
C4 : pu

i ≤ Pu
max, ∀i

C5 : pd
j ≤ Pd

max, ∀j
C6 : 0 ≤ tlocal

i ≤ tu
i , ∀i

C7 : 0 ≤ f n
i ≤ f max

i , ∀i

(20)

where f = [ f1, f2, . . . , fN ], pu = [pu
1 , pu

2 , . . . , pu
N ], pd = [pd

1, pd
2, . . . , pd

N ], α = [α1, α2, . . . , αN ]
and θ = [θ1, θ2, . . . , θN ].

In problem P1, C1 provides the constraints on weight factors. C2 and C3 imply that
the offloading rate and downloading rate should not be less than the QoS requirements
Ru

min and Rd
min, respectively. C4 and C5 indicate the uplink and downlink transmission

power limits Pu
max and Pd

max. C6 denotes that the time of the local computation should be
no more than the time of the offloading phase, otherwise it is better to offload all the tasks.
C7 indicates the CPU frequency constraint according to Equation (15).

4. The Proposed Algorithm

In this section, we will solve the formulated problem in steps. The problem P1 is
full of challenges since both the objective function and the constraints are non-convex.
Although the variables that need to be optimized are all coupled in P1, we find that the
CPU frequency f is the least relevant variable compared to other variables. We divide P1
into the following three subproblems. (i) Local computation optimization is as follows:
In this subproblem, we obtain the optimal CPU frequency using the scheme in [36]. (ii)
Power optimization is as follows: When f and the weight factors α, θ are fixed, we can
use the interior point algorithm to solve the problem. (iii) Weight factor optimization is as
follows: After frequency and power optimization are completed, interior point algorithm
can be used again to obtain the optimal weight factors. The three subproblems should be
optimized alternately by the iteration method.

4.1. Local Computation Optimization

Inspired by [36], the optimal CPU frequency should satisfy the following.

f 1
i = f 2

i = · · · = f
C(Li−Lu

i )
i = fi. (21)

The above equation reveals the CPU frequency should maintain the same in each cycle
as fi. Suppose the other four variables have been optimized, the initial problem (P1) can be
reformulated as follows:

(P2) min
f

E +
N
∑

i=1
C(Li − Lu

i )κ( fi)
2

s.t.

{
C6 : 0 ≤ C(Li−Lu

i )

fi
≤ tu

i , ∀i

C7 : 0 ≤ fi ≤ f max
i , ∀i

(22)

where E = EAN + Eo f f − Ehav, f = [ f1, f2, . . . , fN ]. According to the optimization objective
function, the energy consumption increases monotonically with fi. In other words, fi has
to be the smallest value to achieve the minimum energy consumption. Thus, from the
constraint C6, we can obtain the following.

f opt
i =

C(Li − Lu
i )

tu
i

. (23)
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Then, by replacing f n
i with f opt

i in Equation (16), we can obtain the local energy
consumption of user Du

i as follows.

Eloc
i =

κC3(Li − Lu
i )

3

(tu
i )

2 . (24)

According to Equation (16), we find that the effect of CPU frequency on energy
consumption can be transformed to the effect of offloading ratio and transmitting power.
Therefore, we only need to focus on the optimization of these two parameters in the
following steps.

4.2. Power Optimization

After the CPU frequency has been optimized and with the assumption that the two
weight factors have been optimized, problem P1 now can be rewritten as the following.

(P3) min
pu ,pd

∑N
j=1 pd

j
Ld

j

Rd
j
+ ∑N

i=1 pu
i

Lu
i

Ru
i
+ ∑N

i=1
κC3(Li−Lu

i )
3

(tu
i )

2

−∑N
j=1 θj(pd

j tr{Hd
j (H

d
j )

H}+ σ2
j )

Ld
j

Rd
j

s.t. C2, C3, C4, C5.

(25)

For problem P3, the second-order derivative of each variable, i.e., pu
1 , pu

2 , . . . , pu
N and

pd
1, pd

2, . . . , pd
N of the objective function is zero. Moreover, all constraints are linear. Thus, the

standard interior point algorithm can be applied to this convex problem and the optimal
solution can be achieved.

4.3. Weight Factor Optimization

With the optimized variables f, pu, pd, the problem can can be expressed as the following:

(P4) min
α,θ

∑N
j=1 pd

j
β jαi Li

Rd
j

+ ∑N
i=1 pu

i
αi Li
Ru

i
+ ∑N

i=1
κC3(1−αi)

3(Li)
3

(tu
i )

2

−∑N
j=1 θj(Pd

j + σ2
j )

β jαi Li

Rd
j

s.t. C1 : 0 ≤ α, θ ≤ 1

(26)

where Pd
j = pd

j tr{Hd
j (H

d
j )

H}. Similar to problem P3, problem P4 is a convex problem
which can be solved by the interior point algorithm.

Based on the above discussion, the proposed AGIO algorithm can effectively solve
the optimization problem P1, which is illustrated in Algorithm 1.

Algorithm 1 Alternate Group Iterative Optimization

Input: N, M, B, Hu, Hd, H0, C, κ, L, σ2
j , σ2

AN , β, η, Pu
max, Pd

max, Ru
min, Rd

min

Output: optimal solutions f∗, p(u)∗, p(d)∗, α∗, , θ∗

1: Set iteration number n = 1.
2: Set maximum iteration number Imax.
3: Set the initial values: pu(0), pd(0), α(0), θ(0).
4: While n ≤ Imax
5: Solve problem P2 to obtain the optimal f;
6: Solve problem P3 to obtain the optimal (pu(n), pd(n));
7: Solve problem P4 to obtain the optimal (α(n), θ(n))
8: Set n = n + 1;
9: End While .
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5. Simulation and Analysis
5.1. Simulation Results

In this section, the research work above is simulated and the effects of different variables
on the system performance are investigated. The simulation parameters are summarized
as follows: the bandwidth is 5 MHz; the upper limits of transmitting power are pu

1,max =

pu
2,max = · · · = pu

N,max = 5 W and pd
1,max = pd

2,max = · · · = pd
N,max = 20 W; the weight

factors are β1 = β2 = · · · = βN = 1; and the noise power is σ2
AN = σ2

j = −120 dBm, ∀j.
We also set the chip effective capacitance coefficient to κ = 10−20 and the CPU cycles are
C = 103 cycles/bit. We choose a random Rayleigh fading channel model for all the channel
matrix in the simulation. Moreover, we apply two benchmark algorithms to compare with
the proposed AGIO algorithm.

(1) The fixed-variable (FV) algorithm: The variables pu, pd, α, θ are fixed at initial values.
(2) The full-offloading (FO) algorithm: MNs upload all computation tasks to the MEC

server. Thus, the local computation task is zero, the CPU frequency of local computation is
f1 = f2 = · · · = fN = 0 and the offloading weight factor is α1 = α2 = · · · = αN = 1.

Figure 2 demonstrates that convergence performance of the proposed AGIO algorithm
under different computation task size L (4 Mbits, 8 Mbits and 12 Mbits ) with 6 MNs and
the antenna number of AN is 6. As shown in the figure, the algorithm converges after five
iterations under varying L. This proves the effectiveness of our algorithm.The convergence
curves also indicate that the energy consumption increases with computation task size L.
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Figure 2. Convergence behavior of the proposed AGIO algorithm.

Figure 3 compares the system energy consumption of the three different algorithms
under a different number of AN antennas M. The proposed AGIO has the minimum
system energy consumption in all the scenarios, which shows the performance superiority
of the AGIO algorithm. The number of antennas of the FV algorithm has the least impact
on energy consumption. It increases gently with the number of AN antennas. On the
other hand, for FO algorithm and the proposed AGIO algorithm, the energy consumption
is greatly reduced with M. As a result, our algorithm indicates greater performance
improvement in energy consumption when the number of the AN antennas increases.
Thus, we can conclude that the proposed AGIO algorithm is suitable for multi-antenna AN.
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Figure 3. Comparison of energy consumption with a different number of antennas.

Figure 4 compares the three different algorithms under different number of MNs.
The energy consumption increases with N which is attributed to the increased number
in computation tasks when the number of users increases. Again, the proposed AGIO
algorithm outperforms both FV and FO algorithms. The superiority increases with the
number of MNs, which reveals the applicability of the proposed algorithm in multi-user
senarios. In addition, it is clear that the FO scheme outperforms the FV scheme, which
mainly benefits from the optimal power allocation process in FO scheme.
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Figure 4. Comparison of energy consumption with a different number of mobile nodes.

Figure 5 shows the energy consumption of the three algorithms under different harvest
weight factor θ with N = 2 and N = 4, respectively. For the three algorithms, the energy
consumption decreases with the parameter θ. The FO and AGIO algorithms demonstrate
increased significant decline than FV due to the reason that θ represents the capability
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of energy harvesting and the greater value of θ means more harvested energy and less
total system energy consumption. Thus, we can conclude MN tends to offload a larger
proportion of computation bits to AN in the view of energy efficiency.

Figure 5. Comparison of energy consumption with different θ.

Figure 6 demonstrates the offloading delay of MNs in the uplink transmission. The FV
scheme shows a slight advantage than the FO algorithm because we set the offload-
ing weight factor α = 0.1 for FV, which means smaller offloading task in FV than in
FO. Compared with the two benchmark algorithms, AGIO algorithm displays better la-
tency performance due to the excellent design of optimization steps. It also indicates
the distinguished feature of our algorithm both in energy consumption performance and
latency performance.
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Figure 6. Comparison of offloading delay with different computation task size L.
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5.2. Analysis and Discussion

Aiming at solving the data explosion and energy insufficiency challenges in WSN-
assisted IoT system, we designed a novel framework that integrates MEC and SWIPT
technologies into the IoT system. We formulate the energy consumption minimization
problem and propose an AGIO algorithm to solve it. By jointly optimizing the CPU
frequency, power allocation, offloading scheme and SWIPT scheme, we can achieve the
minimum energy consumption.

Simulation results in Section 5.1 have verified our original intention. First, the pro-
posed novel system shows great advantages in energy consumption and time delay, which
are demonstrated in Figures 5 and 6. It can attribute the success to more reasonable expres-
sions of several parameters, which affects the system performance. That is also achieved by
the first contribution listed in Section 1.3. In addition, the convergence result displayed in
Figure 2 confirms the effectiveness of the AGIO algorithm as we stated in the second contri-
bution. Furthermore, the simulation result in Figure 3 shows that the energy consumption
decreases with the number of AN antennas. It provides a clue that our system is suitable
for multi-antenna system, which is more efficient in applications. The simulation results in
Figure 4 shows the superiority of the proposed algorithm in a multi-user scenario, which is
exactly the practical application of a WSN-assisted IoT system.

6. Conclusions

In this paper, we investigate the wireless information transmission and energy transfer
of a novel SWIPT-MEC enabled WSN-assisted IoT System. We fomulate an optimization
problem by jointly optimizing the CPU frequency, transmitted power, offloading weight fac-
tor and harvest weight factor to achieve the minimum system energy consumption. In order
to render the problem solvable, we propose a novel alternate group iteration optimization
(AGIO) algorithm, which decomposes the original problem into three subproblems and al-
ternately optimizes each subproblem using the group interior point iterative optimization
algorithm. Finally, numerical simulation of the proposed strategy is carried on to compare
with the two other benchmark schemes. The results demonstrate that the proposed design
presents the performance advantages both in energy consumption and latency.
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