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Chimeric antigen receptor (CAR) therapy has been proved effective in a stream of clinical
trials, especially in hematologic malignancies. However, current CAR therapy is highly
personalized as cells used are derived from patients themselves, which can be costly,
time-consuming, and sometimes fails to achieve optimal therapeutic results due to poor
quality/quantity of patient-derived cells. On the contrary, universal CAR therapy, which is
based on healthy individuals’ cells, circumvents several limitations of current autologous
CAR therapy. To achieve the universality of CAR therapy, the allogeneic cell
transplantation related issues, such as graft-versus-host disease (GVHD) and host-
versus-graft activities (HVGA), must be addressed. In this review, we focus on current
progress regarding GVHD and HVGA in the universal CAR therapy, followed by a universal
CAR design that may be applied to allogeneic cells and a summary of key clinical trials in
this field. This review may provide valuable insights into the future design of universal
CAR products.

Keywords: chimeric antigen receptor, graft-versus-host disease, host-versus-graft activities, adoptive cell therapy,
cancer immunotherapy
INTRODUCTION

Cancer immunotherapy aims at triggering and augmenting immunity in cancer settings. Currently, there
are two effective modalities of immunotherapy: monoclonal antibody (mAb) therapy and adoptive cell
therapy (ACT). The success of autologous tumor-infiltrating lymphocytes (TILs) in the metastatic
melanoma (1) and relapsed leukemia (2) in the 1980s heralded the era of ACT. In the past decades,
scientists have shown increasing appreciation towards this field, as several phase III clinical trials have
consistently shown improvement in the overall survival rate in advanced-stage cancers (3–6). More
importantly, recent technical advances (e.g. cellular engineering and ex vivo cell manufacturing) have
broadened the scope of ACT applications and enhanced the tumor-specific immune response in cancer
treatments. As an extremely important type of ACT, CAR therapy has been perceived as a major
breakthrough in cancer treatment and gained commercial approval by U.S. Food and Drug
Administration, including Kymriah (tisagenlecleucel) (7) for relapse or refractory acute lymphoblastic
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leukemia in 2017, Yescarta (axicabtagene ciloleucel) (8) for certain
types of large B cell lymphoma in 2017, and Tecartus
(brexucabtagene autoleucel) for mantle cell lymphoma in 2020.

CAR represents a type of engineered receptors that is composed
of a single-chain variable fragment (scFv) targeting tumor-
associated-antigens (TAAs) or specific antigens for certain types
of cells (e.g. CD19 on B cells), a transmembrane domain (TMD),
and an intracellular signaling domain (ISD) (9) (Figure 1). It
bestows the recipient immune (commonly T) cells with enhanced
anti-tumor activity, leading to the profound elimination of tumor
cells and preventing the tumor relapse by promoting immune
surveillance. Currently, T cells used in CAR therapy are mainly
isolated from the peripheral blood mononuclear cells (PBMCs) of
patients.CAR is subsequently graftedonto theTcells, and theCAR-
T cells are expanded in sophisticated culture conditions in vitro.
Lastly, these autologous CAR-T products are re-infused into the
bloodstream of the patient in vivo (10) (Figure 1).

Although CAR therapy has made clinical progress recently,
the use is limited by multiple issues such as severe toxicity (e.g.
cytokine release syndrome, CRS) (11, 12), safety (on-target, off-
tumor response) (13, 14), and disease relapse (15, 16). These
issues have been summarized in various reviews. We hereby
focus on another important issue—the universality of CAR
therapy. Although the autologous CAR-T cell therapy has
gained outstanding clinical results with advantages such as the
absence of allogeneic reaction and long persistence (17), its
intrinsic disadvantages severely limit its broader applicability
(Figure 1). Firstly, the personalized therapeutic approach
remains at an unaffordable price [e.g. $475,000 for Kymriah
(7)] for normal family and lays a heavy financial burden on a
health care system. Secondly, the long manufacturing process,
approximately 3 weeks (18), can be problematic for patients who
suffer highly proliferative diseases such as acute leukemia.
Patients may experience a rapid disease progression before the
autologous CAR-T cell manufacturing is completed. Thirdly, as
disease progression or other anti-tumor therapies such as
chemotherapy or radiotherapy, the quality and quantity of
patient-derived T cells may not meet the requirements.
Abbreviations: AAV, adeno-associated virus; ACT, adoptive cell therapy; ADR,
allo-immune defense receptor; ALL, acute lymphoblastic leukemia; AML, acute
myeloid leukemia; ASD, autism spectrum disorder; B-ALL, B cell-ALL; B-CLK, B
Cell leukemia; B-CLP, B-cell lymphoma; b2m, b2-microglobulin; BTN3A,
butyrophilin-3A; BPDCN, blastic plasmacytoid dendritic cell neoplasm; CAR,
chimeric antigen receptor; CB, cord blood; COVID-19, coronavirus disease 2019;
CRISPR, clustered regularly interspaced short palindromic repeats; CRS, cytokine
release syndrome; DSB, double-strand break; EGFR, epidermal growth factor
receptor; FL, follicular lymphoma; FR, fragment residue; GMP, good
manufacturing practice; GVHD, graft-versus-host disease; GVT, graft-versus-
tumor; HLA, human leukocyte antigen; HVGA, host-versus-graft activities; iPSCs,
induced pluripotent stem cells; ISD, intracellular signaling domain; KIR, killer cell
immunoglobulin-like receptor; LBCL, large B cell lymphoma; LL, lymphoblastic
lymphoma; LNHB, lymphomas Non-Hodgkin's B-Cell; mAb, monoclonal antibody;
NK, natural killer; PBMC, peripheral blood mononuclear cell; PMBCL, primary
mediastinal B-cell lymphoma; RR, relapsed/refractory; scFv, single-chain variable
fragment; TAA, tumor-associated-antigen; TALEN, transcription activator-like
effector nuclease; T-CL, T-cell Lymphoma; TCR, T cell receptor; TFL, transformed
follicular lymphoma; TILs, tumor-infiltrating lymphocytes; TMD, trans-membrane
domain; TRAC, T cell receptor constant a chain; UC, universal CAR; ZFN, zinc
finger nuclease.
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Furthermore, some individuals, such as infants or lymphogenic
patients, cannot provide a sufficient quantity of immune cells for
the manufacturing process (19). Therefore, the efficacy of such
personalized CAR-T therapy may vary with individuals, making
it difficult to be accurately evaluated.

The limitations of autologousCAR therapy thus bring the rise of
a universal CAR strategy in this field. Therapeutic cells from
healthy donors lay a foundation of good, controllable quality and
sufficient quantity of the starting materials, making the scaleup
industrialization process possible. More importantly, the ready-to-
use cell products offer an immediately available treatment for
patients at a significantly lower cost. The simplified and
standardized manufacturing process gives the opportunity of
using batches of products, which makes CAR treatment accord
with a stable standard.

To construct a universal CAR (UC) system based on cells
from healthy individuals, intense efforts are required to solve the
problems related to “universal” cells, i.e. allogeneic cells,
transplantation. Generally, two major issues should be carefully
taken into consideration: GVHD and HVGA. The former is a
serious complication and may be life-threatening, as donor cells
will attack and damage host cells. The latter leads to the short
persistence of donor CAR cells as they may be rejected by host,
which will consequently limit the CAR-specific anti-tumor
efficacy. This review will highlight current progress in the UC
therapy in regards to GVHD and HVGA, additionally
demonstrate a universal CAR design that may be applied to
allogeneic cells, and finally document current clinical trials.
UNIVERSAL CELL (ALLOGENEIC CELL)
TRANSPLANTATION RELATED ISSUES

GVHD and HVGA mainly result from the disparity of human
leukocyte antigens (HLAs) between donor and host cells. GVHD
in allogeneic CAR cell transplantation can be severe and life-
threatening, and serves as the primary cause of mortality. HVGA
rejects allo-CAR cells, leading to reduced persistence and antitumor
efficacy. Although partially attributed to the CAR design (20), the
incidences of both GVHD and HVGA are mainly caused by allo-ab
T cells (21, 22). The T cell receptors (TCRs) in ab T cells are
responsible for recognizing peptides that are presented by HLAs.
As the most polymorphic region in genome, the HLA locus bears
thousands of expressedHLA variants. TCR repertoire inabT cells is
constructed by the positive and negative selection processes during
thymic selection, thus to be tolerant towards self-HLA.However, the
donor HLA molecules absent in thymic selection in the host will be
regarded as foreign antigens, and vice versa (Figure 2). Therefore, the
T cells from host and donor will attack each other, which leads to
GVHD or/and HVGA. The following section will document the
current development to reduce or eliminate GVHD and HVGA,
touching on the further optimization in allogeneic UC therapy.

How to Reduce/Eliminate GVHD
Gene-Edited ab-T Cells
Owing to the advanced gene editing technology, ab TCR can be
eliminated and ab TCR− T cells (abbreviated as TCR− T below in
December 2020 | Volume 11 | Article 604915
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this section) can be used in CAR therapy without GVHD
(Figure 2). The common basis of this strategy is to disrupt the
ab TCR gene loci of donor T cells, which eliminates the HLA-
dependent recognition and abolishes GVHD. The disruption of
ab TCR can be performed in either a or b subunit of TCR.
However, as the a subunit contains only one constant region, the
disruption of the gene loci that encodes constant a chain
(TRAC) is the commonly used strategy for ablating ab TCR
complex and firstly reported in 2012 (23).

Several gene editing methods can be used to achieve this aim,
such as zinc finger nuclease (ZFN) (24), transcription activator-
like effector nuclease (TALEN) (25), and clustered regularly
interspaced short palindromic repeats (CRISPR)-CRISPR
Frontiers in Immunology | www.frontiersin.org 3
associated protein 9 (Cas9) system (26). These gene editing
methods share a common goal of producing a specific DNA
double-strand break (DSB) at a specific site firstly. Followed by
the generation of DSB, the intrinsic cellular DNA repair
mechanism is triggered, leading to the gene inactivation (gene
knockout) via either error-prone non-homologous end-joining
pathway or homologous recombination pathway. In some cases,
CAR can be precisely inserted (gene knock-in) in the DSB site
such as using adeno-associated virus (AAV) via the homologous
recombination pathway.

The discovery of ZFN in 1990 marked the era of gene editing.
ZFN used a zinc finger motif to bind DNA triplets, and the FokI
nuclease to cleave DNA (27, 28). However, as each zinc finger
A
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G

C

FIGURE 2 | Two key barriers for UC therapy: GVHD (left) and HVGA (right). The main solutions for GVHD include (A) using gene-edited ab T cells such as the knockout of
ab TCR using CRISPR-Cas9; (B) using other types of cells instead of ab T cells such as NK cell and gd T cell; (C) using donor-derived CAR cells; (D) using cells with different
sources instead of PBMCs such as UCBs. The potential solutions for HVGA include (E) using HLA-matched donor, especially HLA-A and HLA-B that belong to HLA-I and
HLA-DR that belongs to HLA-II; (F) using gene editing to knockout HLA of donor cells; (G) grafting an ADR that recognizes the ADL on host cells.
FIGURE 1 | The generalized manufacturing procedure of autologous chimeric (brown arrow indicated) and UC therapy (blue arrow indicated). Both of them
undergo 1) PBMC collect; 2) T cell isolation; 3) T cell engineering; 4) CAR-T cell expansion, and 5) CAR-T cell storage (only for UC therapy). Autologous CAR product
may have disadvantages such as money-, time- consuming, and the potential poor quality/quantity of patient-derived cells (black/grey cells indicated). UC therapy
product has various potential benefits such as simplifying and standardizing the manufacturing at relatively lower cost.
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repeats recognizes only three bases, the off-target mutations and
cleavages are very high. Therefore, TALEN and CRISPR systems
have been more widely used in recent researches. TALEN is based
on proteins that are derived from TALEs. TALEs are DNA-
binding proteins with an array of >30 amino acid repeats. Each
repeat is highly conserved, however, with the exception of two
repeat variable di-residues (RVDs) at positions 12 and 13. The
RVDs direct the FokI nuclease to cleave DNA and create DSB. As
the length of the binding site is long (30+), TALEN shows much
higher specificity (29, 30) and is the first gene-editing tool to
produce TCR− T cells. In 2015, Poirot et al. and Qasim et al. used
TALEN to produce TCR−CD52− CD19-CAR T cells (31, 32). The
deficiency of ab TCR abolished the GVHD reaction, and the
knockout of CD52 rendered the CAR-T cell resistant to
alemtuzumab (an anti-CD52 monoclonal antibody that is used
to eliminate host T cells). This was the first time to prove that
gene-edited allogeneic CAR-T cells can kill the tumor without
introducing GVHD in NSG mouse model. Following this work,
Qasim et al. used TCR−CD52− CD19-CAR T cells to cure two
infants with B cell acute lymphoblastic leukemia (B-ALL) (33).
Both infants achieved a complete response with negative minimal
residual disease, and without significant GVHD.

Apart from TALENs, CRISPR/Cas9 system is another widely
used gene editing tool for producing desirable T cells. Unlike
ZFN and TALEN systems that use protein domain to target
DNA sequences, CRISPR/Cas9 uses RNA to recognize the
desired gene locus. A guide-RNA (gRNA) that targets 20-
nucleotide sequences guides Cas9 to bind the fixed protospacer
adjacent motif (PAM). Cas9 subsequently cleavages the DNA at
the targeted site (34, 35). Although the specificity of CRISPR/
Cas9 is not as high as that of TALEN, the CRISPR/Cas9 system
has several advantages such as easy-to-use and high efficiency. In
2017, Eyquem et al. used CRISPR-Cas9 to disrupt the TRAC
locus, and AAV to carry the CAR construct flanked by DNA
sequences homologous to both sides of the cutting site to insert
CAR accurately into the desired locus (36). The one-step of
knockout and knock-in allowed the high selectivity for TRAC
integration and the absence of off-target hotspots. This
integration resulted in averting clonal expansion and unifying
the transgene expression. Further, the TRAC-CAR avoided tonic
CAR signaling, internalized CAR expression, delayed the
differentiation and exhaustion of effector T-cell, and enhanced
the anti-tumor capability. Recently, the optimization of Cas9
based gene editing technology has further advanced the field of
cell editing. Such improved technologies have been developed in
several studies, including Cas9-HF1 (37) and CRISPR GUARD
(38) system, which will be anticipated to apply in the future
production of UC.

Although the gene editing CAR-T strategy has been validated
in many preclinical and clinical trials, potential risks related to
gene editing tools and biological characteristics of TCR-CAR-T
cells remain poorly understood. Regarding gene editing tools,
off-target cleavages may lead to DSBs at multiple locations that
may cause unwanted translocations. Thus, unpredictable gene
activation or/and inactivation or/and rearrangement may
happen, which in turn leads to an unpredictable result of
Frontiers in Immunology | www.frontiersin.org 4
CAR-T cells. Another concern of this approach is the
unknown biological characteristics of TCR-CAR-T cells. Firstly,
few studies have reported the in vivo expansion of TCR-CAR-T
cells, though the in vitro proliferation of TCR-CAR-T cells can be
driven by the activation of CAR itself via contacting target
antigens (36) and/or by some cytokines such as IL-7 and IL-15
(39). Secondly, whether the deficiency of TCR impacts the
efficacy of TCR-CAR-T cells is controversial. Bridgeman et al.
reported that the complex of CAR and endogenous TCR was
beneficial for the T cell activation and the optimal effect of CAR-
T cells (40). However, Yang et al. argued that concomitant
activation of the CAR and TCR dramatically attenuated the
efficacy of CD8+CAR-T cells in vivo, which led to the exhaustion
and apoptosis of CD8+ CAR-T cell (41). These controversial
reports suggested the possible association between TCR and the
efficacy of CAR, however, no clear conclusion has been reached
currently. This gap may be due to the unknown mechanism of
how TCR impacts the biological characteristics of CAR-T cells,
such as how TCR impacts tonic signaling and how such signaling
affects the efficacy of CAR cells (42–45). Therefore, a deeper
understanding of the biological characteristics of TCR-CAR-T
cells and the underlying mechanism, especially in vivo,
is required.

Other Types of Cells Instead of ab-T Cell
The use of other types of immune cells, instead of ab T cells, can
be another possible approach to avoid GVHD (Figure 2).
Natural killer (NK) cells are innate immune cells with an anti-
tumor effect. Once sensing a proximal cell with an oncogenic
marker, NK cells can be activated and eliminate tumor cells by
direct cytotoxic activity or secreting numerous cytokines,
chemokines, and growth factors. Unfortunately, NK cells
frequently remain in a dysfunctional state in tumors, which
indicates that tumor cells have evolved to escape NK-mediated
killing. Although NK cells have been proved to provide a graft-
versus-tumor (GVT) effect in a mouse model with ALL (46). A
simple infusion of NK cells has shown dissatisfactory result in
human: Rosenberg’s group injected unmodified autologous NK
cells into eight patients with renal cell carcinoma or metastatic
melanoma, but without any clinical responses (47); Burns et al.
tried to treat the relapsed lymphoma or metastatic breast cancer
using an NK-enriched leukapheresis product, unfortunately,
showing to be ineffective (48). Recently, researches have shown
that NK cells that are equipped with CAR can reinforce their
tumor-killing activities and overcome HLA-mediated inhibitory
signals, thus sparked considerable interest in using CAR-NK. In
2015, Campana’s group constructed a CD19-CAR-NK cell using
CD8a as TMD coupled with CD3z and 4-1BB as ICD, which
highly improved NK-mediated leukemic cell death (49). In the
same year, Yu’s laboratory transduced human NK-92 cell line
with a lentiviral construct that harbored a CAR targeting
epidermal growth factor receptor (EGFR), which showed to be
effective in the inhibition of glioblastoma growth and prolonged
tumor-bearing mice survival (50). Nowadays, more studies have
shown that the effective efficacies of CAR-NKs in targeting CD20
(51, 52), CD138 (53), CD3 (54), and CD5 (55). However, there
December 2020 | Volume 11 | Article 604915
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are still some challenges that remain. One of them is to define the
“memory” feature of CAR-NK cells in vivo. It has been evident
that the transfer of naïve and memory cells showed a better
outcome than the transfer of effector cells in the ACT (56).
Increasing evidence has shown that NK cells have trained
immunity (57) that differ from classical immunological
memory, and can be induced by IL-12 (58), IL-15 (59), and IL-
18 (60). The induced trained immunity feature renders NK cells
with enhanced cytotoxic activity such as in the defense of CMV
infection (61). Recent clinical trials showed that CAR-NK cells
with trained immunity exhibited an enhanced anti-tumor
response and induced complete remissions in patients with
leukemia (62). Additionally, killer cell immunoglobulin-like
receptors (KIRs) may be another reason that limits the
universality of CAR-NK. KIRs are expressed in NK cells and
play pivotal roles in the licensing and activation of NK cells by
interacting with self HLA (63). The great diversity of active and/
or inhibitory KIRs and HLAs leads to tremendous NK cell
diversity. More importantly, tumor cells expressing KIRs
ligands may inhibit the functions of some NK cell subsets via
inhibitory KIRs. Additionally, it was observed that there was a
broad inter-individual disparity in NK cell response against the
same target as reported by Makanga et al (64). Therefore, in
order to guide the selection of suitable NK subtypes from
different donors, it is necessary to have a deeper understanding
of the relationship between NK receptors and tumors.
Alternatively, some studies pointed that the use of a cell line
such as NK92 (65) may circumvent this problem, which has been
successfully applied in some clinical trials and shown promising
outcomes (discussed below). However, the intrinsic risk of NK
cell lines, including potential in vivo tumorigenicity and the risk
to induce the allo-immune responses of T and B cells, cannot be
neglected. Apart from these limitations that result from the
biological characteristics of NK cells, some challenges of CAR-
NK relate to the manufacturing process such as low transduction
efficacy, the very likely contamination of T or B cells in NK cell
products, and low retained activity after recovery from a frozen
state. In response, optimizations have been developed, such as a
novel transduction method [e.g. electroporation (66)], using NK
cells with different resource [e.g. cord blood (67)] and improving
culturing condition [e.g. the addition of IL-2 (68) and IL-
15 (59)].

In addition to NK cells, another possible candidate is gd T
cells that are capable of killing an array of cancerous cells
including leukemia, lymphoma, and solid tumor cells
(Figure 2) (69). gd T cells are unlikely to induce GVHD as
their TCRs are activated in an HLA-independent manner (70).
Although gd T cells account for a relatively smaller population
(1~10%, albeit varying with individuals and ages) of T
lymphocytes in PBMCs, they are more enriched at barrier sites
such as ~20% in the colon. Of note, gd T cells were observed as
the most favorable prognostic parameter among 22 lymphocyte
subsets (71). The predominant population in PBMCs, Vg9Vd2-
TCR, has consistently shown to indicate a better outcome in
various cancers such as prostate carcinoma, colorectal carcinoma
and acute myeloblastic leukemia (72). Like NK cells, grafting
Frontiers in Immunology | www.frontiersin.org 5
CAR onto gd T cells can enhance their cytotoxicity. The first
CAR-gd T design was firstly reported in 2004, and demonstrated
the enhancement of antigen-specific tumor reactivity of GD2/
CD19-CAR-gd T (73). So far, Adicet Bio, Inc and Cotomed
Therapeutics are pursuing the CAR gd T strategy and marked it
as an “off-the-shelf CAR product.” However, there exist some
barriers to the application of CAR-gd T. Firstly, due to the low
frequency and number of gd T cells in PBMCs, it is time-
consuming to obtain a sufficient quantity of cells in vitro. A
serum-free protocol supplemented with zoledronic acid and IL-2
allowed an average-fold expansion of autologous gd T in the
range of 25~310 in 2 weeks (74). However, the long expansion
time might lead to T cell exhaustion, which was observed in
CAR-ab T cells (75). Another issue of gd CAR-T is its potential
on-target, off-tumor response. In the common culture condition,
using phosphoantigen (e.g. BrHpp) as stimulator (76), gd T cells
have a propensity to expand Vg9Vd2 population that can
specifically recognize butyrophilin-3A (BTN3A) (77). Although
BTN3A is expressed at a high level in multiple tumors such as
acute myeloid leukemia (78), colon (79), and ovarian (80), it is
also expressed in normal cells (81). Therefore, the preferable
expansion of Vg9Vd2 poses a potential on-target, off-tumor risk
that enables gd T cells to attack normal cells.

Donor-Derived CAR Cells
Instead of using CAR cells from irrelative donors, one approach
is to use CAR cells that are derived from a stem cell/bone marrow
cell transplant donor (Figure 2). A recent clinical report (82)
showed that 8/20 patients with B cell malignancy achieved
complete (6/8) or partial remission (2/8) after infusion CD19-
CAR-T cells, along with the unmanipulated lymphocytes from
the same donor. No new-onset acute GVHD (some patients had
developed GVHD in previous lines of treatment), but only mild
chronic ocular GVHD (5/20) occurred in the treatment. The
reasons for reduced/none GVHD might be the shorter
persistence of CAR-T cells [fewer than a median 4 weeks (83,
84)] and limited cell doses [1.2–3 fold less than the threshold cell
dose (85, 86)]. This data was in line with previous clinical trials
registered as NCT00840853 (87) and NCT01087294 (88), which
validated the efficacy of donor-derived CAR-T cell therapy with
reduced/non GVHD. However, there still existed contradictory
reports that would raise the concern of the incidence of GVHD
using this approach. For example, a patient with relapsed B-ALL
developed an acute gastrointestinal GVHD grade 3 after the
infusion of donor-derived CD19-CAR T cells (89). A study of
refractory B-ALL reported half (6/11) patients developed skin
GVHD grade 2 and one patient developed liver GVHD grade 2,
after receiving allogeneic donor-derived CD-19 CAR T treatment
(90). Thus, understanding the underlying mechanism about the
relationship between donor-derived CAR T cells and GVHD is
required, which can explain the incurrence of GVHD and
provide a guideline for preventing GVHD in this approach. In
addition to mechanism study, the optimization of donor-derived
CAR cells may reduce GVHD. Wiebking et al. reported that NSG
mice with ALL were cured after receiving the allogeneic
hematopoietic stem cell and CD19-TCR-CAR-T from the same
December 2020 | Volume 11 | Article 604915
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donor (91). The knockout of TCR by CRISPR-Cas9 in donor-
derived CAR-T cells completely avoided the incidence of GVHD.

Cells With Different Sources Instead of PBMCs
One method of reducing or avoiding GVHD is to use cells with
specific HLA expression pattern, instead of using cells derived
from PBMCs (Figure 2). Such cell sources may include umbilical
cord blood (CB), placenta-derived stem cells, and induced
pluripotent stem cells (iPSCs). CB may provide an alternative
resource of CAR cells with reduced GVHD, taking advantage of
low immunogenicity (92). Both acute and chronic GVHD at
ranges of grades were significantly lower after transplanting CB
(4-6/6 HLA matched) when compared to transplanting PBMCs
(8/8 or 7/8 HLA matched) (93). The features of CB-T cells, such
as antigen-naïve (94) and impaired nuclear factor of activated T
cell (NFAT) signaling (95), may explain the low score of GVHD.
More importantly, antigen-naive CB-T cells can be differentiated
into memory effector T cells in the tumor environment, so as to
show potent anti-tumor effect such as in ALL (96). In 2006,
Cooper laboratory showed that CD19 CB-CAR-T mediated the
regression in murine models (97). After a decade, June et al.
reported a case in a child that achieved complete remission
without GVHD after the treatment of CD19 CB-CAR-T cells
(98), albeit followed by a tumor relapse unfortunately. More
recently, a few patents regarding the CB-CAR therapy have been
approved, such as a CB-CAR-CD8+ T product for the prevention
of acquired immunodeficiency syndrome (AIDS) associated
lymphoma (Patent No. CN10960965-A). However, the limited
number of nucleated cells in CB may hinder the broad application
of CB-CAR therapy. This limitation may be solved by advanced
technology that enables hundreds of expansions in vitro based on
Good Manufacturing Practice (GMP) (99). For example, CB-
CAR-T cells with central memory/effector phenotype can be
expanded for more than 150-fold in the presence of IL-12 and
IL-15, of note, showing enhanced anti-tumor efficacy in vitro and
in vivo (100).

Compared to CBs, the other two cell resources (placenta-
derived stem cells and iPSCs) mentioned above have been
seldom reported, and without sufficient clinical assessment.
Placenta-derived stem cells may be a potential cell resource for
their HLA expression patterns, such as syncytiotrophoblast that
displays HLA negative (101). The use of iPSCs has potential
advantages such as their outstanding capabilities of self-renewal,
possibilities of generating a bank of iPSCs with common HLA
haplotypes and homogeneities. However, the differentiation of
iPSCs into mature T cells has been challenging (102). So far, the
use of these two types of cells lacks solid practical evidence. Only
one patent claimed to use placental CAR-T cells for the
treatment of cancers especially B cell cancer in 2020 (Patent
No. WO2020113234-A1).

How to Reduce/Eliminate HVGA
Mediated Rejection
In addition to GVHD, HVGA is another important barrier for
allogeneic UC therapy. As mentioned above, the disparity of
HLA is the most significant reason for the host-mediated
Frontiers in Immunology | www.frontiersin.org 6
rejection of allogeneic cells. Apart from ab T cells, NK cells or
gd T cells can still be eliminated by host immune cells due to the
expression of foreign HLA on the cell surface. Therefore, the
strategies aiming to avoid HVGA are necessary for almost all
allogeneic CAR cells.

Allogeneic cell transplantation studies have shown that the
most important HLA alleles to match for are HLA-A and HLA-B
belonging to HLA class I, and HLA-DR belonging to HLA class
II (103, 104). Matching for these loci can significantly reduce the
occurrence of HVGA-mediated rejection. Therefore, selecting
donors with matched HLA-A, HLA-B, and HLA-DR is a direct
approach to avoid the rejection of allogeneic CAR cells (Figure
2). Taylor et al. have provided a theoretical calculation to show
that a tissue bank from 150 homozygous HLA-typed donors
could match above 90% of the UK population (105).

Instead of carefully selecting an HLA-matched donor,
another strategy aims to make allogeneic cells “invisible” to the
host immune system by disrupting HLA (Figure 2). The
knockout of HLA can be achieved by disrupting related
molecules that are necessary for the formation of functional
HLA: b2-microglobulin (b2m) for HLA-I and transactivator
(CIITA) or RFXANK for HLA-II (106). The concept has been
validated in many studies such as reported by the Torikai group
(107) and Choi group (108). However, the deficiency of HLA
class I may lead donor cells to become more sensitive towards the
recognition and destruction from recipient NK cells, as HLA
molecules act as a type of ligand inhibitor of NK cells. Thus, the
incidence of a host NK-mediated rejection may be another
problem in HLA− CAR cells. A solution for the NK-mediated
rejection may be to insert HLA-I replacement molecules to bind
the inhibitory receptors on NK cells. The HLA-I replacement
molecules can be non-classical HLA molecules such as HLA-E or
HLA-G (109), and siglect 7 or siglect 9 (110). However, these
HLA replacements may be effective only for a subset of NK cells
that express these receptors. In addition, few studies have
validated whether the additional insertion will resist the NK-
mediated rejection without reducing the efficacy of CAR cells.

Instead of matching or deleting HLA, Mo et al. engineered an
allo-immune defense receptor (ADR) onto a CAR-T cell recently
(111) (Figure 2). As activated lymphocytes (e.g. T cells and NK
cells) would temporarily upregulate 4-1BB, a 4-1BB receptor was
inserted in CAR-T cells to eliminate the activated alloreactive
lymphocytes. Such design allowed the ADR-CAR-T cells
resistant to the T- and NK cell–facilitated rejection in vitro. As
a consequence, the ADR-CAR-T cells showed a longer
persistence in mice with both hematopoietic and solid cancers.
This design retained the normal expression of HLA and solved
the potential risk of HLA-deficient donor cells, providing a new
concept to solve the host rejection issue.
UNIVERSAL CAR DESIGN

The current scFv on CAR cells is designed as a fixed
antigen-recognition part. The rigid design narrows the
therapeutic window of CAR as the incidence of TAAs escape/
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downregulation/loss in cancer treatment. Moreover, such design
limits the application of CAR to a custom-made, as TAAs vary
with individuals and diseases so that a complete manufacturing
process is necessary for different patients. Therefore, coupled
with allogeneic cells, a flexible and switchable design of CARmay
contribute to the universality of CAR therapy.

To make a type of universal CAR cell that is suitable for more
patients, the antigen-target portion of the scFv domain is
removed, only leaving a fragment residue (FR) on the surface
of CAR cells. Like conventional CAR cells, the FR connects the
ICD via a TMD, but remains at a resting state as there is a lack of
antigen-recognition process. The activation of FR-CAR will only
be triggered after a stepwise addition of a free antibody that
specifically recognizes both FR and TAAs. This design renders
CAR cells with more flexibility and broader antigen specificities.
Of note, the manufacturing of FR-CAR can be completed in
advance and ready to use for different types of patients, if coupled
with the modified allogeneic cells as discussed above.

Such universal CAR designs were initially reported in 2012 by
Young et al (112) and Davila et al (113) groups, which were based
on the mechanisms of avidin Vs biotin-antibody and fluorescein
isothiocyanate (FITC) Vs anti-FITC-antibody respectively.
Instead of a conventional scFv with a fixed antigen, Young
used dimeric avidin (dcAv) without linking to any antibody as
the FR on the surface of the T cell and connected to the ICD.
Biotinylated antibody even at extremely low concentrations
could successfully bind to dcAv with a high affinity (Kd =
10−7), permitting further immune-recognition towards TAAs.
This in turn triggered the activation of CAR cells and mediated
their anti-tumor activities. The efficacy of the FR-CAR was
confirmed in an ovarian cancer xenograft mouse model.
Similar research also supported the efficacy of the FR-CAR
using an affinity-enhanced monomeric streptavidin 2 biotin-
avidin system (114) in lustrum. Following the similar concept,
Davila et al. tagged FR part with FITC, so that free tumor-
targeting anti-FITC-antibody can bridge the FR-CAR and
tumor. Moreover, recent researches have been making
continuous efforts to design the FR-CAR system with different
tags such as Fcg (115) and peptide neo-epitopes (116),
collectively and consistently support the reliability and efficacy
of the universal FR-CAR. In 2018, Wong et al. proposed an
upgraded version FR-CAR called “a split, universal, and
programmable (SUPRA) CAR system” (117). The FR part of
SUPRA-CAR consisted of a leucine zipper adaptor (zipCAR),
which specifically bound to a tumor-targeting leucine zipper
adaptor (zipFv). In addition to the ability to switch TAAs
without a re-engineering process, the SUPRA-CAR could be
“down-activated” or “turn-off” by adding non-tumor-targeting
competitive leucine zippers that with varying affinities with
zipCAR. Besides, the introduction of multi antigens with “OR”
logic can be achieved by the addition of multi zipFvs. In
summary, this design renders CAR products with more
flexibility, as well as controllability during the treatment. Based
on these breakthroughs in universal CAR design, future
researches can further optimize the efficacy of such CAR with
approaches such as engineering the tumor-targeting molecules
Frontiers in Immunology | www.frontiersin.org 7
[e.g. glycosylation (118) and PEGylation (119)] to prolong the
serum half-life of FR-CAR cells.

Although the design of FR-CAR has several advantages, it
should be noted that such design may bring some concerns that
have not been investigated. The first issue is about the efficacy of
FR-CAR. For example, the FR-CAR with avidin tag may
recognize the membrane-bound biotinylated antibodies, as
biotin is naturally present in humans with a plasma
concentration ranging from 0.2 to 2 nM (120). This may block
FR-CAR binding to added biotinylated antibodies and reduce its
anti-tumor efficacy. In addition, as the expansion of the FR-CAR
cells may need the continuous stimulation of antigens especially
if using allogeneic TCR- CAR-T cells, the repeated and high
dosage of free antibody are necessary during the treatment. The
pharmacokinetics of the antibody might be associated with the
efficacy and safety of the FR-CAR product (121), which needs
further exploration. The second issue is about the safety of FR-
CAR. Some tags may not be naturally present in humans,
however, the introduction of them may lead to new
antigenicity. For example, FITC can lead to an early
inflammatory response and develop to a fibrotic response that
can maintain up to six months (122). Therefore, without careful
consideration of the safety of these tags, the FR-CAR may have
serious side effects. Finally, there are no clinical trials that have
been conducted for such CAR product so far. To launch clinical
trials as soon as possible, more preclinical data about such CAR
therapy was urgently necessary.
CLINICAL TRIALS OF UC THERAPY

The momentum of CAR therapy has been generated when the
FDA approved the first CAR-T product. The translation of CAR
therapy is global, with more than 500 clinical trials listed on
ClinicalTrial.gov. As available clinical cell therapies continue to
rise and gene-editing technology offers ground-breaking
opportunities, the clinical trials of universal CAR started after
the year 2016. As of October 2020, there are 36 clinical trials
(Table 1, excluding the withdrawn ones) that have been registered
in ClinicalTrial.gov, with most of them aim at treating
hematological, lymphomas, and myeloma malignancies.
Recently, a clinical trial regarding the coronavirus disease 2019
(COVID-19) was raised (NCT04324996), targeting the S protein
of SARS-CoV-2 and NKG2DL on the surface of infected cells. This
case strongly indicates that a ready-to-use allogeneic cell product
may be the practical option in such a pandemic situation, rather
than a patient-derived cell product.

First clinical trials for allogeneic CAR-T therapy (e.g.
NCT02808442 and NCT02746952) used TALEN to disrupt the
TRAC locus of ab T cells, with stringently capped carriage of
residual ab TCR-T cells to 5 × 104 cells/kg. Based on the gene-
edited approach and preclinical data reported by Qasim (33), two
further clinical trials have shown promising results currently: 5/5
children achieved CR by days 28–42 after the therapeutical cell
infusion (123); and 4/6 adults achieved CR by days 28 after the
UCAR-T cells infusion at an escalated cell dose (124). In 2017,
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Cellectis’ second series of TALEN-edited cell therapy that
depleted TRAC and targeted at CD123 was registered
(NCT03190278), with the first patient dosed in 2020. This
CAR product had an optimized CAR design: an scFv that
specifically recognized CD123 and linked to 4-1BB and CD3z
domain was constructed, with the RQR8 epitope marker/suicide
gene incorporated (125, 126). This trial was a replacement of the
Cellectis’ first UCART123 clinical trial, as the previous version
was put on hold by FDA following the severe CRS in the first
patient dosed (127). Concerning the safety issue about the on-
target, off-tumor, the universal CAR-T may take advantage of its
short persistence as CD123 is expressed on some normal HSCs,
progenitors, and endothelial cells from small-caliber blood
vessels (128, 129).

Apart from the TALEN system, CRISPR technology also
plays an important role in producing allogeneic CAR-T cells.
However, as CRISPR technology was discovered ~2 years after
TALEN, fewer clinical trials have been registered so far. In 2019,
an allogeneic CD19 CAR-T product was raised based on the
CRISPR system (NCT04035434), with the depletion of TRAC
and b2m. Of note, the advanced gene-editing technology makes
Frontiers in Immunology | www.frontiersin.org 8
the desirable cells account for 54–66% across five donors,
indicating the promise for the future pipeline (130).

In addition to T cells, NK cells have been one of the most used
candidates for UC therapy. As the intrinsic biological
characteristics of NK cells are unlikely to induce GVHD, the
allogeneic CAR-NK clinical trial started 7 years before the
emergence of the allogeneic CAR-T clinical trials, and was
firstly conducted at St. Jude Children’s Research Hospital in
2009 (NCT00995137) to treat CD19 B-ALL. Recently, scientists
have focused on testing whether CAR-NK modality can keep up
with its CAR-T counterparts in the perspectives of safety and
efficacy. As one of the most significant safety concerns, CRS is
mainly attributed to cytokine storm that is initiated by some pro-
inflammatory cytokines such as tumor necrosis factor a, IL-1,
and IL-6 (131). These cytokines are frequently released in the
interaction of CAR-T cells and cancerous cells. On the contrary,
the NK-mediated tumor elimination process mainly produces
cytokines such as interferon g (132) and granulocyte macrophage
colony-stimulating factor (133) that will not cause severe CRS. In
clinical trial NCT02944162, 5 × 109 CD33 CAR-NK92 was
injected into ten patients with RR-AML. Only three of them
TABLE 1 | Current clinical trials of UC therapy.

NCT Number Conditions Target Cell type edited Phases Start Date

NCT03366350 ALL, B-CLP CD19 T I/II Apr-16
NCT02808442 Pediatric RR B-ALL CD19 T I Jun-16
NCT02746952 B-ALL CD19 T I Aug-16
NCT02735083 Advanced lymphoid malignancies CD19 T I Sep-16
NCT03114670 Adult AML CD123 T I Mar-17
NCT03166878 B-CLK, B-CLP CD19 T I/II Jun-17
NCT03203369 AML CD123 T I Jun-17
NCT03190278 RR AML CD123 T I Jun-17
NCT03463928 B-CLK CD19-22/CD19 Donor-derived T I Oct-17
NCT03398967 B-CLK, B-CLP CD-19/CD20/CD22 T I/II Jan-18
NCT03545815 Mesothelin positive solid tumors Mesothelin T I Mar-18
NCT03692429 Colorectal cancer NKG2D based CYAD-101 T I Nov-18
NCT03939026 RR B-CL, FL CD19 T I May-19
NCT04035434 RR B-cell malignance CD19 T I Jul-19
NCT04093596 RR myeloma BCMA T I Sep-19
NCT04150497 RR B-ALL CD22 T I Oct-19
NCT04049513 LNHB, diffuse LB-CLP, PMBCL, TFL CD19 T I Oct-19
NCT04142619 RR myeloma CS1 T I Nov-19
NCT04230265 AML, B-ALL, BPDCN CD123 T I Jan-20
NCT04264039 B-ALL, B-CLP CD-19 T Early I Apr-20
NCT04264078 T cell leukemia, T-CL CD-7 T Early I Apr-20
NCT04516551 RR adult ALL, B-CLK CD19 T I Aug-20
NCT00995137 B-ALL CD19 NK I Oct-09
NCT01974479 B-ALL CD19 NK I Sep-13
NCT02742727 CD7 Positive leukemia and lymphoma CD7 NK92 I/II Mar-16
NCT02839954 MUC1 positive RR solid tumor Muc1 NK92 I/II Jul-16
NCT02892695 Leukemia and lymphoma CD19 NK92 I/II Sep-16
NCT02944162 RR AML CD33 NK92 I/II Oct-16
NCT03056339 B-CLP CD19 CB-NK I/II Jun-17
NCT03383978 Glioblastoma HER2 NK92 I Dec-17
NCT03415100 Metastatic solid tumors NKG2D NK I Jan-18
NCT03656705 Non-small cell lung carcinoma CCCR NK92 I Sep-18
NCT03940833 RR multiple myeloma BMCA NK92 I/II May-19
NCT04004637 R/R NK/T-LP, T-LL, and ALL CD7 NK92 I Jun-19
NCT03579927 B-CLP CD19 CB-NK I/II Oct-19
NCT04324996 COVID-19 NKG2D/ACE/NKG2D-ACE NK I/II Mar-20
NCT04107142 RR solid tumors NKG2D gd T I Dec-19
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suffered mild fever and CRS after the infusion, and these
symptoms disappeared the next day (134). In addition, the
limited lifespan of NK cells in circulation adds to the safety
profile of CAR-NK therapy. Compared to that allogeneic CAR-T
cells can persist months, most allogeneic primary CAR-NK cells
are rejected in 14 to 21 days after infusion, and CAR-NK92 cells
do not expand and persist in vivo as they are irradiated in prior to
be transferred. The safety profile of CAR-NK therapy has been
validated in many studies, as exemplified that a high dose of
NK92 (1 × 1010 cells/m2 body surface) can be tolerated in the
clinic (65). It is noteworthy that a short persistence may not be
beneficial for long-term remission of tumor cells, though it
circumvents some safety issues. Redosing may be a solution to
eradicate cancerous cells for short persistent allogeneic CAR-NK
or CAR-T cells, however, such strategy must account for the risk
of alloimmunization unless the same CAR cell batch. In this
setting, NK92 may be advantageous as its high stability. Apart
from the safety issue, another important question to be answered
is the efficacy of CAR-NK. Compared to that CAR-T only
triggers the demise of cancerous cells in the TAA-restricted
manner, CAR-NK additionally eliminates cancerous cells in
the TAA-unrestricted manner via a panel of natural cytotoxicity
receptors (e.g. NKp30, NKp44, NKp46, and NKG2D) (135) and
antibody-dependent cell mediated cytotoxicity (136). Given these
features, CAR-NK cells not only possess an enhanced anti-tumor
efficacy against normal tumor cells, but also kill tumor variants that
lose TAAs. Interestingly, T cells showed higher antitumor
cytotoxicity when they were equipped with NK receptors: the
introduction of NKp46 onto T cells upregulated surface activation
markers (CD25 andCD69) and improved the antitumor effect both
in vitro and in vivo (137); the graft of NKG2D onto CAR-T cells
additionally targeted immunosuppressive myeloid cells and Treg

cells that express the ligand of NKG2D (138, 139). Although these
preclinical data are encouraging, the number of clinical trials of
CAR-NK falls behind that of CAR-T therapy if the clinical trials of
autologousCAR therapy are included. Thus,more clinical data and
solid evidence are required to validate the actual safety and efficacy
of CAR-NK products, both in the aspects of allogeneic primary
CAR-NK and CAR-NK92.

Although a myriad of clinical trials has been launched, more
cases to ascertain the efficacy and safety of therapy, as well as
long-term follow up monitor are required. One of the greatest
barriers in stepping clinical trials is the paucity of preclinical
models, which leads to the lack of preclinical research and data.
Most preclinical studies typically transferred human cells in
Frontiers in Immunology | www.frontiersin.org 9
murine xenograft models (140, 141). Thus, the interpretations
may have a bias due to the lack of an immunocompetent
environment, and prevents the long-term monitoring about
GVHD, HVGA, and the persistence of CAR cells. In addition,
it could be found that most UC therapies are for hematologic and
related diseases. However, solid tumors cause the most cancer-
related deaths. Several factors may result in the poor efficacies of
CAR cells on solid tumors, such as the lack of tumor-specific
targets, the immuno-suppressive tumor microenvironment, and
the difficulty in homing and accessing to the tumor site
(142–145).
CONCLUSIONS

A UC therapy based on healthy individual cells may provide
multiple advantages over personalized CAR therapy based on
patient-derived cells. However, intense efforts are required to
solve GVHD and HVGA. In this review, we have discussed that
there are several approaches to reduce/eliminate GVHD: using
gene-edited ab TCR- T cells, other types of cells such as NK and
gd T cells, donor-derived CAR cells, and cells with different
sources instead of PBMCs. In addition, the main approaches to
solve HVGA include using donor cells with a partial match of
HLA, gene-edited HLA- T cells, and ADR-CAR-T cells. Coupled
with a flexible design of scFv, the universality of CAR therapy
may further revolutionize the ACT field.
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