
RESEARCH ARTICLE Open Access

Artificial neural network model to predict
post-hepatectomy early recurrence of
hepatocellular carcinoma without
macroscopic vascular invasion
Rong-yun Mai1,2,3†, Jie Zeng2,3†, Wei-da Meng1,3, Hua-ze Lu1,3, Rong Liang3,4, Yan Lin3,4, Guo-bin Wu1,3, Le-qun Li1,3,
Liang Ma1,3, Jia-zhou Ye1,3* and Tao Bai1,3*

Abstract

Background: The accurate prediction of post-hepatectomy early recurrence (PHER) of hepatocellular carcinoma
(HCC) is vital in determining postoperative adjuvant treatment and monitoring. This study aimed to develop and
validate an artificial neural network (ANN) model to predict PHER in HCC patients without macroscopic vascular
invasion.

Methods: Nine hundred and three patients who underwent curative liver resection for HCC participated in this
study. They were randomly divided into derivation (n = 679) and validation (n = 224) cohorts. The ANN model was
developed in the derivation cohort and subsequently verified in the validation cohort.

Results: PHER morbidity in the derivation and validation cohorts was 34.8 and 39.2%, respectively. A multivariable
analysis revealed that hepatitis B virus deoxyribonucleic acid load, γ-glutamyl transpeptidase level, α-fetoprotein
level, tumor size, tumor differentiation, microvascular invasion, satellite nodules, and blood loss were significantly
associated with PHER. These factors were incorporated into an ANN model, which displayed greater discriminatory
abilities than a Cox’s proportional hazards model, preexisting recurrence models, and commonly used staging
systems for predicting PHER. The recurrence-free survival curves were significantly different between patients that
had been stratified into two risk groups.

Conclusion: When compared to other models and staging systems, the ANN model has a significant advantage in
predicting PHER for HCC patients without macroscopic vascular invasion.

Keywords: Hepatocellular carcinoma, Curative hepatectomy, Early recurrence, Prognostic factors, Artificial neural
network
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Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon form of malignancy and the fourth leading cause of
cancer deaths worldwide [1]. The most common cura-
tive treatment for early HCC patients is hepatectomy
[2–4]. However, its effectiveness is limited by the high
incidence of tumor recurrence in the postoperative
period (up to 60%), leading to poor long-term survival in
HCC patients [2–4]. Therefore, accurate prognostic pre-
diction of postoperative tumor recurrence is consequen-
tial in the screening and choice of adjuvant therapies for
high-risk patients.
Post-hepatectomy tumor recurrence can be divided

into early or late recurrence using 2 y as the cut-off
point [5–9]. Numerous studies have reported that post-
hepatectomy early recurrence (PHER) is associated with
intrahepatic metastases from primary tumors that can-
not be clinically detected, while late recurrence results
from tumor formation following liver cirrhosis [10]. Pa-
tients with PHER typically have worse long-term survival
prognoses than those with late recurrence [11]. PHER is
key in the poor prognosis of HCC patients following
curative hepatectomy. Therefore, the establishment of an
accurate, reliable, and specific PHER prediction model
may provide a reliable means for choosing postoperative
adjuvant treatments in high-risk patients, such as radio-
frequency ablation (RFA), transcatheter arterial che-
moembolization (TACE), or sorafenib.
Artificial neural network (ANN) models are estab-

lished mathematical tools that mimic the features of
neurons. They have data distributions with large-scale
parallel structures and processing mechanisms similar to
the biological brain [12]. ANN models have been used
to process information in extremely complicated bio-
logical systems containing multiple related factors [13,
14]. Recently, ANN models have been used in the prog-
nostic assessment of various cancers [15–17]. However,
few studies on its application in HCC have been pub-
lished. This study aimed to develop an ANN model to
assess PHER risk of HCC patients without macroscopic
vascular invasion who underwent hepatectomy. Its pre-
dictive ability was compared with a Cox proportional
hazards (CPH) model, several preexisting recurrence
models, and commonly used staging systems.

Methods
Patients
Data from HCC patients who underwent liver resection
from September 2013 to December 2019 in our hospital
were enrolled in this study. The inclusion criteria were:
preoperative Child-Pugh score of A or B, underwent a
curative liver resection, and HCC diagnosis from post-
operative pathology. The exclusion criteria were: had re-
ceived TACE, RFA, or systemic treatment; tumor

invasion in main hepatic veins, portal veins, or adjacent
organs; hospital mortality after liver resection; and in-
complete clinical data. The 903 HCC patients who met
the criteria were randomly classified into derivation (n =
679) and validation cohorts (n = 224) in a ratio of 3:1
(Supplementary Fig. 1). This study was approved by the
Ethical Committee of the Guangxi Medical University
Cancer Hospital and was performed in compliance with
the Helsinki Declaration. Written informed consent was
obtained from all patients.

Commonly used clinical staging systems
Patients were staged using the following systems: Barce-
lona Clinic Liver Cancer [18], TNM (American Joint
Committee on Cancer, 8th edition) [19], Okuda [20],
China Liver Cancer (CNLC) [21], Hong Kong Liver
Cancer [22], French [23], Cancer of the Liver Italian
Program [24], and Japan Integrated Staging [25].

Surgical procedures and follow-ups
Liver resection was performed when preoperative im-
aging indicated that all tumors can be resected within
the hepatic functional reserve. Major hepatectomy was
defined as a resection of ≥ three Couinaud’s segments
[26]. Additional details and indications for liver resection
are described in a previous study [27].
All patients were followed-up every two to 3 months

until death or withdrawal. Routine follow-up included
the determination of laboratory parameters, abdominal
ultrasounds, and computed tomography (CT) or mag-
netic resonance imaging (MRI). All serological parame-
ters were assayed and analyzed in the early morning of
the first day post-admission. Depending on liver func-
tional reserve, general health status, and disease extent,
patients with recurrent tumors underwent re-resection
or treatment with RFA, TACE, or sorafenib [28]. HCC
recurrence or metastasis was determined based on CT
and/or MRI results, regardless of whether serum α-
fetoprotein (AFP) levels were elevated [29]. HCC recur-
rence was defined as the imaging of new lesions in the
residual hepatic tissue or the occurrence of distant me-
tastases. We defined PHER as within 2 y post-surgery
from the date of the hepatectomy to the date of the first
diagnosis of HCC recurrence [5].

Development of the CPH and ANN models
The CPH and ANN models were established based on
the identification of significant PHER prognostic factors
using univariable and multivariable Cox analyses. The
CPH model is similar to multiple linear regression in
that it explores the relationship between a hazard and its
associated independent explanatory factors over a period
of time. It describes the impact of risk factors on a pa-
tient’s treatment using a parameter called the risk ratio
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[30]. Here, the CPH model used the sum of the relevant
risks affecting the hazard function to predict PHER risk
in HCC patients without macroscopic vascular invasion.
The ANN model was established via a multilayer per-

ceptron network (MLP), which is a popular architecture
and a new layer feed-forward neural network design tool
consisting of input nodes, hidden layers, and an output
node [13]. MLP models are always trained using
back-propagation algorithms. When data is provided
to neural groups through the input layers, the first-
layer neurons propagate the weighted data and ran-
domly select the biases using the hidden layers. When
the net sum at the hidden nodes is confirmed, the
transfer function can then be used to provide output
responses at the nodes [16, 17].
In this study, eight prognostic indicators (hepatitis B

virus deoxyribonucleic acid [HBV-DNA] load, γ-
glutamyl transpeptidase [GGT] levels, AFP levels, tumor
size, tumor differentiation, microvascular invasion
[MVI], satellite nodules, and blood loss) were selected as
the input nodes, and one indicator (with and without
PHER) was used as the output node. Details of the ANN
model are described in a previous study [14]. To avoid
over-optimization, the results reported in this study were
the optimal results following repeated randomized trials.

Statistical analysis
We randomly divided patients into derivation and valid-
ation cohorts, as detailed above (see section Patients). The
cut-offs values for the included parameters were con-
firmed using Youden’s index (i.e., sensitivity + specificity
− 1) and other published reports [27, 29]. These categor-
ical variables are presented as frequencies and percentages
and then compared using a chi-squared test. Recurrence-
free survival (RFS) curves were assessed via the Kaplan-
Meier method and compared using the log-rank test. The
predictive abilities of the ANN, CPH, some preexisting re-
currence models, as well as commonly used clinical sta-
ging systems were calculated using the areas under the
receiver-operating characteristic (ROC) curves (AUCs)
and decision curve analyses (DCA) [31]. Calibration plots
were applied to test the calibration capacity of the ANN
model. For its clinical application, Youden’s index was cal-
culated to determine the optimal cut-off value for predict-
ing PHER. All patients were then classified as high-risk
and low-risk groups.
All statistical analyses were performed using SPSS

(v25.0). All statistical tests were two-tailed, and P values
< 0.05 were considered statistically significant.

Results
Baseline characteristics
A total of 903 HCC patients who had received curative
liver resection were included in this study. The cohort

consisted of 772 males and 131 females. Despite all pa-
tients having preserved hepatic function, 760 (84.2%)
were infected with the hepatitis B virus, and 392 (43.4%)
had HBV-DNA loads > 104 IU/mL.
With respect to tumor status, 486 patients (53.8%) had

tumor sizes > 5 cm, and 191 patients (21.2%) had mul-
tiple tumors. More specifically, 36.7% of patients had
MVI, 8.5% had satellite nodules, 52.4% had tumor necro-
sis, 46.5% had poorer tumor differentiation, and 44.6%
had cirrhosis. Details of the HCC staging systems are
listed in Supplementary Table 1.
Regarding the surgeries, 361 patients (40.0%) under-

went major hepatectomy, 244 patients (27.0%) suffered
from blood loss > 400 mL, 99 patients (11.0%) received
blood transfusions, and 86 patients (9.5%) presented
with resection margins > 1 cm.
Baseline characteristics are presented in Table 1; they

did not significantly differ between the derivation and
validation cohorts (P > 0.05 for all comparisons).

PHER
Of all the patients, 324 (35.9%) had PHER (intra-hepatic
recurrence: n = 280, extra-hepatic recurrence: n = 20,
concurrent intra- and extra-hepatic recurrence: n = 24).
The mean PHER duration was 16.9 months (95% confi-
dence interval [CI]: 16.2–17.5 months). The PHER rate
between the derivation (236/679, 34.8%) and validation
(88/224, 39.2%, P = 0.220) cohorts did not significantly
differ.

Identification of independent prognostic factors
The univariable Cox analysis revealed that hepatitis B
surface antigen level, HBV-DNA load, antiviral therapy,
albumin level, aspartate aminotransferase level, GGT
level, prothrombin time, Child-Pugh grade, AFP level,
tumor size, tumor differentiation, MVI, satellite nodules,
surgical time, blood loss, blood transfusion, and major
resection were all related to PHER (Table 2, P < 0.05 for
all comparisons). Accordingly, these variables were se-
lected for the multivariable model analysis. The Cox
multivariable analysis indicated that HBV-DNA, GGT
level, AFP level, tumor size, tumor differentiation, MVI,
satellite nodules, and blood loss were significantly asso-
ciated with PHER (Table 2). The RFS curves of these
eight prognostic factors are shown in Supplementary
Fig. 2.

Development and validation of an ANN model for
predicting PHER
The CPH and ANN models were established according
to the eight prognostic factors listed above (Table 2). For
the ANN model (Fig. 1), the program file (Supplemen-
tary File) was downloaded onto our computer, which
then automatically calculated the PHER risk in clinical
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Table 1 Patient demographics and tumor characteristics of whole cohort, derivation whole cohort, derivation cohort and validation
cohort

Variables Whole cohort (n = 903) Derivation cohort (n = 679) Validation cohort (n = 224) P value

Age, years 0.869

> 60 270 (29.9) 204 (30.0) 66 (29.5)

≤ 60 633 (70.1) 475 (70.0) 158 (70.5)

Sex 0.743

Male 772 (85.5) 579 (85.3) 193 (86.2)

Female 131 (14.5) 100 (14.7) 31 (13.8)

HBsAg 0.339

Positive 760 (84.2) 576 (84.8) 184 (82.1)

Negative 143 (15.8) 103 (15.2) 40 (17.9)

HBeAg 0.522

Positive 255 (28.2) 188 (27.7) 67 (29.9)

Negative 648 (71.8) 491 (72.3) 157 (70.1)

HBV-DNA, IU/mL 0.847

> 104 392 (43.4) 296 (43.6) 96 (42.9)

≤ 104 511 (56.6) 383 (56.4) 128 (57.1)

Antiviral therapy 0.274

Yes 431 (47.7) 317 (46.7) 114 (50.9)

No 472 (52.3) 362 (53.3) 110 (49.1)

PT, s 0.180

> 13 333 (36.9) 242 (35.6) 91 (40.6)

≤ 13 570 (63.1) 437 (64.4) 133 (59.4)

T-Bil, μmol/L 0.580

> 17.1 261 (28.9) 193 (28.4) 68 (30.4)

≤ 17.1 642 (71.1) 486 (71.6) 156 (69.6)

ALB, g/L 0.152

> 40 351 (38.9) 273 (40.2) 78 (34.8)

≤ 40 552 (61.1) 406 (59.8) 146 (65.2)

ALT, U/L 0.324

> 40 318 (35.2) 233 (34.3) 85 (37.9)

≤ 40 585 (64.8) 446 (65.7) 139 (62.1)

AST, U/L 0.119

> 40 383 (42.4) 278 (40.9) 105 (46.9)

≤ 40 520 (57.6) 401 (59.1) 119 (53.1)

GGT, U/L 0.509

> 60 350 (38.8) 259 (38.1) 91 (40.6)

≤ 60 553 (61.2) 420 (61.9) 133 (59.4)

Ascites 0.719

Yes 95 (10.5) 70 (10.3) 25 (11.2)

No 808 (89.5) 609 (89.7) 199 (88.8)

Child-Pugh grade 0.793

A 839 (92.9) 630 (92.8) 209 (93.3)

B 64 (7.1) 49 (7.2) 15 (6.7)
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Table 1 Patient demographics and tumor characteristics of whole cohort, derivation whole cohort, derivation cohort and validation
cohort (Continued)

Variables Whole cohort (n = 903) Derivation cohort (n = 679) Validation cohort (n = 224) P value

AFP, ng/mL 0.218

> 400 312 (34.6) 227 (33.4) 85 (37.9)

≤ 400 591 (65.4) 452 (66.6) 139 (62.1)

CSPH 0.388

Yes 95 (10.5) 68 (10.0) 27 (12.1)

No 808 (89.5) 611 (90.0) 197 (87.9)

Tumour size, cm 0.054

> 5 486 (53.8) 353 (52.0) 133 (59.4)

≤ 5 417 (46.2) 326 (48.0) 91 (40.6)

Tumour number 0.114

Multiple 191 (21.2) 152 (22.4) 39 (17.4)

Single 712 (78.8) 527 (77.6) 185 (82.6)

Cirrhosis 0.760

Yes 403 (44.6) 305 (44.9) 98 (43.8)

No 500 (55.4) 374 (55.1) 126 (56.3)

Tumor differentiation 0.060

Grade III or IV 420 (46.5) 328 (48.3) 92 (41.1)

Grade I or II 483 (53.5) 351 (51.7) 132 (58.9)

Tumor encapsulation 0.678

Complete 485 (53.7) 362 (53.3) 123 (54.9)

None/incomplete 418 (46.3) 317 (46.7) 101 (45.1)

Microvascular invasion 0.195

Yes 331 (36.7) 257 (37.8) 74 (33.0)

No 572 (63.3) 422 (62.2) 150 (67.0)

Satellite nodules 0.600

Yes 77 (8.5) 56 (8.2) 21 (9.4)

No 826 (91.5) 623 (91.8) 203 (90.6)

Necrosis 0.959

Yes 473 (52.4) 356 (52.4) 117 (52.2)

No 430 (47.6) 323 (47.6) 107 (47.8)

Resection margin, cm 0.816

> 1 86 (9.5) 64 (9.4) 22 (9.8)

≤ 1 817 (90.5) 615 (90.6) 202 (90.2)

Operation time, min 0.384

> 200 365 (40.4) 280 (41.2) 85 (37.9)

≤ 200 538 (59.6) 399 (58.8) 139 (62.1)

Blood loss, mL 0.661

> 400 244 (27.0) 186 (27.4) 58 (25.9)

≤ 400 659 (73.0) 493 (72.6) 166 (74.1)

Blood transfusion 0.380

Yes 99 (11.0) 78 (11.5) 21 (9.4)

No 804 (89.0) 601 (88.5) 203 (90.6)
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Table 1 Patient demographics and tumor characteristics of whole cohort, derivation whole cohort, derivation cohort and validation
cohort (Continued)

Variables Whole cohort (n = 903) Derivation cohort (n = 679) Validation cohort (n = 224) P value

Extent of resection 0.391

Major resection 361 (40.0) 266 (39.2) 95 (42.4)

Minor resection 542 (60.0) 413 (60.8) 129 (57.6)

Abbreviations: HBsAg hepatitis B surface antigen, HBeAg hepatitis Be antigen, HBV-DNA hepatitis B virus DNA load, PT prothrombin time, T-Bil total bilirubin, ALB
albumin, ALT alanine transaminase, AST aspartic aminotransferase, GGT γ-glutamyl transpeptadase, AFP α-fetoprotein, CSPH clinically significant portal hypertension

Table 2 Univariate and multivariate analyses of prognostic factors affecting post-hepatectomy early recurrence in the derivation
cohort

Variables Univariate Cox regression Multivariate Cox regression

β HR (95CI%) P value β HR (95CI%) P value

Age > 60 year −0.289 0.749 (0.558, 1.005) 0.054

Sex, Male 0.226 1.254 (0.855, 1.840) 0.247

Positive HBsAg 0.524 1.688 (1.107, 2.575) 0.015 0.286 1.331 (0.839, 2.110) 0.225

Positive HBeAg 0.246 1.278 (0.970, 1.685) 0.081

HBV-DNA > 104 IU/mL 0.540 1.717 (1.329, 2.218) < 0.001 0.435 1.544 (1.188, 2.008) 0.001

Antiviral therapy 0.313 1.368 (1.059, 1.767) 0.017 0.068 1.071 (0.800, 1.433) 0.645

PT > 13 s 0.320 1.378 (1.063, 1.786) 0.016 0.179 1.196 (0.911, 1.570) 0.197

T-Bil > 17.1 μmol/L 0.210 1.234 (0.938, 1.623) 0.132

ALB > 40 g/L −0.427 0.652 (0.499, 0.853) 0.002 −0.147 0.863 (0.639, 1.165) 0.336

ALT > 40 U/L 0.123 1.131 (0.866, 1.476) 0.366

AST > 40 U/L 0.588 1.801 (1.394, 2.325) < 0.001 0.111 1.118 (0.835, 1.496) 0.445

GGT > 60 U/L 0.580 1.785 (1.383, 2.305) < 0.001 0.388 1.474 (1.131, 1.920) 0.004

Ascites 0.355 1.427 (0.983, 2.071) 0.062

Child-Pugh grade 0.508 1.662 (1.071, 2.579) 0.024 0.076 1.079 (0.682, 1.707) 0.745

AFP > 400 ng/mL 0.591 1.806 (1.396, 2.337) < 0.001 0.422 1.525 (1.170, 1.987) 0.002

CSPH 0.224 1.251 (0.838, 1.868) 0.273

Tumor size > 5 cm 0.816 2.262 (1.719, 2.976) < 0.001 0.456 1.578 (1.172, 2.214) 0.003

Multiple number −0.095 0.910 (0.661, 1.253) 0.562

Cirrhosis 0.231 1.260 (0.976, 1.626) 0.076

Tumor differentiation (grade III / IV) 0.631 1.880 (1.447, 2.442) < 0.001 0.503 1.653 (1.264, 2.163) < 0.001

Tumor encapsulation −0.210 0.810 (0.628, 1.046) 0.107

Microvascular invasion 0.551 1.734 (1.343, 2.239) < 0.001 0.356 1.428 (1.095, 1.862) 0.009

Satellite nodules 0.927 2.526 (1.813, 3.518) < 0.001 0.399 1.490 (1.006, 2.206) 0.046

Necrosis 0.421 1.524 (1.175, 1.977) 0.002 0.044 1.045 (0.785, 1.391) 0.761

Resection margin > 1 cm −0.041 0.960 (0.607, 1.518) 0.862

Operation time > 200min 0.360 1.434 (1.110, 1.852) 0.006 0.209 1.233 (0.939, 1.619) 0.132

Blood loss > 400mL 0.635 1.887 (1.448, 2.459) < 0.001 0.342 1.407 (1.065, 1.860) 0.016

Blood transfusion 0.424 1.528 (1.061, 2.200) 0.023 0.050 1.051 (0.701, 1.577) 0.808

Major resection 0.511 1.668 (1.291, 2.553) < 0.001 0.057 1.059 (0.796, 1.409) 0.696

Abbreviations: HBsAg hepatitis B surface antigen, HBeAg hepatitis Be antigen, HBV-DNA hepatitis B virus DNA load, PT prothrombin time, T-Bil total bilirubin, ALB
albumin, ALT alanine transaminase, AST aspartic aminotransferase, GGT γ-glutamyl transpeptadase, AFP α-fetoprotein, CSPH clinically significant portal hypertension
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applications (Supplementary Fig. 3). The subsequent
ROC analysis revealed that the ANN model predicted
PHER better than the CPH model (ANN: 0.753 versus
CPH: 0.733, P < 0.05; Fig. 2a, Supplementary Table 2) as
well as the eight prognostic factors individually (ANN:
0.753 versus corresponding AUCs: 0.534–0.624, P < 0.05
for all comparisons; Fig. 2a, Supplementary Table 2). An
analysis of the importance of the eight prognostic factors
revealed that the presence of satellite nodules is the
most important factor in the ANN model (100%),
followed by tumor size (76.0%), GGT level (74.6%),
tumor differentiation (70.0%), blood loss (57.4%), HBV-
DNA load (55.7%), AFP level (42.0%), and MVI (41.0%;
Fig. 2b).
The prediction probability plot (Fig. 2c) indicated

that the ANN model can accurately identify patients
without PHER. The AUCs of the ANN model for
assessing PHER risk were 0.753 (95% CI: 0.715–0.792)
and 0.736 (95% CI: 0.668–0.803) in the derivation and
validation cohorts, respectively (Fig. 2d). Moreover,
calibration plots detected a good correlation between
prediction and observation of the two cohorts (Fig. 2e
and f).

The predictive ability of the ANN model when compared
to other models and staging systems
We compared the predictive ability of the ANN model
with other models and staging systems using their AUC
values and net benefits. As shown in Table 3, the ROC
analysis revealed that the AUC of the ANN model
(0.753) was larger than all other models and staging sys-
tems (corresponding AUCs: 0.489–0.733, P < 0.05 for all
comparisons; Fig. 3a). Moreover, the DCA plot indicated
that the ANN model demonstrates better net benefit
with a wider threshold probability range (Fig. 4a). Ac-
cordingly, the ANN model was superior in predicting
PHER in the derivation cohort. Similar results were ob-
tained in the validation cohort. Although the AUC
values between the ANN and some models (i.e., CNLC
stage and CPH model) did not significantly differ, the
ANN model still had the largest AUC value and net
benefit (Figs. 3 and 4b, b).

Risk stratification performance based on the ANN model
According to the Youden’s index, the optimal cut-off
value for the ANN model to predict PHER was 0.37, and
its sensitivity and specificity were 72.0 and 68.6%,

Fig. 1 Schematic representation of the ANN model developed to predict PHER in HCC patients without macroscopic vascular invasion. The blue
lines represent synaptic weights < 0, while the grey lines represent synaptic weights > 0. Abbreviations: HCC, hepatocellular carcinoma; ANN,
artificial neural network; PHER, post-hepatectomy early recurrence; HBV-DNA, hepatitis B virus DNA load; GGT, γ-glutamyl transpeptadase; AFP, α-
fetoprotein; MVI, microvascular invasion
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respectively. Thus, we obtained a risk stratification of two
groups, low risk (≤0.37) and high risk (> 0.37). Furthermore,
in the derivation and validation cohorts, the RFS curves for
all patients were stratified by these risk groups (Fig. 5).
These results suggest that the high-risk group is closely re-
lated to poorer prognosis (P < 0.001 for all comparisons).

Discussion
This retrospective study developed an ANN model to
predict PHER in HCC patients without macroscopic vas-
cular invasion. Our ANN model achieved satisfactory
discriminatory and calibration capacities in both the der-
ivation and validation cohorts. In addition, it demon-
strated greater prediction capacity than a CPH model,
some preexisting recurrence models, and commonly
used staging systems. Finally, the ANN model stratified
patients into two risk groups, highlighting the significant
differences in RFS between different risk groups.
The high incidence of PHER remains a major challenge

for clinicians [2–4]. Early tumor recurrence is associated

with intra-hepatic metastasis, while late tumor recurrence
is closely related to multi-centric oncogenesis [6, 7]. Des-
pite similar adjuvant treatments, patients with PHER have
significantly worse outcomes than patients with late recur-
rence [10, 11]. To prevent PHER and prolong the long-
term survival of HCC patients, the effectiveness of differ-
ent postoperative adjuvant treatments including RFA,
interferon, TACE, and immunotherapy have been evalu-
ated [16, 32, 33]. Ueno et al. [33] reported that TACE ad-
juvant can reduce PHER risk, but it cannot reduce the risk
of late recurrence. In contrast, Jiang et al. [34] found that
postoperative adjunctive TACE did not improve RFS and
overall survival in HCC patients after curative liver resec-
tion. In fact, Ahmed et al. [35] have suggested that TACE
may worsen patients’ quality of life. Systematic reviews
and meta-analyses have failed to find strong evidence to
support the use of these adjuvant treatments [36, 37].
These discrepancies can be attributed to the heterogeneity
of patient groups in randomized and non-randomized
controlled studies and their consequent differences in

Fig. 2 a ROC curves for the ANN model and the eight prognostic factors used to predict PHER. b The importance of the eight prognostic factors
relative to the ANN model. c Prediction probability histograms for the ANN model in HCC patients without macroscopic vascular invasion. d ROC
curves for the ANN model in predicting PHER in the derivation and validation cohorts. Calibration curves of the ANN model in the derivation e
and validation f cohorts. The x-axis represents deciles of predicted risk, and the y-axis indicates predicted and actual probabilities of PHER.
Abbreviations: ANN, artificial neural network; PHER, post-hepatectomy early recurrence; HCC, hepatocellular carcinoma; ROC, receiver
operating characteristic
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adjuvant treatment outcomes. Indeed, if these studies fo-
cused only on the impact of adjuvant treatments on post-
operative tumor recurrence in high-risk patients, the
results may have been different. Therefore, the identifica-
tion of high-risk patients with PHER is clinically signifi-
cant; these patients can become the focus of future clinical
studies on adjuvant therapies. An accurate, reliable, and
specific prediction tool based on ready-made prognostic
variables can accurately identify patients at high-risk for
PHER and therefore be an effective method to address this
clinical problem. The prediction model may also closely
relate to the monitoring of postoperative tumor recur-
rence. In theory, high-risk patients should adopt more ag-
gressive and effective monitoring programs such as the
use of more accurate radiological assays to detect PHER

and thereby allow more timely remedial measures to be
taken. For example, some centers perform preventive re-
medial transplants after hepatic resection in high-risk pa-
tients to prolong their long-term survival [38].
Numerous clinical and pathological prognostic factors

have been identified to cause tumor recurrence following
curative hepatectomy. However, few studies have been
published on the establishment of accurate and effective
models to predict PHER. To date, most proposed
models do not focus specifically on it. These models in-
clude: the recurrence clinical risk score from Lee et al.
[39], the Shanghai score from Sun et al. [40], the recur-
rence score for hepatitis B virus-related HCC proposed
by Qin et al. [41], a RFS nomogram for AFP-negative pa-
tients created by Gan et al. [42], early recurrence after

Table 3 The performance of the ANN model and other models and staging systems in predicting early recurrence in derivation
cohort and training cohort

Staging systems
/ models

Training cohort Validation cohort

AUC 95% CI P vaule AUC 95% CI P vaule

BCLC stage 0.536 0.495–0.648 < 0.05 0.572 0.495–0.648 < 0.05

TNM8th stage 0.503 0.458–0.549 < 0.05 0.481 0.405–0.558 < 0.05

Okuda stage 0.535 0.428–0.584 < 0.05 0.506 0.428–0.584 < 0.05

CNLC stage 0.599 0.593–0.741 < 0.05 0.667 0.593–0.741 > 0.05

HKLC stage 0.589 0.496–0.648 < 0.05 0.572 0.496–0.648 < 0.05

French stage 0.584 0.470–0.625 < 0.05 0.547 0.470–0.625 < 0.05

CLIP score 0.565 0.421–0.578 < 0.05 0.499 0.421–0.578 < 0.05

JIS score 0.504 0.376–0.529 < 0.05 0.453 0.376–0.529 < 0.05

Ng et al.’s model 0.609 0.573–0.721 < 0.05 0.647 0.573–0.721 < 0.05

Shim et al.’s model 0.619 0.517–0.667 < 0.05 0.592 0.517–0.667 < 0.05

CPH model 0.733 0.657–0.792 < 0.05 0.724 0.657–0.792 > 0.05

ANN model 0.753 0.668–0.803 Ref 0.736 0.668–0.803 Ref

Abbreviations: BCLC Barcelona Clinic Liver Cancer, TNM 8th 8th edition of TNM /AJCC, CNLC China Liver Cancer, HKLC Hong Kong Liver Cancer, CLIP Cancer of the
Liver Italian Program, JIS Japan Integrated Staging, CPH Cox’s proportional hazards, ANN artificial neural network

Fig. 3 ROC curves for the ANN model and other models and staging systems in predicting PHER in the derivation a and validation b cohorts.
Abbreviations: ROC, receiver operating characteristic; ANN, artificial neural network; PHER, post-hepatectomy early recurrence
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surgery for liver tumor models built by Chan et al. [5],
the Hong Kong recurrent model developed by Ng et al.
[8], the recurrence after curative hepatectomy score con-
structed by Tokumitsu [43], and some radiomics-based
prognostic prediction models [44–47]. Although these
models are accurate, they were created using traditional
linear models such as CPH model and survival analysis.
The correlation between different risk factors is multidi-
mensional, complex, and non-linear. Therefore, correl-
ational analyses between these factors are limited when

they are applied using only traditional linear methods.
An ANN model is probably more effective when mul-
tiple risk factors are involved in multidimensional and
complex functions that interact with each other [12–16].
In this study, based on the eight most important prog-
nostic factors, we developed an ANN model that per-
formed better in predicting PHER in HCC patients
without macroscopic vascular invasion than a CPH
model as well as some preexisting recurrence models
(Figs. 3 and 4, Table 3).

Fig. 5 Recurrence-risk stratification of the ANN model in the derivation a and validation b cohorts. Abbreviations: ANN, artificial neural network

Fig. 4 DCA plot for the ANN model and other models and staging systems in predicting PHER in the derivation a and validation b cohorts.
Abbreviations: DCA, decision curve analyses; ANN, artificial neural network; PHER, post-hepatectomy early recurrence

Mai et al. BMC Cancer          (2021) 21:283 Page 10 of 13



Our data revealed that HBV-DNA, GGT levels, AFP
levels, tumor size, tumor differentiation, MVI, satellite
nodules, and blood loss were associated with PHER
(Table 2). These factors are common and readily
assayed in clinical practice. Past studies have reported
that the higher the HBV-DNA load, the greater the
risk of low survival and tumor recurrence after hepa-
tectomy [48–50]. High GGT levels may lead to liver
dysfunction by inducing deoxyribonucleic acid in-
stability, tumorigenesis, and cancer progression. Add-
itionally, high GGT levels predict poorer HCC
prognosis [51, 52]. High AFP levels indicate that the
tumor is highly aggressive; the probability of intra-
hepatic metastasis is usually greater in patients with
high AFP levels [53]. Others have reported that larger
tumor sizes are significantly associated with PHER
[54] and that tumor differentiation, MVI, and satellite
nodules relate to more severe PHER [55–57]. Finally,
excessive blood loss often leads to systemic inflamma-
tory reactions and reduces immunity, leading to in-
creased risk of serious complications and tumor
recurrence after surgery. All these parameters are eas-
ily found in medical records, thereby facilitating rou-
tine use of the ANN model relative to other models
that use complex radiological variables [44–47].
The ANN model built in this paper is more accurate

in predicting PHER than commonly used staging sys-
tems (Figs. 3 and 4, Table 3). The increased accuracy is
likely because these systems and models contain very
few parameters and try to balance risk variables by sum-
marizing them. Accordingly, simplified models may limit
PHER prediction accuracy in HCC patients. Moreover,
these systems and models are linearly additive forms
based on prognostic variables, and the interactions be-
tween prognostic variables cannot be accurately delin-
eated. ANN models, in contrast, contain a wide range of
predictors and manage the interactions between all
prognostic factors, consequently improving their predict-
ive power.
Currently, no clear consensus or guidelines exist on

the ideal adjuvant therapy after hepatectomy. More-
over, the criteria for identifying patients at high risk
for PHER remain unclear. Notably, the ANN model
can be stored in a computer as a program (Supple-
mentary File). After the clinician enters the eight
prognostic factors (HBV-DNA, GGT level, AFP level,
tumor size, tumor differentiation, MVI, satellite nod-
ules, and blood loss) into the program, it will auto-
matically and accurately calculate PHER risk
(Supplementary Fig. 3). Here, our ANN model had a
cut-off value of 0.37, and its sensitivity and specificity,
respectively, in assessing PHER risk was 72.0 and
68.6%. All patients were then divided into high-risk
and low-risk groups. The risk stratification analysis

detected significant differences in RFS curves between
the two risk groups (Fig. 5; P < 0.05 for all compari-
sons). As expected, patients in the high-risk group
had poor RFS; however, the screening of these pa-
tients can greatly positively impact adjuvant therapy
strategies. For instance, in low-risk patients, the ap-
propriate adjuvant therapy should reduce side effects,
especially in elderly patients. In contrast, high-risk pa-
tients may need to combine adjuvant treatments to
obtain optimal prognoses, particularly in younger pa-
tients. A recent meta-analysis reported that in HCC
patients, TACE + RFA can provide therapeutic out-
comes comparable with hepatectomy but with the ad-
vantage of reduced morbidity [58]. This finding is
important for clinical decision making in high-risk pa-
tients, as it is worth considering whether a patient
deemed to be at high risk of PHER should undergo a
hepatectomy. Accordingly, high-risk patients must be
closely monitored, and appropriate treatment options
must be explored. Finally, the ANN model allows the
stratification of PHER risk in patients in a way more
appropriate for the design of clinical trials.
Despite the promising data presented here, this study

does have some limitations. First, clinicians have no
mathematical formula to use directly in the ANN model,
which may limit its wide-spread use. Therefore, more
convenient algorithms for ANN models should be devel-
oped. Also, most of the patients in our study had HBV
infections; therefore, further validation in other etio-
logical populations is necessary. Finally, this study is
retrospective and was conducted with patients from a
single medical center. Thus, prospective studies using
patients from several medical centers are required to
verify the results obtained here.

Conclusion
An accurate, reliable, and specific ANN model that pre-
dicts PHER risk in HCC patients without macroscopic
vascular invasion was established and validated in this
paper. The ANN model provides valuable data to help
identify high-risk patients for future adjuvant therapy
and active surveillance studies.

Abbreviations
HCC: Hepatocellular carcinoma; PHER: Post-hepatectomy early recurrence;
ANN: Artificial neural network; HBsAg: Hepatitis B surface antigen; HBV-
DNA: Hepatitis B virus DNA load; AST: Aspartate aminotransferase; GGT: γ-
glutamyl transpeptadase; PT: Prothrombin time; AFP: α-fetoprotein;
MVI: Microvascular invasion; BCLC: Barcelona Clinic Liver Cancer; TNM
8th: 8th edition of TNM /AJCC; CNLC: China Liver Cancer; HKLC: Hong Kong
Liver Cancer; CLIP: Cancer of the Liver Italian Program; JIS: Japan Integrated
Staging; RFA: Radiofrequency ablation; TACE: Transcatheter arterial
chemoembolization; ROC: Receiver-operating characteristic; AUC: Area under
the ROC curve; DCA: Decision curve analyses; RFS: Recurrence-free survival
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