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AbstrAct
Objective Glucose variability induces endothelial 
dysfunction and cardiac autonomic nerve abnormality. 
Here we compared the effects of mealtime insulin aspart 
and bedtime insulin detemir on glucose variability, 
endothelial function, and cardiac autonomic nerve activity 
among Japanese patients with type 2 diabetes.
Research design and methods Forty hospitalized 
patients received either mealtime insulin aspart or 
bedtime insulin detemir treatment for 2 weeks. We 
assessed glucose variability indices, including M-value, 
SD of blood glucose level, and mean blood glucose 
(MBG) level. Flow-mediated dilation (FMD) of the brachial 
artery was measured as an index of endothelial function. 
Low-frequency power, high-frequency power, and the 
low-frequency to high-frequency power ratio (LF:HF ratio) 
derived via heart rate variability analysis using a Holter 
ECG were employed as indices of cardiac autonomic nerve 
function.
Results M-values and MBG levels showed a considerably 
greater decrease in the insulin aspart group than in the 
insulin detemir group (p=0.006  vs p=0.001); no change 
in FMD was observed in either group. Daytime LF:HF ratio 
significantly decreased in the insulin aspart group but not 
in the insulin detemir group. Total insulin dose at endpoint 
in the insulin aspart group was significantly higher than 
that in the insulin detemir group (p<0.001).
Conclusions Mealtime insulin aspart reduced glucose 
variability to a greater extent than bedtime insulin detemir 
in patients with type 2 diabetes. Despite the need for 
higher insulin doses, insulin aspart decreased daytime 
cardiac sympathetic nerve activity. These properties may 
subsequently help reduce cardiovascular risks.
Trial registration number UMIN000008369.

InTROduCTIOn
Type 2 diabetes is a progressive disease, and a 
considerable proportion of patients eventually 

require insulin therapy. Long-acting insulin 
analog treatment is recommended for patients 
who fail to achieve glycemic control with oral 
antidiabetic agents.1 Data pertaining to the 
effects of long-acting and rapid-acting insulin 
analogs on glucose profile in Caucasian 

significance of this study

What is already known about this subject?
 ► Glucose variability, cardiac sympathetic nerve activ-
ity, and endothelial function are widely accepted as 
surrogate markers of cardiovascular disease.

 ► The effects of rapid-acting insulin analog or 
long-acting insulin analog on glucose variability, 
cardiac sympathetic nerve activity, and endothelial 
function have not been studied.

What are the new findings?
 ► Mealtime insulin aspart treatment profoundly im-
proved glucose variability, particularly by reducing 
postprandial glucose levels, compared with bedtime 
insulin detemir treatment.

 ► Despite the larger daily total insulin dose, mealtime 
insulin aspart treatment suppressed daytime cardiac 
sympathetic nerve activity compared with bedtime 
insulin detemir treatment.

How might these results change the focus of 
research or clinical practice?

 ► The present study highlights the previously un-
der-recognized effects of mealtime rapid-acting 
insulin dosing on glucose variability and cardiac 
sympathetic nerve activity.

 ► Longitudinal studies are needed to determine 
whether the appropriate use of rapid-acting insulin 
analog may help reduce cardiovascular events.

http://drc.bmj.com/
http://dx.doi.org/10.1136/bmjdrc-2018-000588
http://dx.doi.org/10.1136/bmjdrc-2018-000588
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjdrc-2018-000588&domain=pdf&date_stamp=2018-010-31
000008369
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patients with type 2 diabetes are widely available.2 3 Long-
acting insulin analog treatment is widely accepted owing 
to its ease of handling, low risk for hypoglycemia and 
body weight gain, and slightly inferior or equal hemo-
globin A1c-lowering effects compared with rapid-acting 
insulin analog treatment.

In contrast, the clinical features of East Asian patients 
with type 2 diabetes are different from those of Cauca-
sians; for example, East Asians with type 2 diabetes tend 
to show lower insulin resistance compared with Cauca-
sians.4 This suggests that East Asians with type 2 diabetes 
may require less long-acting insulin analogs to suppress 
liver gluconeogenesis. Moreover, in our previous study of 
Japanese patients with type 2 diabetes, approximately half 
(52.5%) of those with hemoglobin A1c >8.4% achieved 
adequate fasting glucose levels (<120 mg/dL) through 
mealtime dosing of a rapid-acting insulin analog.5 These 
observations indicate that treatment with rapid-acting 
insulin analogs may perhaps efficiently improve postpran-
dial and fasting hyperglycemia in East Asians with type 2 
diabetes. Furthermore, given that glucose variability asso-
ciated with postprandial hyperglycemia induces cardiac 
sympathetic nerve overactivity and endothelial dysfunc-
tion,6 7 glucose variability is widely accepted as a thera-
peutic target for prevention of cardiovascular diseases.

The present study aimed to compare the effects of 
mealtime rapid-acting insulin analog treatment and 
bedtime long-acting insulin analog treatment on glucose 
variability, endothelial function, and cardiac autonomic 
nerve function among Japanese patients with type 2 
diabetes.

ReseaRCH desIgn and meTHOds
Patients
A total of 40 patients admitted to Kanazawa Univer-
sity Hospital between August 2010 and July 2012 were 
enrolled. The eligibility criteria were patients with type 2 
diabetes aged ≥20 years with hemoglobin A1c ≥7.4%. The 
diagnosis of type 2 diabetes was based on the 2010 Japan 
Diabetes Society criteria.8 The exclusion criteria were as 
follows: (1) hypersensitivity or contraindication to insulin 
aspart or detemir; (2) present or history of diabetic keto-
acidosis; (3) present or history of severe hypoglycemia; 
(4) severe infection or severe trauma presurgery/postsur-
gery; (5) treatment with insulin, dipeptidyl peptidase-4 
inhibitor, or glucagon-like peptide-1) receptor agonist in 
the 4 weeks immediately preceding the study; (6) gluco-
corticoid treatment; (7) poorly controlled hypertension 
(systolic blood pressure >160 mm Hg or diastolic blood 
pressure >100 mm Hg); (8) severe retinopathy; (9) signif-
icant medical history and/or malignancy; (10) severe 
complications and conditions not suitable for the study 
(hyperosmolar hyperglycemic state or heart failure); and 
(11) pregnant or lactating women. The study is regis-
tered with the University Hospital Medical Information 
Network (UMIN) Clinical Trials Registry (trial registra-
tion number UMIN000008369).

Procedures
Using a computer-generated sequence, patients were 
randomly assigned to receive either insulin aspart (Novo 
Nordisk A/S, Bagsvaerd, Denmark) thrice daily before 
meals or insulin detemir (Novo Nordisk A/S) once daily 
at bedtime. Sulfonylureas and glinides were discontinued 
after treatment assignment, whereas other hypoglycemic 
agents remained unchanged.

Insulin therapy was initiated after an initial assessment. 
Physicians performed daily insulin dose titrations to 
achieve the glycemic goal. In the insulin aspart group, 
target prandial blood glucose levels were 70–110 mg/dL, 
whereas target postprandial (2 hours after a meal) blood 
glucose levels were 70–140 mg/dL. The target fasting 
blood glucose levels were between 80 and 110 mg/dL 
in the insulin detemir group. Blood glucose levels were 
measured using a blood glucometer (Glutest Neo Super, 
Sanwa Kagaku Kenkyusho, Aichi, Japan) at seven different 
time points: prebreakfast, postbreakfast, prelunch, post-
lunch, predinner, postdinner, and at bedtime (ie, at 
07:00, 09:00, 12:00, 14:00, 18:00, 20:00, and 22:00, respec-
tively). Patients were placed on a regular hospital diet (30 
kcal/kg ideal body weight comprising 50%–60% carbo-
hydrate, 20%–30% fat, and 15%–20% protein).

assessments
The primary endpoint was change in glucose variability 
indices from baseline until week 2. Glucose variability 
indices included the M-value, SD of blood glucose level, 
and mean blood glucose (MBG) level, all of which were 
obtained from the seven-point blood glucose profiles. The 
M-value was calculated using the following formula9 10 :

 M − value =
∑

M BG
BG

7 + MW 
 M BG

BG = |10log BGt
100 |3 

 MW = Gmax−Gmin
20  

where BGt is the blood glucose level at each time point; 
Gmax is the maximum blood glucose level throughout 
the day; and Gmin is the minimum blood glucose level 
throughout the day.

Endothelial function and cardiac sympathetic nerve 
function were assessed as surrogate markers of cardiovas-
cular disease at baseline and after 2 weeks of treatment. 
Moreover, body mass index, white cell count, liver func-
tion tests, lipid profile, respiratory quotient, basal meta-
bolic rate, treatment safety, and total insulin dose were 
also assessed. Homeostatic model assessment of insulin 
resistance (HOMA-IR) and β-cell function (HOMA-β) 
were calculated as follows: HOMA-IR=fasting plasma 
insulin × fasting plasma glucose / 405; HOMA-β=fasting 
plasma insulin × 360 / (fasting plasma glucose − 63).11

Diabetic microvascular complications were evaluated at 
baseline. Diabetic retinopathy was diagnosed using fundus 
ophthalmoscopy by ophthalmologists. Diabetic nephrop-
athy was assessed by measurement of the urinary albumin 
to creatinine ratio in a spot urine sample. Diabetic auto-
nomic neuropathy was assessed by measurement of the 
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coefficient of variation for R-R interval at rest (CVR-R) 
on ECG. CVR-R of 2% was considered a critical level for 
diabetic autonomic neuropathy.12

Flow-mediated dilation of the brachial artery
Flow-mediated dilation (FMD) of the brachial artery was 
assessed with reference to guidelines.13 14 Patients were 
asked to rest in a supine position for at least 10 min. The 
brachial artery diameter of their right arm was measured 
by a single sonographer using a Doppler ultrasound 
system. A blood pressure cuff was inflated around the 
right forearm to occlude the brachial artery for 5 min. 
The brachial artery diameter was measured again at 1 
min after releasing the cuff. FMD of the brachial artery 
was calculated as the percentage change in the diameter 
from baseline to that at 1 min after cuff deflation. The 
examination was performed mainly between 16:00 and 
18:00, before dinner.

Cardiac autonomic nerve activity
Cardiac autonomic nerve activity was assessed by spec-
tral analysis of heart rate variability. The present study 
employed 24-hour Holter electrocardiographic moni-
toring while also analyzing the frequency domain 
measures of heart rate variability using the MemCalc/
Chiram3 software (GMS Company, Tokyo, Japan). 
Low-frequency (LF; 0.04–0.15 Hz) power, high-frequency 
(HF; 0.15–0.40 Hz) power, as well as the low-frequency 
to high-frequency power ratio (LF:HF ratio) were calcu-
lated at 5 min intervals while averaging each compo-
nent on an hourly or daily basis. LF power, HF power, 
and LF:HF ratio are known to reflect sympathetic nerve 
activity, vagal nerve activity, and the sympathovagal 
balance, respectively.15

Respiratory quotient and basal energy expenditure
Whole-body oxygen consumption (VO2) and carbon 
dioxide production (VCO2) were measured during the 
prebreakfast period (between 06:30 and 07:00) with 
indirect calorimetry using a Minato AE-310s Aeromon-
itor (Minato Medical Science Company, Osaka, Japan). 
Respiratory quotient was defined as the ratio of VCO2 to 
VO2. Basal energy expenditure was calculated from VO2 
and VCO2 using the Weir equation.16

statistical analyses
All variables are expressed as mean and SD. Measures 
of heart rate variability were natural log-transformed to 
adjust for skewed distribution. Paired t-test or Wilcox-
on’s signed-rank test was performed to assess the intra-
group differences from baseline. Analysis of covariance 
with baseline variables as covariates was used to compare 
changes in variables from baseline. Pearson correlation 
analysis was used to explore associations between vari-
ables. All analyses were performed on the full analysis set. 
Data were analyzed using the IBM SPSS Statistics V.20.0 
software. A two-tailed p value <0.05 was considered statis-
tically significant.

ResulTs
Patient characteristics
Eighteen and 20 patients in the insulin aspart and insulin 
detemir groups, respectively, were included in the anal-
ysis. One patient in the insulin aspart group withdrew 
consent after assignment, while another dropped out of 
the study owing to protocol violation (online supplemen-
tary figure 1). Baseline characteristics did not significantly 
differ between the two groups (table 1). Approximately 
half of the patients in both groups showed CVR-R of 
less than 2%, which is suggestive of diabetic autonomic 
neuropathy. Sulfonylureas were administered in two and 
five patients in the insulin aspart and insulin detemir 
groups, respectively. In these patients, insulin treatment 
was started at least 3 days after cessation of sulfonylurea 
therapy.

glucose variability
Blood glucose profiles at baseline were similar in both 
groups (figure 1A,B). A significant decrease in blood 
glucose levels at all time points was observed in both 
groups after 2 weeks of treatment. Postlunch, postdinner, 
and bedtime blood glucose levels at endpoint were mark-
edly lower in the insulin aspart group than in the insulin 
detemir group (figure 1C). Nadir fasting blood glucose 
levels with mealtime dosing of insulin aspart and bedtime 
dosing of insulin detemir were roughly similar (121.8±23.6 
mg/dL vs 106.2±22.9 mg/dL; p=0.063). M-values and MBG 
levels in the insulin aspart group were considerably lower 
than those in the insulin detemir group (table 1). A similar 
reduction in the SD of blood glucose levels was observed in 
both groups.

endothelial function
FMD of the brachial artery was assessed in 14 and 15 
patients in the insulin aspart and insulin detemir groups, 
respectively. No significant change in FMD was observed in 
either of the groups after 2 weeks of treatment (table 1 and 
online supplementary figure 2). Changes in FMD during 
the 2-week treatment period did not correlate with changes 
in M-values, MBG levels, and the SD of blood glucose levels 
(data not shown).

Cardiac autonomic nerve function
Cardiac autonomic nerve function was assessed in 13 
patients each in the insulin aspart and insulin detemir 
groups. After 2 weeks of treatment, the 24-hour LF and 
HF power decreased, whereas the 24-hour LF:HF ratio 
remained unchanged in both groups (table 1). Careful 
observation of each time point (figure 2) revealed a signif-
icant decrease in the daytime LF:HF ratio in the insulin 
aspart group (figure 2E) but not in the insulin detemir 
group (figure 2F). At endpoint, the HF power from 12:00 
to 13:00 in the insulin aspart group was significantly higher 
than that in the insulin detemir group (online supplemen-
tary figure 3). Consistent with this finding, the LF:HF ratio 
from 12:00 to 13:00 in the insulin aspart group was consid-
erably lower than that in the insulin detemir group.

https://dx.doi.org/10.1136/bmjdrc-2018-000588
https://dx.doi.org/10.1136/bmjdrc-2018-000588
https://dx.doi.org/10.1136/bmjdrc-2018-000588
https://dx.doi.org/10.1136/bmjdrc-2018-000588
https://dx.doi.org/10.1136/bmjdrc-2018-000588
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metabolic profile and energy metabolism
Body mass index and serum levels of aspartate aminotrans-
ferase, triglycerides, total cholesterol, and high-density lipo-
protein (HDL) cholesterol decreased only in the insulin 
detemir group (table 1), whereas neutrophil count, γ-glu-
tamyltransferase, and LDL cholesterol showed a similar 
decrease in both groups. Morning basal energy expendi-
ture and respiratory quotient were assessed in 15 and 17 
patients in the insulin aspart and insulin detemir groups, 
respectively. The basal energy expenditure did not change 
even after the 2-week treatment in both groups. After treat-
ment, the respiratory quotient significantly increased in the 
insulin detemir group but not in the insulin aspart group.

Treatment safety
Hypoglycemic events (blood glucose levels <70 mg/dL) 
were observed in three and one subject in the insulin 
aspart and insulin detemir groups, respectively (table 1). 
Hypoglycemic events occurred at prelunch, postlunch, 
or at bedtime in the insulin aspart group but only at 
prebreakfast in the insulin detemir group; these events 
did not occur just before or during the examination of 
endothelial function or cardiac autonomic nerve func-
tion. None of the hypoglycemic events were severe and 
all were immediately reversed with oral carbohydrate 
intake.

Total insulin dose
Total insulin dose at endpoint in the insulin aspart group 
was significantly greater than that in the insulin detemir 
group (table 1). Moreover, the total insulin dose tended 
to positively affect changes in body mass index in the 
insulin aspart group (r=0.457; p=0.056) but not in the 
insulin detemir group (r=0.008; p=0.972). Correlation 
between the total insulin dose at endpoint and base-
line characteristics was then investigated in each group 
(online supplementary table 1). The total insulin dose 
at endpoint showed a positive correlation with the base-
line hemoglobin A1c level (r=0.528; p=0.024), fasting 
plasma glucose level (r=0.637; p=0.004), white cell count 
(r=0.492; p=0.038), and neutrophil count (r=0.620; 
p=0.006) in the insulin aspart group, and with the base-
line fasting plasma insulin level (r=0.530; p=0.016), 
HOMA-IR (r=0.510; p=0.022), and HOMA-β (r=0.481; 
p=0.032) in the insulin detemir group.

dIsCussIOn
The present study indicated that both insulin aspart and 
insulin detemir significantly decreased the M-values and 
MBG levels. Insulin aspart prominently decreased the 
postprandial blood glucose levels, particularly after lunch 
and dinner and at bedtime, whereas insulin detemir 
decreased prandial and postprandial blood glucose levels 
almost uniformly. Reduction in the SD of blood glucose 
levels was thought to be caused by insulin aspart and not 
by insulin detemir treatment. Notably, equivalent nadir 
fasting blood glucose levels were observed after mealtime 
dosing of insulin aspart and bedtime dosing of insulin 

https://dx.doi.org/10.1136/bmjdrc-2018-000588
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Figure 1 The seven-point blood glucose profile at baseline and endpoint in the insulin aspart group (A) and insulin detemir 
group (B). The seven-point blood glucose profile at endpoint in the insulin aspart and insulin detemir groups (C). Data are 
expressed as mean±SD. *P<0.05 for comparisons between baseline and endpoint. †P<0.05 for comparisons between the 
insulin aspart and insulin detemir groups.

Cardiovascular and Metabolic Risk
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Figure 2 Diurnal variations in low-frequency power at baseline and endpoint in the insulin aspart group (A) and insulin detemir 
group (B). Diurnal variations in high-frequency power at baseline and endpoint in the insulin aspart group (C) and insulin 
detemir group (D). Diurnal variations in low-frequency to high-frequency power ratio at baseline and endpoint in the insulin 
aspart group (E) and insulin detemir group (F). Data are expressed as mean±SD. *P<0.05 for comparisons between baseline 
and endpoint.

Cardiovascular and Metabolic Risk

detemir. This finding is consistent with that of our 
previous study wherein mealtime dosing of a rapid-acting 
insulin analog was shown to achieve adequate nadir 
fasting plasma glucose levels in approximately half of the 
study population comprising Japanese patients with type 2 
diabetes.5 In the aforementioned study, impaired insulin 
secretion and excessive glucagon secretion affected the 
nadir fasting plasma glucose levels after mealtime dosing 
of the rapid-acting insulin analog. In addition, patients 
with type 2 diabetes who had longer disease duration and 
inadequate control with sulfonylureas did not achieve 
adequate nadir fasting plasma glucose levels. Indeed, 

in the present study, only seven subjects used sulfony-
lureas (18.4%) at baseline. Consistent with the findings 
of the 4-T and APOLLO (A Parallel design comparing an 
Oral antidiabetic drug combination therapy with either 
Lantus once daily or Lispro at mealtime in type 2 diabetes 
patients failing Oral treatment) studies,2 3 insulin aspart 
treatment required higher insulin doses to achieve fasting 
blood glucose levels comparable with those achieved 
with insulin detemir. In addition, the final insulin doses 
in the insulin detemir group were roughly half of those 
in the insulin aspart group, whereas these were almost 
similar in the 4-T and APOLLO studies.2 3 These findings 
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support the possibility that Japanese patients with type 2 
diabetes, representing East Asians, require lower doses of 
long-acting insulin analogs to suppress hepatic glucose 
production than Caucasian patients with type 2 diabetes.

Short-term intravenous insulin infusion using a hyper-
insulinemic-euglycemic clamp was shown to shift the 
cardiac autonomic nerve balance toward a sympathetic 
dominant state.17 18 However, the effects of chronic 
insulin treatment with either rapid-acting or long-acting 
insulin analogs on cardiac autonomic nerve function 
have remained unclear. Unexpectedly, the present study 
indicated that 2 weeks of insulin aspart treatment, but not 
insulin detemir treatment, shifted the daytime cardiac 
autonomic nerve balance toward a parasympathet-
ic-dominant state. This finding is even more surprising 
considering the higher total insulin dose requirement in 
the insulin aspart group. A previous report showed that 
glycemic variability positively affects the cardiac sympa-
thetic nerve activity.6 Therefore, chronic treatment with 
a rapid-acting insulin analog may suppress cardiac sympa-
thetic nerve activity at least partially via correction of 
glycemic variability.

In the present study, each insulin regimen had its 
unique effect on the metabolic profile and energy metab-
olism. As observed in the 4-T and APOLLO studies,2 3 both 
insulin regimens exerted beneficial metabolic effects on 
the serum levels of γ-glutamyltransferase, triglycerides, 
and LDL cholesterol. Moreover, we observed a reduction 
in body mass index only in the insulin detemir group; 
this finding is consistent with the results of the 4-T and 
APOLLO studies wherein daily dosing of a long-acting 
insulin analog was less likely to result in body weight gain 
than mealtime dosing of a rapid-acting insulin analog.2 3  
Similar to the 4-T study, the present study found a decrease 
in HDL cholesterol in the insulin detemir group but not 
in the insulin aspart group.

Bedtime insulin detemir treatment and not mealtime 
insulin aspart treatment increased the morning respi-
ratory quotient. Insulin shifts the energy balance from 
a catabolic to an anabolic state by switching substrate 
oxidation from lipids to carbohydrates. Our findings 
corroborate those of a previous study wherein treatment 
with a long-acting insulin analog increased the morning 
respiratory quotient in subjects with type 2 diabetes.19 
However, mealtime insulin aspart may have possibly 
increased the postprandial respiratory quotient.

Patients with type 2 diabetes have higher basal 
energy expenditure compared with individuals without 
diabetes.20–22 One of the physiologic mechanisms 
therein includes increased energy consumption due to 
hepatic gluconeogenesis. Given that treatment with a 
long-acting insulin analog effectively suppresses hepatic 
glucose production, it can be presumed to also decrease 
the basal energy expenditure. Indeed, previous studies 
have shown that bedtime insulin detemir treatment for 
223 or 4 days18 decreases the basal energy expenditure. 
However, in the present study, 2 weeks of bedtime insulin 
detemir treatment did not change the morning basal 

energy expenditure, a result that seemingly conflicts with 
those of previous reports. Further studies are therefore 
warranted to clarify the time-course changes in basal 
energy expenditure during insulin treatment.

COnClusIOn
Mealtime dosing of rapid-acting insulin aspart reduced 
glucose variability to a greater extent and achieved 
similar nadir fasting blood glucose levels compared with 
bedtime dosing of long-acting insulin detemir in patients 
with type 2 diabetes. Despite the need for higher insulin 
doses, rapid-acting insulin aspart reduced daytime cardiac 
sympathetic nerve activity. These properties may subse-
quently help reduce cardiovascular risks. The present 
study sheds light on the previously under-recognized 
properties of mealtime rapid-acting insulin dosing and 
may trigger reconsideration of patient-centered insulin 
therapy.
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