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Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by
a combination of environmental and genetic risk factors. Currently, numerous population
genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II
(TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2
has been verified to represent a promising candidate gene for PD susceptibility and
progression. For example, the expression of TREM2 was apparently increased in the
prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2
(rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition,
overexpression of TREM2 reduced dopaminergic neurodegeneration in the
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the
complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2
has received increasing widespread attention as a potential therapeutic target. This review
focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as
excessive-immune inflammatory response, a-Synuclein aggregation and oxidative stress,
to further provide evidence for new immune-related biomarkers and therapies for PD.
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BACKGROUND

Parkinson’s disease (PD) is the second-largest neurodegenerative disease after Alzheimer’s disease
(AD) (1). Amounts of studies have shown immune pathway disorders, including changes in
cytokine signals, immune cell proliferation and migration, and phagocytosis are closely involved in
dopamine (DA) neurodegeneration (2). Microglia, the main cells in brain immune response, come
from primitive hematopoietic progenitors in the yolk sac that serve as the first and most important
immune defense line of the central nervous system (CNS) (3). Autopsy analysis, positron emission
tomography (PET) imaging and molecular and clinical evidence suggest that microglia activation
increases and inflammatory mediators accumulate during DA neurodegeneration (4). Thus,
microglia-mediated neuroinflammation plays an important role in the pathogenesis of PD (5).

Myeloid cell-triggered receptor II (TREM2), a class of receptors in the immunoglobulin
superfamily, is highly expressed on the surface of microglia in CNS and participates in microglial
proliferation, phagocytosis, survival, and expression of inflammatory factors (6–10). There is
increasing evidence that TREM2 regulates microglia-mediated neuroinflammation and thus play
an important role in neurodegenerative diseases, such as AD, PD and amyotrophic lateral sclerosis
(ALS) (11–13). At present, TREM2 is considered to be a risk site for PD, and its genetic variation
may increase the risk of PD (14). Thus, understanding of the role of TREM2 in PD and the
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exploration of its mechanism are conducive to provide new
therapeutic targets for PD. This review focused on the
variation of TREM2 in PD and roles of TREM2 in PD
pathogenesis, such as excessive-immune inflammatory
response, a-Synuclein (a-Syn) aggregation and oxidative stress,
to further provide evidence for new immune-related biomarkers
and therapies for PD.
METHODS: SEARCH STRATEGY

This review focused on the role of TREM2 on pathogenesis of
Parkinson’s disease in human, various animal models and in
vitro studies. We also summarized the potential regulation of
TREM2 on the treatment of Parkinson’s disease. Studies were
retrieved from the PubMed and Google Scholar databases using
the following search terms: Parkinson’s disease, pathogenesis,
TREM2, immunoregulation and treatment. The search terms
were applied in different combinations and plural forms, and the
search was limited to articles in English. References were
screened for additional articles. Retrieval time: from inception
to September, 2021.
PD

PD is characterized by aggregation of a-Syn to form Lewy bodies
(LB) and degeneration and loss of DA neurons (15), thus
affecting other CNS structures and surrounding tissues. The
specific pathogenesis of PD is still unclear. Currently, the
pathogenesis of PD is recognized to include excessive-immune
inflammatory response, a-Syn aggregation, oxidative stress,
mitochondrial dysfunction, endoplasmic reticulum stress, iron-
induced neurodegeneration, microbial-gut-brain axis disorder,
non-coding RNA regulation, and so on (16–21).

Main motor symptoms of PD are rest tremor, rigidity,
bradykinesia and loss of postural reflexes. Non-motor
symptoms mainly include cognitive dysfunction, sleep
disturbance, anosmia, constipation and depression (22).
Moreover, PD patients can be divided into three subtypes:
1) mild motor-predominant; 2) diffuse malignant; 3) intermediate
(23). Until now, PD is mostly treated by drug therapy. Deep brain
stimulation (DBS) of the subthalamic nucleus and levodopa-
carbidopa enteral gel preparation are helpful for advanced-
complicated patients or for patients that can be selected on the
basis of clinical criteria (24, 25). Also, induced pluripotent stem
cells (iPSCs) therapy is one of the potential treatments to slow
or even prevent PD progression (26). However, the clinical
treatment of PD is symptomatic and cannot control the
progression of the disease.
TREM2

TREM2 Structure
TREM2 is a cell-surface glycoprotein with an immunoglobulin-
like extracellular domain, transmembrane region and short
Frontiers in Immunology | www.frontiersin.org 2
cytosolic tail region, whose single transmembrane helix
interacts with DAP12 to mediate downstream signaling, short
cytosolic tail terminates signals that lack signal transduction or
trafficking motifs (27). The ectodomain of TREM2, which is
susceptible to various post-translational modifications and
directly interacts with the environment and regulates
microglial function, suggesting that the ectodomain is critical
for the function of TREM2 itself (28). Homologues sequences
located in the ectodomain of TREM2 might be involved in key
functions mediated by TREM2 signaling (29). Moreover, the
ectodomain of TREM2 is cleaved by a disintegrin and
metalloproteinase (ADAM)-10 and ADAM-17 to produce
soluble TREM2 (sTREM2), while C-terminal fragment of
TREM2 (TREM2-CTF) is cleaved by g-secretase into
intracellular domain (ICD) (30).

TREM2 Signaling
TREM2 is expressed on the membrane surface of myeloid cells,
whereas DAP12 requires receptor binding to transport to the cell
surface, suggesting that a third protein may drive the binding of the
TREM2-DAP12 complex and initiate TREM2-DAP12 signaling
(31). In CNS, TREM2-DAP12 leads to phosphorylation of
immunoreceptor tyrosine-based activation motif (ITAM),
recruitment of spleen tyrosine kinase (SYK), which activates
phosphoinositide 3-kinase (PI3K), calcium activation, integrin
activation, cytoskeletal rearrangement, mammalian target of
rapamycin (mTOR) and mitogen-activated protein kinase
(MAPK) signaling activation (32), and thus regulating the
survival, phagocytosis and activation of microglia (Figure 1).
TREM2 AND PD PATHOLOGY

TREM2 gene is located on human chromosome 6p21.1.
Mutations in TREM2 occur more frequently in the coding
sequence and found in the 3’ un-translated region (UTR), the
upstream of the transcription start site (33–35). Numerous
findings reported TREM2 (rs75932628, p.R47H) is associated
with increased PD risk (14, 15). R47H is located on the protein
surface and impairs TREM2 binding to lipids by altering the
structure of the ligand-binding region (36, 37). In addition,
R47H exhibited significant metabolic deficits and impaired
precise regulation of TREM2 glycosylation (38, 39). On the
other hand, the variation of R47H in the Northern European
population was higher than that in the non-Northern European
population. Recently, R47H was identified to increase PD
susceptibility in American, Polish, Irish and Spanish
population and it was unlikely to be a major genetic risk
contributor of PD in Greek and Han Chinese population (14,
40, 41). Also, studies confirmed that R47H might increase the
risk of PD in North Americans, but not in Europeans (7, 42).
However, several studies reported that R47H might increase the
risk of PD in European- descended populations (43). These
controversial results might be due to the small gene frequency
of the R47H polymorphism and the limited sample size of the
case-control study experiment.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li and Zhang TREM2 and Parkinson’s Disease
Additionally, further studies revealed that the biological
consequences of TREM2 mutations could be mediated by
inhibiting TREM2 receptor signaling or altering the production
of other biologically active TREM2 cleavages, such as sTREM2.
In addition, TREM2 variants do not affect TREM2 expression
levels, suggesting that the effects of TREM2 variants occurred at
the post-transcriptional level (44), which might be driven by
post-transcription-related regulation. Due to the low mutation
rate of TREM2, it is difficult to study in a well-matched
population. Meanwhile, wild-type and mutant TREM2 are
successfully produced based on expression systems in
mammalian cells for structural and biophysical studies, which
is critical for understanding the functional consequences of
TREM2 mutations associated with the development of
neurodegenerative diseases (45).

TREM2 and Neuroinflammation
Autopsy and PET of PD patients exhibited the increased
activation of microglia and expression of inflammatory factors
on the damaged neurons in the substantia nigra of midbrain (46–
48). Same results have been found in various PD animal models.
More and more evidence suggests that microglia-mediated
neuroinflammation is a key factor and significant feature in the
pathogenesis of PD.

TREM2 is expressed only on the surface of microglia in CNS
and modulates microglia-mediated neuroinflammation (49).
Frontiers in Immunology | www.frontiersin.org 3
Previous studies have confirmed that microglia have two
phenotypes, pro-inflammatory phenotype (M1) and anti-
inflammatory phenotype (M2) and TREM2 promotes the
transformation of M1 microglia to M2 microglia. On the
other hand, TREM2 has been found to be associated with the
activation of disease-associated microglia (DAM) (50).
Whether DAM are present in PD has not been verified. In
MPTP-induced mouse PD models, TREM2 inhibited
neuroinflammatory responses and reduced MPTP-induced
neuropathic changes by inhibiting toll-like receptor 4(TLR4)/
tumor necrosis factor receptor-associated factor 6 (TRAF6)-
mediated nuclear factor-kB (NF-kB) and MAPK signaling
activation (51). Also, TREM2 inhibited neuroinflammation by
down-regulating PI3K/AKT and NF-kB signaling in
lipopolysaccharide (LPS)-stimulated BV2 cells (52).
Conditioned media from TREM2-siRNA transfected BV2
microglia induced apoptosis of cultured SH-SY5Y cells by
inhibi t ing TREM2 express ion and increas ing pro-
inflammatory factors expressions (53). Moreover, the
expression of TREM2 was increased in the inflammatory state
in vivo, but decreased in vitro by inflammatory stimulation
(54). Likewise, although TREM2 function is classically
described as promoting an anti-inflammatory phenotype,
several lines of evidence demonstrated a pro-inflammatory
role of TREM2 (35), suggesting that its role in inflammation
is much more complex and these conflicting results might be
FIGURE 1 | TREM2 structure and signaling. The extracellular domain of TREM2 was cleaved by ADAM 10/17 to produce sTREM2, whereas C-terminal fragment of
TREM2 (TREM2-CTF) was cleaved by g-secretase into intracellular domain (ICD). TREM2-DAP12 led to phosphorylation of ITAM, then recruitment of SYK to activate
PI3K signaling and thus regulation of the survival, proliferation, and inflammatory responses of microglia.
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related to changes in phenotypes and signaling pathway
transduction based on different cell states and activities.

Furthermore, NLRP3 inflammasome in microglia recruited
and activated caspase-1, which produced interleukin-1b (IL-1b)
via shearing pro-IL-1b and then damaged DA neurons (55).
Another evidence indicated that TLR4 mediated NLRP3
inflammasome activation in a NF-kB-dependent manner in
CNS (56), whereas TREM2 negatively regulated TLR4-mediated
NF-kB signaling pathway activation (51, 57), suggesting that
TREM2 might inhibit neuroinflammation by down-regulating
NLRP3 signaling activation. In turn, NF-kB signaling also
down-regulated the expression of TREM2 (58). On the other
hand, DA neurons produced TREM2 ligand (TREM2-L) (59).
However, whether DA neurons activated TREM2 through
TREM2-L had not been studied. In addition, binding of
galactolectin 3(GAL3) to TLR4/TREM2 further activated
microglia, and inhibition of GAL3 might be potential benefit for
PD treatment (60). Other studies found that interleukin-3 (IL-3)
regulated microglial immune responses and acted on downstream
pathways in TREM2, and loss of TREM2 reduced the protective
effect of IL-3 on neurons (61). Increased interleukin-10 (IL-10)
altered TREM2 signaling (62), and TREM2might act as a negative
immunoregulatory molecule through Syk pathway in an IL-10-
dependent manner (63). Long-term presence of inflammatory
factors also decreased the expression of TREM2 (64), suggesting
that TREM2 could interact with inflammatory factors to regulate
the inflammatory response in CNS.

Meanwhile, TREM2/iNOS was a marker of increased anti-
inflammatory factors, and melatonin could increase the
proportion of TREM2/iNOS (65). Additionally, Nilotinib
increased TREM2 levels in CSF and treated PD through its anti-
inflammatory effects (66). It has also been found that pinitol
increased the expression of TREM2 in BV2 microglia and
inhibited the expression and secretion of pro-inflammatory
cytokines, while silencing of TREM2 abolished the anti-
inflammatory effects of pinitol (67). These findings suggested
that therapeutic enhancement of TREM2 expression might be a
new strategy for the intervention of neuroinflammation-induced
PD. Moreover, sTREM2 was reflected in the activation of microglia
during neuronal degeneration (68). sTREM2 stimulated the
production of inflammatory cytokines through NF-kB (69). The
reason might be sTREM2 competed with full-length TREM2 for
ligand and inhibiting the anti-inflammatory effects of TREM2.
Therefore, inhibition of sTREM2 signaling pathway might also be
an effective therapeutic approach for PD (Figure 2).

TREM2 and a-Syn
Aggregation of a -Syn monomer into amyloid fibrils through
oligomeric intermediates was found to be the toxic mechanism
leading to PD. Oligomers formed at the initial stage of
aggregation were potent neurotoxic substances to cause cell
death (70). TLR4 played the key role in the neurotoxicity
induced by a-Syn oligomers (71). Infection of the midbrain
with an adeno-associated virus vector overexpressing a -Syn and
inoculation of preformed a -Syn fibrils into the striatum
effectively induced DA neurodegeneration (72, 73). Compared
with healthy controls, sTREM2 in CSF of PD patients was
Frontiers in Immunology | www.frontiersin.org 4
upregulated and positively correlated with total a-Syn
degradation (74). Whether sTREM2 was related to a-Syn
degradation remains to be studied. In addition, TREM2
mediated phagocytosis of microglia (75). a -Syn was be
recognized by TREM2 on the cell membrane and then
phagocytosed. Heat shock protein 60 (HSP60) in the
chaperone binded to TREM2 and activated TREM2 and
affected phagocytosis in TREM2 (76). During this process,
beclin 1 played a critical role in regulating phagocytic receptor
function in health and disease, and beclin-1 defects impaired
TREM2 recycling (77). Thus, TREM2 might be closely associated
with phagocytosis of a -Syn in PD but further studies are needed
to determine whether a-Syn could be cleared after phagocytosis.

TREM2 and Oxidative Stress
Oxidative stress was increased in CSF and blood of PD patients
(78, 79), and oxidative stress was also found in animal models of
PD (80). Oxidative stress products damaged DA neurons
through DNA oxidation, protein oxidation and lipid
peroxidation. Overexpression of TREM2 alleviated oxidative
stress in hippocampal neurons by activating the PI3K/AKT
signaling (81). Whether overexpression of TREM2 alleviated
oxidative stress in DA neurons remains to be explored. MAPK
is a key intermediate molecule in Mn-induced oxidative stress
response, and dysregulated peroxisome proliferator-activated
receptor g (PPAR g)/p38 MAPK signaling underlied the
phenotypic deficits in TREM2 variants (38), and TREM2
variants enhanced oxidative stress in the CNS (82). DJ-1
(PAPK7) is an oxidative stress sensor, and DJ-1 deficient
microglia reduced the expression of TREM2 (83), suggesting
that TREM2 was negatively associated with microglia
oxidative stress.

Activated microglia are the main source of oxygen-free radical
production, while mitochondrial dysfunction is due to disruption
of the balance of reactive oxygen species (ROS) accumulation and
utilization in cells and tissues. Overexpression of TREM2 inhibited
mitochondrial ROS production in macrophages and thus NLRP3/
caspase-1 inflammasome activation (84). R47H risk variant lead to
mitochondrial dysfunction and stimulated inflammation through
NLRP3-dependent inflammatory pathways (38, 85). TREM2
might inhibit NLRP3 activation and neuroinflammation by
affecting ROS accumulation in microglia. In addition, TREM2
amplified ROS signaling and promoted osteoclastogenesis in
periodontitis (86). Also, TREM2 regulated macrophage immune
function by fine-tuning ROS to protect against bacterial infections
(84). Oxidative stress was reduced in 24-months-old TREM2
knock-out mice (87). In AD mice, TREM2 activated a
downstream pathway leading to mitochondrial damage (88).
Thus, TREM2 may be associated differently with oxidative stress
in different animal models, and its association with oxidative stress
in PD models requires further investigation.
TREM2 and Endoplasmic Reticulum
Stress (ERS)
1-methyl-4-phenylpyridinium (MPP+) triggers the transient
receptor potential vanilloid 4 (TRPV4) channel and induces
December 2021 | Volume 12 | Article 795036

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li and Zhang TREM2 and Parkinson’s Disease
ERS (89). Apoptosis induced by ERS overactivation is associated
with the decreased DA neurons in PD patients (90). ERS is an
abnormal state of lipid metabolism, and TREM2 is a lipid-
lipoprotein-binding receptor (91). TREM2 mediated lipid
metabolism in pluripotent stem cell-derived microglia-like cells
through Phospholipase C gamma2 (PLCg2) (92). Deficiency of
TREM2 resulted in cholesterol ester (CE) overload and fewer
lipid droplets, inducing ERS (93–95). ERS mediated changes in
inflammatory and apoptotic pathways and was closely associated
with cell growth, differentiation, survival and apoptosis. Lack of
TREM2 could lead to microglial ERS, laying the foundation for
subsequent neurodegenerative mechanisms. In the future, as the
negative regulator, overexpression of TREM2 in human or
animal models could be considered to observe whether ERS
was alleviated.

TREM2 and Iron-Induced
Neurodegeneration
Iron-induced neurodegeneration is caused by the imbalance
between the generation and degradation of intracellular lipid
ROS. The iron deposition has been found in the substantia nigra
Frontiers in Immunology | www.frontiersin.org 5
of PD patients and animal models (96). The iron mediated a-Syn
aggregation, oxidative stress and toxic effects on DA neurons (97,
98). The capacity of microglia to store iron was three times that
of neurons (99), and microglia expressed transporters/molecules
involved in brain iron metabolism, inducing ferritin synthesis
(100). It has been found that iron overload increased the
expression of TREM2 (101), and iron might be involved in
various pathogenesis of PD by regulating TREM2 expression in
microglia. Whether increased TREM2 expression caused by iron
overload could affect ROS production, a-Syn phagocytosis and
neuroinflammatory responses is poorly studied and warrants
further exploration.

TREM2 and Microbiota-Gut-Brain Axis
A total of 80% of PD patients is accompanied by gastrointestinal
(GI) dysfunction (102). The imbalance of gut microbiota leads to
increased intestinal permeability, and inflammatory signals are
transmitted to the brain through the gut-brain axis (103). Biopsies
of GI tissue from both PD patients and healthy individuals
revealed accumulation of a-Syn in the stomach, duodenum and
colon (104–106), and a-Syn could be transferred from the enteric
FIGURE 2 | TREM2 and neuroinflammation. TLR4 mediated NLRP3 inflammasome activation in central nervous system (CNS) through regulation of NF-kB signaling
pathway. NLRP3 inflammasome recruited and activated caspase-1, produced IL-1b by shearing pro-IL-1b and then induced neuroinflammation, which could damage
dopamine neurons. However, TREM2 negatively regulated TLR4-mediated these neuroinflammatory signaling activation.
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nervous system (ENS) to CNS via the vagus nerve (107).
Impairment of intestinal barrier function or immune cell
activation will promote Th1 cytokines that will overwhelm the
ability of TREM2 and cause impaired healing (108). Intestinal
dysbiosis may exacerbate neuroinflammation in brain through
inhibiting the function of TREM2. It has also been found that LPS,
gram-positive and -negative bacteria and fungi could upregulate
the expression of TREM2 (109). TREM2 magnified mucosal
inflammation during the development of colitis in mice (110).
Thus, TREM2 might have different effects on peripheral and
central inflammatory responses, affecting intracerebral function
by upregulating intestinal inflammatory response (Figure 3).

TREM2 and Non-Coding RNA (ncRNA)
In PD, ncRNA regulates the a-Syn expression and LB formation,
mitochondrial dysfunction and apoptosis (111). TREM2 is
associated with multiple ncRNAs. For example, the level of
TREM2 protein was regulated by small nuclear RNA (snRNA)
and Mir-665 (112, 113). miR-101a regulated microglia activation
and immune responses via TREM2 (114). Epigenetic
mechanisms of miRNA-34a-mediated down-regulation of
TREM2 expression led to neurodegeneration (115, 116);
Specifically, miR-3473b was involved in PD pathogenesis by
inhibiting the expression of TREM2 (117). Whether ncRNA is
involved in PD development through the regulation of TREM2 is
unclear and needs further study. ncRNA are novel and
challenging drug targets due to their abilities to affect the
expression of other genes. However, it has been difficult to
identify whether ncRNA specifically acted on TREM2.

TREM2 and Exosomes
Exosomes are small vesicles about 30-150 nm in diameter
secreted by living cells that deliver a-Syn to neurons.
Frontiers in Immunology | www.frontiersin.org 6
The delivered a-Syn induced more neurotoxic aggregation
than free a-Syn oligomers. Microglial exosomes were capable
of inducing nigrostriatal degeneration (118). Microglia can also
transfer neuroinflammatory signals through exosomes (119).
Exosomes upregulated TREM2 mRNA expression in LPS-
induced THP-1 cells (120). Inflammatory stimuli may
upregulated TREM2 expression through exosomes. Moreover,
sTREM2 in brain parenchyma could be carried by a subset of
microglia, macrophages, or exosomes (121). However, how
exosomes regulated TREM2 signaling activation is worthy of
further illumination.

TREM2 and Neurotrophic Factors
In AD mouse models, up-regulation of TREM2 induced
microglia to express brain-derived neurotrophic factor (BDNF)
(122). Fasudil may target microglial phagocytosis by
upregulating the TREM2/DAP12 pathway, with the increased
expression of BDNF and glial cell-derived neurotrophic factor
(GDNF) (123). Therefore, TREM2 might protect DA neurons by
regulating microglia to release neurotrophic factors. However,
direct delivery of exogenous BDNF to the brain of patients and
enhancement of BDNF expression through gene therapy have
not been successful (124). Thus, the possibility of enhancing
BDNF expression through TREM2 to treat PD is another field
of interest.
TREM2 TREATMENT

Since sTREM2 expression in CSF was increased in PD patients
and was positively correlated with total a-Syn in CSF (74), it was
suggested that sTREM2 in CSF could be used as a substitute
immune biomarker for PD neuron injury. Studies have shown
FIGURE 3 | Microbiota-gut-brain axis transmitted inflammatory signals and a-Syn. When intestinal bacteria were imbalanced, inflammatory signals were transmitted
to the brain via the bacteria-gut-brain axis and a-Syn was transmitted from enteric nervous system (ENS) to central nervous system (CNS).
December 2021 | Volume 12 | Article 795036

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li and Zhang TREM2 and Parkinson’s Disease
that the misdiagnosis rate of PD was about 25% (125), and
correct biomarkers were conducive to the prevention and
diagnosis of PD. Moreover, antibody-based radioligands could
be used as PET radioligands to track TREM2 changes in vivo and
understand the dynamic changes of TREM2 in the PD progress
(126). Increased expression of TREM2 reduced pathological
microglial responses and neuropathological and behavioral
deficits (127). Endogenous small-molecule inhibitors
of TREM2 included phosphatidylethanolamine and
phosphatidylserine in vivo (128). In a mouse PD model,
TREM2 was also down-regulated by LPS/interleukin-34 (IL-
34)/interferon-g (129, 130). In addition, in vitro studies
revealed that CELF2 was a novel splicing regulator in exon 3
of TREM2 that regulates species-specific splicing in TREM2 and
reduces the expression of TREM2 protein (131), suggesting that
inhibition of multiple substances could increase the expression of
TREM2 and make it possible to treat PD by increasing the
expression of TREM2. The anti-human TREM2 agonistic
monoclonal antibody, AL002c, tempered microglial
inflammatory response. It was safe and well tolerated in a first-
in-human phase I clinical trial, and might be a promising
candidate for PD treatment (132). Possible treatments also
included agonists of TREM2 signaling in vivo that stabilized
TREM2 on the cell surface and reduced its shedding (126).
However, whether this affected the immune system,
metabolism and fertility and intervention at which stage of PD
progression would be beneficial is unclear (133). Crystal packing
interfaces analysis using the maltose binding protein (MBP)-
TREM2 immunoglobulin (Ig) fusion construct has shown that
the surface of the TREM2 Ig domain can bind small molecules,
providing potential utility for the discovery of new therapies for
TREM2 (134).
CONCLUSION

In recent years, the role of TREM2 in neurodegenerative diseases
has rapidly become an interesting area of active studies. TREM2
adds to the understanding of DAM phenotypes. Currently, there
is no effective drug treatment for PD, the reason might be that
the etiology and mechanism of PD are still unclear and animal
models cannot accurately represent the disease. Until now, there
is an increasing focus on single-target therapy for PD. Although
TREM2 could affect multiple pathogenesis of PD, including
attenuating immune responses, a-Syn aggregation and
Frontiers in Immunology | www.frontiersin.org 7
oxidative stress, multi-target PD-related pathogenesis with
TREM2 might be a promising therapeutic option. Importantly,
there is a general lack of clinical validation of the correlation
between TREM2 and various mechanisms of PD. Thus, further
validation is needed in clinical practice. It is now necessary to
clarify: 1) TREM2 is a PD susceptibility factor in which
populations; 2) In what context does TREM2 function,
whether it is affected by time, how does TREM2 function,
which pathologies of PD are affected by its function, changes
in expression, and signal transduction, and whether it affects
multiple PD pathologies simultaneously; 3) ADAM10/17 is an
abscission enzyme in TREM2 expression, and its inhibitor might
enhance TREM2 expression but has multi-target effects. Could
selective competitive inhibitors be found for shedding sites in
TREM2? Or is there a viable way to activate TREM2 expression
in vivo with fewer side effects, and whether it could be a viable
basis for the prevention or treatment of PD. Collectively, a full
understanding of role of TREM2 in PD is essential to provide
additional insights into the underlying pathology of PD with the
ultimate goal of developing new treatments strategies.
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