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Abstract

Introduction

Chemical disinfection is state of the art in preventing spread of infectious agents in the

healthcare setting. Additionally, the antimicrobial properties of solid copper alloy surfaces

against various microorganisms have recently been substantiated. Thus, antimicrobially

active copper surfaces may serve as an additional barrier against distribution of pathogenic

microorganisms and be combined with chemical disinfection measures in the hospital. The

aim of this study was therefore to investigate on a quantitative basis whether the combina-

tion of chemical disinfectants with copper alloy surfaces results in an overall compromised,

combined or even synergistic antimicrobial efficacy.

Methods

Experiments were carried out using the quantitative carrier test devised by the German

Society for Hygiene and Microbiology (DGHM) to study antimicrobial efficacy of chemical

disinfectants. Requirements for microbicidal efficacy as defined by prEN 14885 were

applied. The chemical disinfectants tested in our study contained alcohols (ethanol, 1-pro-

panol), quaternary ammonium compounds (benzalkonium chloride) and glutaraldehyde as

actives. Quantitative carrier tests were carried out on different carriers (tiles, copper alloy

discs, stainless steel discs) using Pseudomonas aeruginosa, Staphylococcus aureus,

Kocuria rhizophila and Candida albicans as test organisms.

Results

For the alcohol-based disinfectant no difference in antimicrobial efficacy was observed

when applied to antimicrobial active copper alloy carriers, tiles or stainless steel discs. For

all test organisms microbial contamination was reduced to the detection limit of < 1 log

(CFU/ml) within a contact time of 2 min indicating a� 5 log reduction for the tested bacteria

and a� 4 log reduction for the yeast, as being requested for chemical disinfectants by prEN

14885. In order to elucidate a potential synergism the chemical disinfectant based on qua-

ternary ammonium compounds (benzalkonium chloride) and glutaraldehyde was used at a
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sub-effective concentration. Hence, no complete reduction of microbial contamination was

achieved on stainless steel or tile carriers for Pseudomonas aeruginosa and Candida albi-

cans. Interestingly, when using copper alloy carriers complete reduction indicating a� 5 log

reduction for P. aeruginosa and a� 4 log reduction for C. albicans was detected. Thus, data

of this study indicates that solid copper alloy surfaces and disinfectants synergize.

Conclusions

According to this data, commercially available disinfectants based on alcohol, quaternary

ammonium compounds and aldehyde can effectively be combined in a dual strategy with

solid copper alloy surfaces to reduce microbial contamination.

Introduction

Nosocomial infections pose a great threat in the hospital setting, which is reflected in the prac-

tical guide to prevention of hospital-acquired infections published in 2012 by WHO [1]. Based

on this WHO guide, factors influencing the development of nosocomial infections are micro-

bial agents, patient susceptibility, environmental factors, and bacterial resistance [1]. Along

with other aspects, objects contaminated by microorganisms are regarded as a potential source

in the development of nosocomial infections [1]. Thus, effective hygiene measures are needed

to prevent spread of microbial contaminants and chemical disinfectant measures are regarded

as state of the art. Regarding antimicrobial efficacy of chemical disinfectants the draft version

of European standard (prEN) 14885 summarizes the application of European standards as a

methodological framework for chemical disinfectants and antiseptics [2]. In these tests, bio-

cidal formulations are being evaluated using suspension and/or carrier tests that simulate prac-

tical conditions, and the antimicrobial efficacy of disinfectants is determined quantitatively by

logarithmic reduction factors. Requirements for microbicidal efficacy as defined by prEN

14885 are� 5 log RF for bacteria and� 4 log RF for Candida albicans for chemical disinfec-

tants [2].

In addition to chemical disinfectants, solid copper and copper alloys such as special brasses

have been widely studied with regard to their antimicrobial efficacy during the past 10 years

[3,4], and antimicrobial properties of solid copper alloy surfaces against various microorgan-

isms have recently been substantiated.

Zhu et al. [5] provided an insight into the efficacy of different copper alloy surfaces against

Gram-negative bacteria such as Salmonella enterica. Further studies from other research

groups underline the efficacy of copper alloy surfaces against Gram-positive bacteria such as

Enterococcus spp. and Staphylococcus spp., as well as non-enveloped viruses such as hepatitis A

virus and norovirus [6–9]. In addition, studies on application of continuously active antimi-

crobial copper surfaces in hospitals could demonstrate reduction of microbial burden on

touch surfaces [10, 11].

Thus when looking at effective hygiene strategies the question arises, as to whether the com-

bination of both measures (antimicrobial copper surfaces and chemical disinfectants) may be

used complementarily or even synergistically. Airey and Verran [12] examined the cleaning

properties of copper surfaces after bacterial soiling with Staphylococcus aureus and concluded

that denatured ethanol (70%) or 1% sodium hypochlorite, when applied to copper surfaces,

appeared to react with copper. Based on their observations, the authors recommended further

investigations on appropriate cleaning and disinfection practices. Kawakami et al. [13,14]
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investigated the effects of sodium hypochlorite and ethanol on cleaning properties and the re-

establishment of antibacterial activities of copper-alloyed stainless steel.

However, in none of these studies was the antimicrobial efficacy of the applied chemical

disinfectants evaluated quantitatively, nor was the antimicrobial efficacy of the solid copper

alloys. Furthermore, Molteni et al. [15] demonstrated that killing of microbial cells on solid

copper alloys is impacted by liquid medium composition, and Warnes and Keevil [6,7] pro-

vided evidence that copper ion release is affected in the presence of chelating agents (e.g.

EDTA), resulting in reduced killing rates. Thus, question arises as to whether the combination

of chemical disinfectants with solid copper alloy surfaces will result in an overall compromised

or synergistic antimicrobial efficacy. The goal of this study was therefore to elucidate, based on

quantitative efficacy tests simulating practical conditions, whether the combination of antimi-

crobial solid copper surfaces and chemical disinfectants results in compromised, combined or

even synergistic efficacy and thus might help to build a synergistic barrier against distribution

of pathogenic microorganisms. In order to address this question, the quantitative carrier test

devised by the German Society for Hygiene and Microbiology (DGHM) [16] was used as

being the most appropriate method to study chemical disinfectants in combination with cop-

per alloy surfaces, and acceptance criteria as defined by prEN 14885 for biocidal efficacy of

chemical disinfectants were applied [2].

Material and methods

Strains and culture conditions

Bacterial strains used in this study were Pseudomonas aeruginosa ATCC 15442, Escherichia coli
K12 NCTC 10535, S. aureus ATCC 6538, and Kocuria rhizophila ATCC 9341. In addition, the

yeast C. albicans ATCC 10231 was used in some experiments. Microbial strains were cultivated

as specified in EN 12353 [17]. Briefly, bacteria were precultivated on tryptone soya agar (TSA,

15 g/l tryptone, 5 g/l soya peptone, 5 g/l sodium chloride, 15 g/l agar) for 18–24 h at 36˚C ±
1˚C. For the experiments, subcultures from the respective precultures were obtained by per-

forming one or two additional cultivation step(s) on TSA for 18–24 h at 36˚C ± 1˚C. The

second or third subculture was used in the experiments as a working culture. The yeast C. albi-
cans was cultivated on malt extract agar (MEA, 30 g/l malt extract, 5 g/l mycological peptone,

15 g/l agar). For precultivation purposes, C. albicans was inoculated on MEA and incubated at

30˚C ± 1˚C for 42–48 h. For the experiments, subcultures from the respective preculture were

obtained by performing another (two) cultivation step(s) on MEA for 42–48 h at 30˚C ± 1˚C.

The second or third subculture was used in the experiments as a working culture.

The experiments were repeated at least three times on different days and with freshly pre-

pared cultures, unless otherwise stated.

Microbial survival on copper alloy

Antimicrobial efficacy of copper alloy discs (alloy CuSi21Si3P, Ø 55 mm) was investigated

using the quantitative carrier test involving mechanical action devised by the German Society

for Hygiene and Microbiology (DGHM) method (#14) [16].

For these experiments sterilized matt-glazed surgical tiles (50 x 50 mm) and copper alloy

discs (alloy CuSi21Si3P, Ø 55 mm) were used as carriers. Bacterial test suspensions were pre-

pared by using 10 ml tryptone-NaCl solvents (0.1% tryptone and 0.85% NaCl) per petri-dish

to dissolve the bacterial lawn cultivated as described above. The titer was adjusted to give 1.5–5

x 107 CFU/ml.

Organic soiling was prepared as follows: 3 g bovine serum-albumin (fraction V) was dis-

solved in 97 ml tryptone-NaCl solvents and sterilised by membrane filtration. 3 ml sheep
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erythrocyte solution (e. g. Elocin-lab, Oberhausen, Germany) was added to finally give a stock-

solution of 3% BSA + 3% erythrocytes. 1 ml of the organic soiling stock-solution (3% BSA

+ 3% erythrocytes) was added to 9 ml bacterial suspension.

Carriers were then inoculated with 0.1 ml bacterial suspension including organic soiling

(0.3% BSA and 0.3% sheep erythrocytes). The inoculum was evenly distributed on the carriers

using a spatula and brought to visual dryness with a max. drying time of 60 min. (i.e. t0).

In this method, mechanical action is simulated by spreading a 0.2 ml aliquot of either disin-

fectant or standardized hard-water using a glass spatula.

Preparation of standardized hard-water was as follows: 19.84 g MgCl2 (anhydrous) and

46.24 g CaCl2 (anhydrous) were dissolved and made up to 1000 ml in deionized water and

sterilized to give solution A. 35.02 g NaHCO3 was dissolved and made up to 1000 ml in deion-

ized water and sterilized to give solution B. Thereafter 6 ml of solution A and 8 ml of solution

B were added to 600 ml sterile deionized water and made up to 1000 ml with sterile deionized

water. The pH of the resulting standardized hard-water was 7.0 ± 0.2.

Thus after drying of the test suspension 0.2 ml standardized hard-water was added to the

carriers as indicated (i. e. w/ hard-water) and distributed by a glass spatula At indicated inter-

vals (i.e. tx) microbial survival rates were determined. For microbial recovery purposes carriers

were immersed upside down into a vessel containing 10 ml tryptone NaCl solvents and sterile

glass beads (ø 3–4 mm). Microbial survival rates are expressed as log CFU/ml and were deter-

mined by serial dilution steps and subsequent cultivation on TSA, as described above. Micro-

bial survival rates are given as mean values of at least three independent experiments and are

expressed as log (CFU/ml).

Investigation of antimicrobial efficacy of chemical disinfectants on copper

alloy

Antimicrobial efficacy tests were carried out using the DGHM carrier test without mechanical

action and in the absence of organic soiling [16].

Carriers applied in the experiments were sterilized copper alloy discs (alloy CuZn23AlCo,

50x50 mm), stainless steel discs (alloy 1.4301, 50x50 mm) and tiles (as specified by DGHM,

50x50 mm). Preparation of microbial test suspensions (containing no organic soiling) was car-

ried out as described above. Titers were adjusted to give 108 CFU/ml, and 50 μl of microbial

test suspension was used for the inoculation of test carriers. Inocula were dried for 60 or 120

min as indicated (i. e. t0).

Efficacy tests were carried out using an alcohol-based disinfectant (trade name mikrozid

AF; 100 g contains: 25 g ethanol (94%), 35 g 1-propan-ol; Schülke & Mayr GmbH, Germany)

and a formulation based on quaternary ammonium compounds and glutaraldehyde (trade

name antifect extra; 100 g contains: 9.8 g glutaraldehyde, 5.0 g alkyl dimethylbenzyl ammo-

nium chloride (C12-C16), 5.0 g didecyldimethyl ammonium chloride; Schülke & Mayr

GmbH, Germany). Concentrations resulting in sub-effective microbicidal efficacy as defined

by prEN 14885 (i. e.� 5 log RF for bacteria and� 4 log RF for C. albicans) [2] of the chemical

disinfectants were chosen to be used in the experiments. After the indicated inoculum drying

time (t0) 100 μl disinfectant was applied to the carriers and tests were carried out with a contact

time of 2 min. The alcohol-based formulation (mikrozid AF) was provided as a ready-to-use

product and was applied without any further dilution. The formulation based on quaternary

ammonium compounds and glutaraldehyde (antifect extra), provided as a concentrate, was

diluted with standardized hard-water (see above) to give a final concentration of 0.25% (v/v).

Recovery of bacteria was performed by immersion of the carriers in a vessel containing 10

ml neutralizing agent (see below) and use of a spatula. Microbial survival rates are expressed as

Compatibility of copper alloys with chemical disinfectants

PLOS ONE | https://doi.org/10.1371/journal.pone.0200748 August 10, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0200748


log CFU/ml and were determined by serial dilution steps and subsequent cultivation on TSA

(bacteria) or MEA (yeast), as described above. Where indicated, the level of antimicrobial effi-

cacy was calculated according to the DGHM guideline [16]:

logarithmic cell count difference RF ¼ log ðCFU Co1Þ � log ðCFU DÞ;

where RF is the reduction factor and CFU Co1 and CFU D are the numbers of CFU per millili-

ter determined after exposure to the water control and the disinfectant, respectively. When

copper alloy surfaces were used in the experiments CFU Co1 from tile carriers is used as the

reference to calculate RF.

A combination of polysorbate 80 (30 g/l), lecithin (3 g/l), L-histidine (1 g/l), and sodium

thiosulfate (5 g/l) in aqua bidest was demonstrated to be effective in the neutralization experi-

ments for both biocidal formulations and was therefore used throughout the experiments.

Results

Evaluation of microbial survival on copper alloy

Survival of Gram-positive and Gram-negative bacteria on copper alloy was investigated using

K. rhizophila and P. aeruginosa as test organisms. Even though K. rhizophila is not a typical

pathogen in the hospital environment, it was chosen as an additional Gram-positive test

organism to verify some data obtained with S. aureus throughout this study.

Logarithmic survival rates were determined for each test organism on copper alloy discs

(alloy CuSi21Si3P, Ø 55 mm) in the presence and absence of 200 μl standardized hard-water,

which was applied immediately before starting the contact time (i.e. after the inoculum has

dried). Tile carriers as defined by the DGHM carrier test method [16] served as controls and

were treated accordingly. Microbial survival was determined at indicated time points. Data

obtained for the Gram-positive bacterium K. rhizophila is presented in Fig 1A. Survival of K.

rhizophila was impacted to a greater extent on copper alloy discs than on the tile carrier after a

contact time of 60 min, resulting in 4.28 ± 0.28 log and 3.50 ± 0.42 log for the copper alloy

discs versus 5.45 ± 0.15 log and 5.50 ± 0.16 log for the tile carriers. Interestingly, survival of K.

rhizophila and S. aureus was affected even more on copper alloy discs to which an aliquot of

200 μl hard-water had been added (Fig 1A and 1B, Cu-carriers w/ hard-water). This effect was

detected at contact times� 60 min.

Survival of the Gram-negative bacterium P. aeruginosa on the tested copper alloy discs was

found to be below the detection limit of 1.15 log after only 5 min of contact time in the absence

or in the presence of a 200 μl aliquot of standardized hard-water (Fig 2). In contrast, survival

of P. aeruginosa on tile carriers ranged from > 5 log (5 min contact time) to> 4.5 log (120

min contact time) when tested with or without hard-water. The DGHM carrier test requires

drying of the inoculum within a maximum of 60 min prior to determination of efficacy at

defined contact times [16]. Thus, the data presented in Fig 2A suggest that the tested copper

alloy discs already exerted an effect on survival of P. aeruginosa within the inoculum drying

period. This observation led to the experiments presented in Fig 2B, where survival of P. aeru-
ginosa was determined at intervals of 10 min starting immediately after the inoculum had been

placed on the copper alloy discs in the presence or absence of 200 μl hard-water. Survival of P.

aeruginosa was found to remain stable on copper alloy discs in the presence of 200 μl hard-

water. However, survival of P. aeruginosa was reduced to the detection limit of� 1.15 log after

40 min in those samples where no standardized hard-water had been added. This finding is

consistent with the data presented in Fig 2A, as according to the methodology of the DGHM

carrier test no hard-water is to be added within the drying period.

Compatibility of copper alloys with chemical disinfectants
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Fig 1. Microbial survival on copper alloy discs (CuSi21Si3P) and tile carriers. Carriers were inoculated with 100 μl

bacterial suspension of K. rhizophila (titer: 1.5–5 x 107 CFU/ml; Fig 1A) and S. aureus (titer: 2.4 x 107 CFU/ml; Fig 1B) in

the presence of organic soiling (0.3% BSA; 0.3% sheep erythrocytes). After drying for max 60 min, 200 μl standardized

hard-water was added to the samples indicated as “w/ hard-water”. Samples indicated as “w/o hard-water” received no

addition of standardized hard-water. Microbial survival rates were determined as described in Material and Methods at

the intervals indicated and expressed as log CFU/ml. The experiments were repeated at least three times on different days.

Mean values are displayed with standard error. The design of the experiments is depicted schematically in S1 Fig.

https://doi.org/10.1371/journal.pone.0200748.g001
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Fig 2. Impact of humidity on survival of P. aeruginosa on copper alloy discs (CuSi21Si3P). A: Carriers were

inoculated with 100 μl bacterial suspension of P. aeruginosa (titer: 1.5–5 x 107 CFU/ml) in the presence of organic

soiling (0.3% BSA; 0.3% sheep erythrocytes). After drying for max 60 min, 200 μl standardized hard-water was added

to the samples indicated as “w/ hard-water”. Samples indicated as “w/o hard-water” received no addition of

standardized hard-water. Microbial survival rates were determined at the intervals indicated in Material and Methods

and expressed as log CFU/ml. The design of the experiments is depicted schematically in S1 Fig. B: Copper alloy discs

were inoculated with 100 μl bacterial suspension of P. aeruginosa (titer: 1.5–5 x 107 CFU/ml) in the presence of organic

soiling (0.3% BSA; 0.3% sheep erythrocytes). Immediately after inoculation, 200 μl standardized hard-water was added

exclusively to the samples indicated as “w/ hard-water”. Microbial survival rates were determined as described in

Material and Methods at the intervals indicated and expressed as log CFU/ml. The experiments were repeated at least

three times on different days. Mean values are displayed with standard error. The design of the experiments is depicted

schematically in S2 Fig.

https://doi.org/10.1371/journal.pone.0200748.g002
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Antimicrobial efficacy of an alcohol-based disinfectant on copper alloy

The antimicrobial efficacy of an alcoholic formulation containing 35 g 1-propan-ol and 25 g

ethanol per 100 g (mikrozid AF, Schülke & Mayr GmbH) was tested on different carrier mate-

rials (tiles, stainless steel discs, and copper alloy discs) as described in Material and Methods.

The test organisms used were P. aeruginosa, S. aureus, and the yeast C. albicans. Inocula were

dried on the carriers for either 60 or 120 min prior to application of the alcoholic disinfectant.

Experiments were conducted without organic soiling at a contact time of 2 min. Fig 3A–3C

show that no difference in the antimicrobial efficacy of the alcoholic formulation could be

observed when comparing the three different carriers. For all test organisms and all test sur-

faces, microbial contamination was reduced to the detection limit < 1 log in the presence of

the alcoholic biocide. Thus no impairment of the biocidal efficacy of the disinfectant could be

observed when using the alcohol-based formulation on either test carrier. Interestingly, when

looking at the water controls (application of 100 μl standardized hard-water instead of the dis-

infectant within the contact time), microbial soiling was also reduced to the detection limit

of< 1 log when drying of the inoculum was extended to 120 min where copper alloy discs had

been used as the carrier material.

Antimicrobial efficacy of a disinfectant based on quaternary ammonium

compounds and aldehyde on copper alloy

Similar experiments to those described above were carried out using a biocidal formulation

based on quaternary ammonium compounds and aldehyde (trade name antifect extra; 100 g

contains: 9.8 g glutaraldehyde, 5.0 g alkyl (C12-16) dimethylbenzyl ammonium chloride

(C12-C16), 5.0 g didecyldimethyl ammonium chloride; Schülke & Mayr GmbH, Germany).

Experiments were conducted applying a sub-effective concentration of the disinfectant, which

is a concentration known not to meet the efficacy requirements for chemical disinfectants

based on prEN 14885(i.e. a� 4 log reduction for yeast and a� 5 log reduction for bacteria,

[2]). Thus, a concentration of 0.25% for a contact time of 2 min was used in these experiments.

The data indicate that for P. aeruginosa (Fig 4A) and C. albicans (Fig 4C) no complete reduc-

tion in the presence of the biocidal formulation was achieved when using either stainless steel

or tile carriers. When using copper alloy carriers, however, full reduction of P. aeruginosa
(RF� 5 log) and C. albicans (RF� 4 log) was observed when the quaternary ammonium com-

pound/aldehyde containing biocide was applied under these conditions. Using S. aureus as the

test organism, full reduction (RF� 5 log) was achieved for all test carriers in the presence of

the biocide, indicating no impairment of the biocidal efficacy of the disinfectant by either car-

rier material (Fig 4B). Furthermore, Fig 4A and 4C show the impact of the carrier material on

antimicrobial efficacy compared to the biocidal efficacy of the quaternary ammonium com-

pound-based disinfectant. According to the data obtained for P. aeruginosa and C. albicans, an

additional effect of copper alloy on antimicrobial efficacy could be demonstrated in compari-

son to stainless steel and tile carriers when using sub-effective concentrations of the quaternary

ammonium compound-based disinfectant (Fig 4A and 4C). However, no such effect could be

demonstrated in these experiments for S. aureus, as the quaternary ammonium compound-

based disinfectant was found to be fully active against S. aureus under the chosen test

conditions.

Discussion

Many investigations have demonstrated that copper surfaces with a copper content of at least

55% have antimicrobial properties, and antimicrobial applications of copper have recently
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Fig 3. Investigation of antimicrobial efficacy of an alcohol based-disinfectant on copper alloy (CuZn23AlCo).

Antimicrobial efficacy tests were carried out using the DGHM carrier test without mechanical action and without

organic soiling [16]. Microbial inocula were dried for either 60 min or 120 min, as indicated. 100 μl disinfectant was

applied to the different carriers (copper alloy carriers, stainless steel carriers, tile carriers) with a contact time of 2 min.

Compatibility of copper alloys with chemical disinfectants
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been reviewed by Vincent et al. [4]. Interestingly, it has been found that killing of bacteria is

much faster on dry surfaces compared to wet surfaces [5–7]. However, in our experimental

set-up for investigation of the antimicrobial efficacy of disinfectants on solid copper alloy, bac-

terial soiling was applied using 100 μl tryptone-NaCl solvents (0.1% tryptone and 0.85%

NaCl). This is a requirement according to DGHM method 14, a well-established guideline for

testing disinfectants [16]. Using this guideline, we examined whether contact killing is enabled

under these experimental conditions. In their study using S. enterica, Zhu et al. [5] demon-

strated that under wet conditions no surviving bacteria could be found after 0.5–2 h contact

time when high copper content alloys were used. Using low copper content alloys under moist

incubation conditions, the authors found that cell counts decreased 2–4 log. Our data show

that bacterial survival was impacted by the different copper alloys within 0.5–2 h in the same

order of magnitude as has been shown by Zhu et al. [5]. This indicates that the DGHM carrier

test, in which drying of the solvent inoculum is a requirement, can be used to study antimicro-

bial efficacy of chemical disinfectants on copper alloy surfaces.

When using the Gram-negative bacterium P. aeruginosa in our experiments, no surviv-

ing bacteria (< 1.15 log) could be detected on copper alloy (CuSi21Si3P) surfaces after 60

min drying time. However, if the inoculum was kept wet within the 60 min period by addi-

tion of an aliquot of 200 μl standardized hard-water, recovery rates were 4.5–5.5 log. This

corresponds to the findings of Espirito Santo et al. [18], who showed in their experiments

using E. coli as the test organism that contact killing was much more pronounced on dry

surfaces than on moist surfaces. The authors demonstrated that copper accumulation

within the bacterial cell was much faster from dry surfaces due to the absence of buffering

medium. Thus, our survival experiments with P. aeruginosa on copper alloy surfaces indi-

cate that the inoculum has become sufficiently dry to enable the proposed mechanism of

contact killing [3,6,18] when using the carrier test method according to DGHM [16] with a

drying time of 60 min.

In our experiments, addition of a 200 μl aliquot of standardized hard-water resulted in

higher reduction rates compared with those samples without additional solvent. This effect

could be observed after the respective samples (indicated as w/ hard-water (Fig 1A) or water

control (Figs 3 and 4)) had become sufficiently dry again, i.e. after approximately 60 min

(Fig 1A) or 120 min (Figs 3 and 4), respectively. In their experiments using mutant strains

of E. hirae unable to extrude copper Molteni et al. [15] demonstrated that ionic copper

released from solid copper surfaces is an important factor in antimicrobial activity. The

authors demonstrated that application of liquid media, resulting in higher copper release

rates from solid copper surfaces, had proportional antimicrobial efficacy. The increased

reduction rates detected in our experiments in those samples with additional solvent appli-

cation could thus be explained by an increased release of ionic copper due to the additional

liquid. As contact killing has been found to be most effective under dry conditions [6], it

might be postulated that after the samples had become sufficiently dry to enable contact kill-

ing, the increased reduction rates that we detected result from a higher accumulation of

ionic copper on the surfaces of these samples. However, further experiments are needed in

order to verify this hypothesis.

Water controls (wc) were used to observe the influence of the different carriers (application of 100 μl standardized

hard-water instead of the disinfectant within the contact time). Microbial survival rates were determined as described

in Material and Methods at the intervals indicated and expressed as log CFU/ml. A: Test organism P. aeruginosa. B:

Test organism S. aureus. C: Test organism C. albicans. The experiments were repeated at least three times on

different days. Mean values are displayed with standard error. The design of the experiments is depicted schematically

in S3 Fig.

https://doi.org/10.1371/journal.pone.0200748.g003
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Fig 4. Investigation of antimicrobial efficacy of a quaternary ammonium compound-based disinfectant on copper

alloy (CuZn23AlCo). Antimicrobial efficacy tests were carried out using the DGHM carrier test with and without

organic soiling [16]. Microbial inocula were dried for either 60 min or 120 min, as indicated. 100 μl disinfectant

dilution (diluted to give 0.25% (v/v)) was applied to the different carriers (copper alloy carriers, stainless steel carriers,

tile carriers) with a contact time of 2 min. Water controls (wc) were used to observe the influence of the different
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Previously, most studies on the antimicrobial properties of copper alloy surfaces focused on

either the killing kinetics or the applicability of copper alloys in infection prevention

[7,9,10,19,20]. There are, however, only a few studies that investigate the compatibility of

chemical disinfectants with copper alloys [12–14]. Using the quantitative carrier test devised

by DGHM, this is the first study to investigate the impact of antimicrobial active copper alloy

surfaces on chemical disinfectants and vice versa.

The data presented in this study demonstrate that efficacy of commercially available chemi-

cal disinfectants based on alcohol, quaternary ammonium compounds or aldehyde is not

impacted when these disinfectants are applied to antimicrobial active copper alloy surfaces.

This includes antimicrobial efficacy against Gram-positive and Gram-negative bacteria as well

as yeasticidal efficacy, which was investigated in this study. Moreover, our data indicated a syn-

ergism between solid copper alloy (CuZn23AlCo) and disinfectants when looking at the data

presented in Fig 4. This was specifically detectable for the Gram-negative test organism P. aer-
uginosa and the yeast C. albicans, whereas no such effect was detectable for the more drying-

resistant Gram-positive test organism S. aureus.
In their studies on the mode of action of ionic copper, Warnes and Keevil [6,7] conclude

that targets in Gram-positive and Gram-negative bacteria vary. The authors demonstrated that

multifaceted events are involved in cell death and that breakdown of genomic DNA was pro-

portionally associated with cell death. The chemical disinfectants tested in our study contained

alcohols (ethanol, 1-propanol), quaternary ammonium compounds (benzalkonium chloride)

and glutaraldehyde as actives. All of these biocidal substances are known for their protein

denaturing properties rather than for their DNA degradation characteristics [21]. The

observed synergism may thus be explained by DNA degradation due to ionic copper fostering

microbial death as an additional cause.

Conclusions

In conclusion, data presented in this study based on antimicrobial efficacy tests demonstrates

that quantitative data can be obtained to elucidate the compatibility of chemical disinfectants

with antimicrobial active copper alloy surfaces. No impairment of the biocidal efficacy of the

tested commercially available disinfectants (based on alcohol, quaternary ammonium com-

pounds and aldehyde) by the solid copper alloy surfaces used in these experiments was

detected. The experimental set-up used in this study even revealed a synergism between solid

copper alloy surfaces with a disinfectant based on quaternary ammonium compounds and

aldehyde, which fosters antimicrobial efficacy. This was specifically detectable for P. aeruginosa
and C. albicans when sub-effective concentrations of the disinfectant (based on the require-

ments of prEN 14885 [2]) were applied.

According to this data, disinfectants based on alcohol, quaternary ammonium compounds

and aldehyde can be combined with solid copper alloy surfaces in a dual strategy to reduce

microbial contamination on surfaces.

Nevertheless, given the rather complex mode of action of ionic copper, which has been

demonstrated by different research groups [5,7,15,18], fur. ther understanding of the

carriers (application of 100 μl standardized hard-water instead of the disinfectant within the contact time). Microbial

survival rates were determined as described in Material and Methods at the intervals indicated and expressed as log

CFU/ml. A: Test organism P. aeruginosa. B: Test organism S. aureus. C: Test organism C. albicans. The

experiments were repeated at least three times on different days. Mean values are displayed with standard error. The

design of the experiments is depicted schematically in S3 Fig.

https://doi.org/10.1371/journal.pone.0200748.g004
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interaction between chemical disinfectants and microorganisms on copper alloys will require

continuing investigations.

Supporting information

S1 Fig. Illustration of experimental design for data presented in Figs 1 and 2A.

(TIF)

S2 Fig. Illustration of experimental design for data presented in Fig 2B.

(TIF)

S3 Fig. Illustration of experimental design for data presented in Figs 3 and 4.

(TIF)
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