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ABSTRACT: A phytochemical investigation of the n-hexane-soluble chemical constituents of Lysimachia vulgaris roots allowed for
selection using a proprotein convertase subtilisin-kexin type 9 (PCSK9) mRNA expression monitoring assay in HepG2 cells. This
led to the isolation of two previously undescribed isocoumarins of natural origin, 8′Z,11′Z-octadecadienyl-6,8-dihydroxyisocoumarin
(1) and 3-pentadecyl-6,8-dihydroxyisocoumarin (2), along with 20 previously reported compounds (3−22). All of the structures
were established using NMR spectroscopic data and MS analysis. Of the isolates, 1 and 3 were found to inhibit PCSK9, inducible
degrader of the low-density lipoprotein receptor (IDOL), and SREBP2 mRNA expression. Further computational dockings of both
1 and 3 to C-ring of IDOL E3 ubiquitin ligase predicted the mechanism behind the inhibitory effect of these compounds on the
enzyme.

1. INTRODUCTION
Lysimachia vulgaris L., also known as yellow loosestrife, grows
naturally worldwide and is often used as a commercial garden
plant.1 In Asia,2,3 Europe,1,4 and North America,3 the flowers
and young leaves of L. vulgaris are consumed as tea and
vegetables. In particular, it is registered as a food ingredient in
the Korean Food Standards Codex.2,3 Moreover, L. vulgaris
leaves have been used in folk medicine to treat diarrhea,1,3,4

dysentery, fever, bleeding, and wounds.1,4 Previous studies on
this plant have reported the following chemical constituents:
benzoquinones,1,4 flavonoids,1,2,4 phenolic acids,2 saponins,1,4

and tannins.1,4 Additionally, pharmacological investigations on
L. vulgaris extracts have demonstrated their analgesic,5

antibacterial,3,4 antioxidant,2,3 antipyretic,1 antitumor,2,4 and
cytotoxic properties.4

Despite the efficacy of statins in lowering low-density
lipoprotein cholesterol (LDLC) levels and decreasing
cardiovascular disease risk,5−8 there are also challenges related
to both their insufficient therapeutic effects and side effects in

patients with familial hypercholesterolemia.7,8 The LDL
receptor (LDLR) plays a prominent role in lowering the
LDLC level of the blood by trafficking LDLC from the blood
into cells.5−9 Two major regulator proteins of LDLRs,
proprotein convertase subtilisin/kexin type 9 (PCSK9) and
inducible degrader of the low-density lipoprotein receptor
(IDOL), are known to regulate LDLR degradation.7−11

PCSK9 binds to the extracellular domain of LDLRs on the
cell membrane, promoting the degradation and preventing the
recycling of LDLR. This leads to a low level of LDLR in the
cell membrane and less uptake of LDLC into the cell. Hence,

Received: October 16, 2022
Accepted: November 28, 2022
Published: December 8, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

47296
https://doi.org/10.1021/acsomega.2c06660

ACS Omega 2022, 7, 47296−47305

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pisey+Pel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Young-Mi+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyun+Ji+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Piseth+Nhoek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chae-Yeong+An"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Min-Gyung+Son"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hongic+Won"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Seung+Eun+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Seung+Eun+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeonghoon+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hyun+Woo+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Young+Hee+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chang+Hoon+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Young-Won+Chin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Young-Won+Chin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c06660&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06660?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
https://pubs.acs.org/toc/acsodf/7/50?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c06660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


PCSK9 can contribute to the buildup of plaque, such as that
seen in atherosclerosis.12,13 Similarly, IDOL binds to the
intracellular domain of LDLR, facilitating its ubiquitylation and
subsequent lysosomal degradation.7−11 Thus, it is recognized
that a sustained or increased LDLR level in the cell membrane
contributes to the lowering of LDLC levels in the blood. By
inhibiting PCSK9-mediated LDLR degradation, two antibody
drugs and one siRNA drug have been approved for clinical use
in treating high blood LDLC levels.14,15 Therefore, the
regulators of PCSK9-mediated LDLR degradation via inhib-
ition of PCSK9-LDLR binding or PCSK9 synthesis have been
investigated.

Our ongoing project has been to discover small molecules
from edible and medicinal plants with inhibitory activity
against PCSK9 mRNA expression.16−18 During this project, it
was found that the hexane-soluble extract of L. vulgaris roots
inhibited PCSK9 mRNA expression, increasing LDLR mRNA
expression (Figure S1). To date, there are no reports regarding
the identification of PCSK9 mRNA expression inhibitors from
L. vulgaris. In this study, two new naturally occurring
compounds and 20 known structures (Figure S2) were
identified and their effects on PCSK9 and LDLR mRNA
expression in HepG2 cell lines were evaluated (Figure 1).

2. RESULTS AND DISCUSSION
Compound 1 was obtained as an amorphous solid, and its
molecular formula was determined to be C26H36O4 via high-
resolution electrospray ionization mass spectrometry (HRE-
SIMS) using the [M − H]− ion at m/z 411.2534. The 1H
NMR data of 1 displayed a signal for a hydroxy group at δH
11.15 (1H, s, 8-OH), a signal derived from an olefinic proton
at δH 6.15 (1H, s, H-4), and two signals for a tetra-substituted
aromatic ring at δH 6.38 (1H, brs, H-7) and 6.26 (1H, brs, H-
5), indicating the presence of an isocoumarin moiety. The
remaining signals were determined to be four unsaturated fatty
acid protons at δH 5.36 (4H, overlapped, H-8, 9, 11, and 12);
12 methylene protons at δH 2.77 (2H, t, J = 7.7 Hz, H-10′),
2.48 (2H, J = 7.7 Hz, H-1′), 2.05 (4H, m, H-7 and 13), 1.66
(2H, m, H-2′), and 1.25−1.39 (14H, overlapped, H-3′-6′ and
H-14′-16′); and a methyl proton at δH 0.88 (3H, t, J = 7.1 Hz,
H-17′), suggestive of an octadecadienyl moiety. The linkage
between the isocoumarin and octadecadienyl moieties was
found at C-3 by observing the heteronuclear multiple bond
correlations (HMBCs) of δH 2.48 (H-1′) to δC 158.3 (C-3),
103.7 (C-4), 29.4 (C-3′), and 26.8 (C-2′) and δH 1.66 (H-2′)
to δC 158.6 (C-3). In addition, the HMBCs of δH 11.15 (8-
OH) to δC 163.8 (C-8), 102.1 (C-7), and 100.2 (C-9) and the
HMBCs of δH 6.26 (H-5) to δC 163.1 (C-6), 103.7 (C-4),
102.1 (C-7), and 100.2 (C-9) enabled the assignment of a 6,8-
dihydroxy-isocoumarin moiety (Figure 2). Moreover, the long-
range HMBC (JH,C = 2 Hz) of δH 6.26 (H-5) to δC 166.4 (C-

1) supported the presence of a carbonyl carbon at C-1 (Figures
2 and S11). Therefore, compound 1 was characterized as
8′Z,11′Z-octadecadienyl-6,8-dihydroxyisocoumarin.

The molecular formula of compound 2 was determined to
be C24H36O4 by the [M − H]− ion at m/z 387.2529 in the
HRESIMS. The 1H NMR data of 2 displayed nearly identical
signals to 1 for 6,8-dihydroxyl-isocoumarin at δH 10.96 (1H, s,
H-8), 10.84 (1H, s, 6-OH), 6.48 (1H, s, H-4), 6.36 (1H, d, J =
2.1 Hz, H-5), and 6.31 (1H, d, J = 2.1 Hz, H-7). However,
there were different signals in the side chain of 2 compared to
those of 1. In 2, methylene and methyl signals, accounting for
the saturated fatty acid, appeared at δH 2.47 (2H, t, J = 7.5 Hz,
H-1′), 1.58 (2H, m, H-2′), and 1.22−1.29 (24H, overlapped,
H-3′-14′) from 14 methylene protons and at δH 0.85 (3H, t, J
= 7.1 Hz, H-15′) from a methyl proton. The HMBCs of δH
2.47 (H-1′) to δC 157.3 (C-3), 103.7 (C-4), 28.3 (C-3′), and
26.2 (C-2′) and δH 1.58 (H-2′) to δC 157.3 (C-3) provided
evidence that the saturated fatty acid is connected at C-3 of
isocoumarin via a C-linkage. Further assignments were
accomplished by the HMBCs of δH 10.96 (8-OH) to δC
162.7 (C-8), 101.4 (C-7), and 98.1 (C-9); δH 10.84 (6-OH) to
δC 165.5 (C-6), 102.6 (C-5), and 101.4 (C-7); δH 6.36 (H-5)
to δC 165.5 (C-6), 103.7 (C-4), 101.4 (C-7), and 98.1 (C-9).
Furthermore, the long-range HMBCs (JH,C = 2 Hz) of δH 6.36
(H-5) to δC 165.4 (C-1) and δH 10.96 (8-OH) to δC 165.4 (C-
1) supported the presence of a carbonyl carbon at C-1 (Figures
2 and S20). Therefore, the structure of 2 was determined to be
3-pentadecyl-6,8-dihydroxyisocoumarin, a compound that has
previously been reported in its synthetic form,19 but has yet to
be described as a natural structure.

The known structure compounds (3-22) were identified by
comparison of their spectroscopic data with the reported
values, as 5-O-methylembelin (3),20 5-O-methylrapanone
(4),21 9-hydroxy-(9S,10E,12Z,15Z)- octadecatrienoic acid

Figure 1. Representative new and active compounds 1−3 isolated from L. vulgaris.

Figure 2. Key 1H-1H COSY (bold line), HMBC (solid arrow), and
long-range HMBC (dashed arrow) correlations of compounds 1 and
2.
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(5),22 9-oxo-(10E,12E)-octadecadienoic acid (6),23 9-oxo-
(10E,12Z)-octadecadienoic acid (7),23 2,3-dihydroxypropyl-

(10Z,13Z)-nonadecadienoate (8),24 2,3-dihydroxypropylpen-
tadecadienoate (9),25 1-monopalmitoyl-rac-glycerol (10),26

Figure 3. Effects of compounds 1−22 on the PCSK9 and LDLR mRNA expressions in the HepG2 cells. (A). Expression of PCSK9 mRNA was
assayed by qRT-PCR in cells treated with compounds 1−22 (20 μM), and berberine 20 μM (Ber) for 24 h. (B) Expression of LDLR mRNA was
assayed by qRT-PCR in cells treated with compounds 1−22 (20 μM), and berberine 20 μM (Ber) for 24 h. ** p < 0.01 and * p < 0.05 as compared
to the nontreated group by Dunnett’s t-test.

Figure 4. Effects of compounds 1 and 3 (20 μM) and berberine on the MYLIP (IDOL), NRIH3 (LXR-α), SREBP 1, and SREBP 2 genes
expressions in the HepG2 cells. The expressions of MYLIP (IDOL), NRIH3 (LXR-α), SREBP 1, and SREBP 2 were assayed by qRT-PCR in cells
treated with compounds 1 and 3 for 24 h. **p < 0.01 and *p < 0.05 as compared to the nontreated group by Dunnett’s t-test.
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monononadecanoin (11),27 methyl linoleate (12),6 linoleic
acid (13),6 oleic acid (14),24 capric acid (15),28 lauric acid
(16),29 palmitic acid (17),30 stearic acid (18),31 (+)-deme-
thoxylpinoresinol (19),6 (+)-pinoresinol (20),6 trans-cinnamic
acid (21),32 and cis-ferulic acid (22).33 The known compounds
(3-22) were isolated from L. vulgaris for the first time (Figure
S2).

Isocoumarins are commonly found in many natural sources
including insects, microorganisms, and plants.5 However, there
are several studies reporting more unusual isocoumarins with
3-alkyl side chains from other natural sources, such as
lichens,34,35 mosses,36,37 plants,38−44 and yeast.45 Although
found in many plants,38−44 only three different 3-alkyl
isocoumarins, 8-hydroxy-6-methoxy-3-pentylisocoumarin,38−44

6-8-dimethoxy-3-pentylisocoumarin,41,45 and 7-chloro-8-hy-
droxy-6-methoxy-3-pentylisocoumarin,44 have been described
to date. Thus far, there are only a few reports investigating
these unusual isocoumarins with 3-alkyl side chains and their
pharmacological roles.

All compounds isolated from the roots of L. vulgaris in the
present study were examined for their effects on PCSK9 and
LDLR mRNA expressions in human HepG2 cells (Figure 3).
Two compounds, 8′Z,11′Z-octadecadienyl-6,8-dihydroxyiso-
coumarin (1) and 5-O-methylembelin (3), downregulated
PCSK9 mRNA expression significantly at a concentration of 20
μM compared with the untreated group. We further tested
these two compounds at a range of concentrations (1.25−20
μM) for their inhibition of PCSK9 mRNA expression in
HepG2 cells and found that 8′Z,11′Z-octadecadienyl-6,8-
dihydroxyisocoumarin (1) and 5-O-methylembelin (3) in-
hibited PCSK9 mRNA expression with IC50 values of 11.9 and

4.9 μM, respectively (positive control, berberine chloride, IC50
= 3.6 μM).

Consequently, these active compounds, 8′Z,11′Z-octadeca-
dienyl-6,8-dihydroxyisocoumarin (1) and 5-O-methylembelin
(3), were selected to further investigate their effect on LDLR-
related genes, including IDOL, liver X receptor (LXR), sterol
regulatory element binding protein 1 (SREBP1), and SREBP2.
As shown in Figure 4, compounds 1 and 3 appeared to inhibit
PCSK9 mRNA expression via downregulation of the tran-
scriptional factor SREBP2. Upregulation of SREBP2 has been
known to activate PCSK9 expression in the HepG2
hepatocytes.46−48 Hence, it can be inferred that inhibition of
SREBP2 enables the downregulation of PCSK9 expression,
increasing LDL uptake.46−48 Moreover, the current study
demonstrated that 8′Z,11′Z-octadecadienyl-6,8-dihydroxyiso-
coumarin (1) and 5-O-methylembelin (3) slightly down-
regulate IDOL mRNA expression. In contrast, LXRs induce
the transcriptional expression of IDOL, which is involved in
degrading LDLR and thereby inhibiting LDL uptake.7−11

As described in the literature,7−11 the degradation of LDLR
is regulated by two distinctive protein bindings, PCSK9-LDLR
binding or IDOL-LDLR binding. Therefore, we assessed 1 and
3 for their inhibitory effect on the protein expression of PCSK9
and IDOL. Contrary to the results of mRNA expression, 1 and
3 slightly upregulated IDOL and the mature form of PCSK9
protein levels in a dose-dependent manner. However, changes
in the LDLR protein level were not detected after treatment
(Figure 5). Previous studies have reported that several natural
products with PCSK9 expression downregulatory activities,
including stilbene, xanthone, and triterpenoid, increased LDLR
protein levels and subsequent LDL uptake, potentially
lowering the LDL cholesterol level.17,49−52 In addition, some

Figure 5. (A) Effects of 1 and 3 on IDOL, PCSK9, LDLR, and β−actin expression in HepG2 cells. HepG2 cells were treated with indicated
concentrations of 1 and 3 (4, 20 μM) and berberine (Ber, 20 μM) for 24 h. The expression of IDOL, PCSK9 LDLR, and β−actin was examined by
western blot analysis. (B) Immunoblot signals were quantified using ImageJ software (NIH, Bethesda, MD).
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natural compounds with IDOL expression inhibitory activities,
such as platycodin D and xanthohumol, increased the LDLR
protein level as well.8,52

Since increasing the PCSK9 and IDOL protein levels did not
lead to a decrease in the LDLR protein level, computational
dockings of both 1 and 3 to the C-ring of IDOL E3 ubiquitin
ligase (PDB ID = 2YHN) using AutoDock 1.5.7. were
performed to predict their inhibitory activity on the enzyme.
Based on previous studies that explored specific amino acid

residues involved in the homodimerization of an IDOL ring,
five target proteins are known to play key roles in inhibiting
this process. First, defective mutant strains of Val431 and
Leu433 inhibit IDOL-induced LDLR degradation.53 Second,
three residues, Ile395, Asn396, and His430, are involved in the
protein−protein interaction of the homodimerized RING
domains of IDOL.54 Results of the three-dimensional (3D)
interactions at the binding site of homodimer (2yhnHD) and
monomer (2yhnM) are shown in Figure 6.

Figure 6. 3D interaction plot of ligand and protein. Binding affinity of 1 with (1-A) monomer and (1-B) homodimer, and 3 with (3-A) monomer
and (3-B) homodimer are shown.

Table 1. Docking Results of 1 and 3 against Key Sites of IDOL C-Ring Using AutoDock

protein
(cluster)

ligand
(compounds)

binding energy
(Kcal/mol)

ligand
efficiency

inhibition
constant, Ki (μM) number of H-bonds and Interacting key proteins

2yhnM (1) 1 −6.88 −0.23 9.1 H-bonds: 2
AA’s: Ile395, Asn396, His430, Leu433

2yhnHD (3) 1 −6.27 −0.21 25.33 H-bonds: 1
AA’s: Ile395, Asn396, His430, Val431, Leu433

2yhnHD (1) 1 −6.99 −0.23 7.46 H-bonds: 3
AA’s: His430, Leu433

2yhnM (2) 3 −5.74 −0.26 62.04 H-bonds: 2
AA’s: Asn396, Leu433

2yhnM (1) 3 −7.01 −0.32 7.3 H-bonds: 3
AA’s: Ile395

2yhnHD (1) 3 −6.62 −0.30 14.02 H-bonds: 4
AA’s: Asn396, Leu433
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Four target amino acid residues from the monomer
(2yhnM) interacted with 1 through various means. Hydrogen
bonds were formed between 6-OH and two residues (Ile395
and Leu433). Hydrophobic interaction was also identified
between Asn396 and C-5. His430 formed various interactions
including a hydrophobic interaction (C-11′) and a salt bridge
and stacking with a ring of the ligand.

Despite the better binding energy and inhibition constant of
cluster rank 1, a larger number of key interactions were
observed from the structural configuration in cluster rank 3
(Table 1). All five target residues from 2yhnHD showed at
least one interaction with 1, supported by the exact same
hydrogen bond formed by Ile395 as seen with the monomer.
Three hydrophobic interactions with Asn396, Val431, and
Leu433 were also detected at different positions of the ligand.
His430 exhibited stacking with both rings of 1.

Similar to above, the interaction of cluster rank 2 of
compound 3 with the monomer showed a wider range of
different interactions than that of cluster rank 1. Two hydrogen
bonds were established, one between Asn396 and 6-OH and
the other between Leu433 and the ketone group at C-5.
Likewise, 3 expressed two hydrogen bonds with 2yhnHD, just
like those with the monomer, except the direction of bonding
of Asn396 was changed to the 3-methoxy group. Other key
values, including binding energy, are recorded in Table 1.

To gain further support for the results above, dockings were
also conducted for RINGPep1 and RINGPep2 (Figure S21),
two newly synthesized compounds that are known to be
effective in inhibiting IDOL E3 ubiquitin ligase by interrupting
homodimerization.54 RINGPep1 and RINGPep2 were used as
reference ligands because they are known to have high binding
affinities through low dissociation constant (Kd) values.54 A
3D visualization of interactions between ligand and protein is
shown in Figure S21. More hydrogen bonds were identified in
the docking simulation between RINGPep1 and the monomer
than RINGPep2 and the monomer, although participation by
key target proteins in the interaction was not so different from
those seen with 1 and 3. In addition, lower binding energies
and very low inhibition constants for RINGPep1 and
RINGPep2 were observed using AutoDock as shown in
Table S1, which are comparable to their calculated dissociation
constants from the original study.54

Low binding energies, supported by negative ligand
efficiency values and inhibition constants, indicate high binding
affinities of 1 and 3 with the target residues. Both the
monomer and homodimer were tested to identify the effect of
the ligand in preventing and disrupting homodimerization,
respectively. According to the results, 1 and 3 have low binding
energies and inhibition constants, with a greater number of
interactions between target proteins and both 1 and 3. This
finding may, in part, explain the negligible change of LDLR
protein level.

3. CONCLUSIONS
In this study, we found two new isocoumarins, 8′Z,11′Z-
octadecadienyl-6,8-dihydroxyisocoumarin (1) and 3-pentadec-
yl-6,8-dihydroxyisocoumarin (2), along with 20 known
compounds in the hexane-soluble fraction of L. vulgaris. Of
these compounds, 1 and 3 inhibited PCSK9, IDOL, and
SREBP2 mRNA expression. While compounds 1 and 3 did not
increase LDLR protein level in this study, a docking simulation
of 1 and 3 on homodimerization of IDOL E3 ubiquitin ligase
suggested these compounds may interrupt homodimerization

and prevent the function of IDOL E3 ubiquitin ligase, which
may in part propose a plausible mechanism of action of these
compounds.

4. EXPERIMENTAL SECTION
4.1. General Experimental Procedures. The JASCO P-

2000 digital polarimeter (Jasco, Tokyo, Japan) was used to
perform the optical rotations. Ultraviolet−visible spectra were
measured by a Chirascan Plus circular dichroism spectrometer
(APL, Surrey, UK). Fourier transform infrared (FT-IR)
spectroscopy was performed on a Thermo Fisher Scientific,
Nicolet iS 5 FT-IR spectrometer (Thermo Fisher Scientific,
Wisconsin). Nuclear magnetic resonance (NMR) spectra were
recorded on Bruker AVANCE 400 and Bruker AVANCE 500
spectrometers (Bruker, Karlsruhe, Germany). High-resolution
mass spectra data were performed using a Waters Xevo G2 Q-
TOF mass spectrometer (Waters, Medford, MA). Semi-
preparative high-performance liquid chromatography
(HPLC) was performed on a Gilson 321 pump and Gilson
172 Diode Array Detector (Gilson, Madison, WI) and YMC-
pack Ph, 250 mm × 10 mm (YMC. Kyoto, Japan) column was
used. Medium-pressure liquid chromatography was subjected
to Biotage Isolera one (Biotage, Uppsala, Sweden) with C-18
RP silica gel (Cosmosil, Kyoto, Japan). Water was purified
using a Milli-Q system (Water Corporation, Milford, MA).
Column chromatography was performed on silica gel
(Cosmosil, Kyoto, Japan). Thin-layer chromatography
(TLC) analysis was conducted on silica gel 60 F254 and silica
gel RP-C18 plates (Merck, Darmstadt, Germany). The spots
were visualized by spraying 10% aqueous H2SO4.
4.2. Reagents. Solvents for extraction and isolation

(methanol, n-hexane, chloroform, ethyl acetate, n-butanol,
acetonitrile (MeCN) (HPLC grade) and methanol (HPLC
grade), etc.) were purchased from SK Chemical (Seoul,
Korea). The solvents for NMR (CDCl3) and (CD3OD) were
purchased from Cambridge Isotope Laboratories, Inc. (And-
over, MA).
4.3. Plant Material. The dried roots (1.6 kg) of L. vulgaris

were harvested at Eumseong County in August 2017 and
identified by Jeong Hoon Lee. A voucher specimen has been
deposited at the Department of Herbal Crop Research,
National Institute of Horticultural and Herbal Science
(Voucher No. MPS000991), Republic of Korea.
4.4. Extraction and Isolation. The dried roots (1.6 kg)

were extracted with 100% MeOH at room temperature three
times. The crude extract (86.0 g) was obtained. The extract
was suspended with 1.0 L of H2O in partition flesh. The
partitions were repeated three times with organic solvents: n-
hexane, ethyl acetate, giving the residues of n-hexane-soluble
extract (5.6 g), ethyl acetate-soluble (6.2 g), and water-soluble
extract (63.8 g).

The n-hexane-soluble extract (5.2 g, LVH) was chromato-
graphed on silica column chromatography with gradient
mixtures of n-hexane and ethyl acetate (20:1 to 1:1) then
CHCl3−MeOH (20:1 to 2:1), to afford 9 subfractions (LVH-1
to LVH-9). The fraction LVH-2 (15.7 mg) was purified on
HPLC (MeCN-H2O 50%, isocratic elution, 3.0 mL/min) to
give 12 (tR 19.5 min, 4.0 mg). The LVH-5 fraction (826.2 mg)
was subjected on MPLC run using a reversed-phase silica gel
(50 g) column with MeOH-H2O (20:80 to 80:20), giving
eight subfractions (LVH-5A to LVH-5H). The LVH-5A
fraction (31.0 mg) was separated on semipreparative HPLC
(MeCN-H2O 35%, isocratic elution, 3.0 mL/min) for 15 min,
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to produce 22 (tR 13.02 min, 1.2 mg). Using the HPLC
separation (MeCN-H2O 65%, isocratic elution, 3.0 mL/min),
16 (tR 9.9 min, 1.7 mg), 17 (tR 15.6 min, 5.1 mg), and 18 (tR
18.6 min, 1.7 mg) were isolated from the LVH-5E subfraction
(39.9 mg), and the same method was applied on the LVH-5F
fraction (50.5 mg), to afford 14 (tR 20.0 min, 7.7 mg) and 13
(tR 29.8 min, 3.6 mg). The LVH-6 fraction (71.2 mg) was
purified on semipreparative HPLC (MeCN-H2O 75%,
isocratic elution, 3.0 mL/min), to yield 3 (tR 23.0 min, 10.1
mg) and 4 (tR 31.7 min, 2.6 mg). The LVH-7 fraction (40.3
mg) was further purified on HPLC separation (MeCN-H2O 30
to 70%, gradient elution, 3.0 mL/min) for 20 min, to produce
20 (tR 12.4 min, 1.8 mg), 1 (tR 17.8 min, 2.0 mg), and 2 (tR
19.3 min, 6.7 mg). The LVH-8 fraction (115.2 mg) gave 19 (tR
17.7 min, 1.2 mg), 21 (tR 18.8 min, 1.6 mg), 5 (tR 28.0 min, 1.1
mg), 15 (tR 29.0 min, 5.0 mg), 6 (tR 30.2 min, 1.9 mg), 7 (tR
30.9 min, 2.1 mg), 9 (tR 33.7 min, 2.5 mg), 8 (tR 36.2 min, 1.6
mg), 10 (tR 37.3 min, 1.5 mg), and 11 (tR 38.2 min, 2.0 mg) by
HPLC separation (MeCN-H2O 10 to 100%, gradient mood for
30 min, and then 100%, isocratic mode for 10 min, 3.0 mL/
min).
4.5. Quantitative Real-Time PCR. PCR analysis was

performed according to the previously reported method.16−18

The following specific primer sets were used (5′ to 3′):
GAPDH: GAAGGTGAAGGTCGGAGTCA (forward), AAT-
GAAGGGGTCATTGATGG (reverse); PCSK9GGGCATTT-
CACCATTCAAAC ( fo rwa rd) , TCCAGAAAGC-
TAAGCCTCCA (reverse); IDOL(MYLIP): ACGGTCAC-
C A A G G A A T C T G G G A ( f o r w a r d ) ,
CCTTCAAGTCACGGCTATACTGC (reverse); LXR-α-
(NR1H3): TGGACACCTACATGCGTCGCAA (forward),
CAAGGATGTGGCATGAGCCTGT (reverse); SREBP1:
ACTTCTGGAGGCATCGCAAGCA (forward), AGGTTC-
CAGAGGAGGCTACAAG (reverse) and SREBP2:
CTCCATTGACTCTGAGCCAGGA ( f o rw a r d ) ,
GAATCCGTGAGCGGTCTACCAT (reverse). Gene-specific
primers were custom-synthesized by Bioneer (Daejeon,
Korea).
4.6. Western Blot. HepG2 cells were lysed in RIPA buffer

containing Xpert Protease Inhibitor and Phosphatase Inhibitor
Cocktail Solution (GenDEPOT) on ice for 10 min. Cell lysates
were centrifuged at 14,000 rpm for 15 min at 4 °C, and
supernatants were quantified using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, Inc.). Proteins were
separated by electrophoresis on a 10% sodium dodecyl sulfate-
polyacrylamide gel (SDS-PAGE) and were transferred onto
polyvinylidene difluoride (PVDF) membrane. The membrane
was treated with 3% skimmed milk for 1 h and incubated
overnight at 4 °C with primary antibodies in 3% bovine serum
albumin (BSA). After washing with Tris-buffered saline with
0.1% Tween 20 (TBST), the membrane was incubated with
the HRP-conjugated secondary antibody (1:5000) for 1 h at
room temperature. The band images were acquired using a
ChemiDoc Imaging system (Bio-Rad) using West-Q ECL
Solution (GenDEPOT).
4.7. AutoDock Methods. The homodimer protein

structure of IDOL-E3 ring (PDB ID: 2yhn) was downloaded
from RCSB Protein Data Bank. PyMOL was used to remove
unwanted small molecules (Zn2+), as well as chain B to obtain
monomer. Preparation of protein, including filling in missing
atoms and adding polar hydrogens, was conducted using
AutoDock. AutoDock Tools 1.5.7 was used to simulate the
docking of ligands of interest against the prepared proteins. For

docking parameter, grid dimensions of 60 × 60 × 60 points
and a grid of spacing of 0.375 Å were instrumented for both
2yhnHD and 2yhnM. The calculation involved 50 runs of the
Lamarckian genetic algorithm with 25,000,000 evaluations and
27,000 generations. Visualization of binding affinity between
ligands and residues was performed with ‘Protein-Ligand
Interaction Profiler’ and PyMOL.55

4.8. Statistical Analysis. Data from the experiments are
presented as the mean ± S.E.M. The level of statistical
significance was determined by one-way analysis of variance
(ANOVA) and Dunnett’s t-test for multiple comparisons. P
values less than 0.05 were considered significant.

4.8.1. 8′Z,11′Z-Octadecadienyl-6,8-dihydroxyisocoumar-
in (1). Amorphous solid, UV λmax

MeOH (log ε): 242.0 (3.26),
327.0 (2.48). FT-IR (ATR) vmax 2925, 2856, 1680, 1626, 1460,
1368, 1238, 1169 cm−1. 1H NMR (CD3OD, 400 MHz) δ
11.15 (1H, s, 8-OH), 6.38 (1H, brs, H-7), 6.26 (1H, brs, H-5),
6.15 (1H, s, H-4), 5.36 (4H, m, H-8′, 9′, 11′ and 12′), 2.77
(2H, t, J = 7.7 Hz, H-10′), 2.48 (2H, s, J = 7.7 Hz, H-1′), 2.05
(4H, m, H-7′ and 13′), 1.66 (2H, m, H-2′), 1.25−1.39 (14H,
overlapped, H- 3′−6′ and H-14′−16′), and 0.88 (3H, t, J = 7.1
Hz, H-17′); 13C NMR (CD3OD, 100 MHz) δ 166.4 (C-1),
163.8 (C-8), 163.1 (C-6), 158.3 (C-3), 140.0 (C-10), 130.3
(C-8′), 130.1 (C-11′), 128.1 (C-9′), 127.9 (C-12′), 103.7 (C-
4), 102.1 (C-7), 101.8 (C-5), 100.2 (C-9), 33.3 (C-1′), 31.5
(C-15′), 29.6 (C-14′), 29.4 (C-3′), 29.2 (C-4′), 29.1 (C-5′),
29.1 (C-6′), 27.2 (C-7′ and C-13′), 26.8 (C-2′), 25.6 (C-10′),
22.3 (C-16′), and 14.1 (C-17′). HRESIMS m/z [M-H]‑

411.2534 (calcd for C26H35O4 411.2535).
4.8.2. 3-Pentadecyl-6,8-dihydroxyisocoumarin (2). Amor-

phous solid, UV λmax
MeOH(log ε): 241.0 (3.55), 327 (2.78). FT-IR

(ATR) vmax 3541, 2914, 2852, 1682, 1637, 1476, 1362, 1241,
1175 cm−1. 1H NMR (CD3OD,500 MHz) δ 10.96 (1H, s, 8-
OH), 10.84 (1H, s, 6-OH), 6.48 (1H, s, H-4), 6.36 (1H, d, J =
2.1 Hz, H-5), 6.31 (1H, d, J = 2.1 Hz, H-7), 2.47 (2H, t, J = 7.5
H-1′), 1.58 (2H, m, J = 7.7 Hz, H-2′), 1.22−1.29 (24H,
overlapped, H- 3′−14′), and 0.85 (3H, t, J = 7.1 Hz, H-15′);
13C NMR (CD3OD, 125 MHz) δ 165.7 (C-1), 165.5 (C-6),
162.7 (C-8), 157.3 (C-3), 139.6 (C-10), 103.7 (C-4), 102.6
(C-5), 101.7 (C-7), 98.1 (C-9), 32.3 (C-1′), 31.3 (C-13′),
29.2 (C-12′), 29.1 (C-4′ and C-11′), 29.0 (C-5′ and C-10′),
28.9 (C-6′), 28.8 (C-7′), 28.7 (C-8′), 28.6 (C-9′), 28.3 (C-3′),
22.1 (C-14′), and 13.9 (C-15′). HRESIMS m/z [M − H]−

387.2529 (calcd for C24H35O4 387.2535).
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