
Research Article
Technical Job Recommendation System Using APIs and
Web Crawling

Naresh Kumar,1 Manish Gupta ,2 Deepak Sharma,3 and Isaac Ofori 4

1Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, Janakpuri 110058,
New Delhi, India
2Department of Computer Science & Engineering, Moradabad Institute of Technology, Moradabad 244001, India
3Department of Information Technology, Jagannath International Management School, Vasant Kunj, New Delhi 110070, India
4Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana

Correspondence should be addressed to Isaac Ofori; iofori@umat.edu.gh

Received 22 April 2022; Revised 26 May 2022; Accepted 1 June 2022; Published 21 June 2022

Academic Editor: Arpit Bhardwaj

Copyright © 2022Naresh Kumar et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+ere has been a sudden boom in the technical industry and an increase in the number of good startups. Keeping track of various
appropriate job openings in top industry names has become increasingly troublesome. +is leads to deadlines and hence
important opportunities being missed.+rough this research paper, the aim is to automate this process to eliminate this problem.
To achieve this, Puppeteer and Representational State Transfer (REST) APIs for web crawling have been used. A hybrid system of
Content-Based Filtering and Collaborative Filtering is implemented to recommend these jobs. +e intention is to aggregate and
recommend appropriate jobs to job seekers, especially in the engineering domain. +e entire process of accessing numerous
company websites hoping to find a relevant job opening listed on their career portals is simplified.+e proposed recommendation
system is tested on an array of test cases with a fully functioning user interface in the form of a web application. It has shown
satisfactory results, outperforming the existing systems. It thus testifies to the agenda of quality over quantity.

1. Introduction

With an increasing number of cash-rich, stable, and prom-
ising technical companies/startups on the web [1] which are in
much demand right now, many candidates want to apply and
work for these companies. +ey tend to miss out on these
postings because there is an ocean of existing systems that list
millions of jobs which are generally not relevant at all to the
users. +ere is an abundance of choices and not much
streamlining. On the basis of the actual skills or interests of an
individual, job seekers often find themselves unable to find the
appropriate employment for themselves. +is system,
therefore, approaches the idea from a data point of view,
emphasizingmore on the quality of the data than the quantity.

1.1. Data Collection. +e database used for this system was
created using refined and customized data collection tech-
niques and methods. +is technique helps distinguish the

database from the already existing commercially available job
databases. Hence, data collection programs have been devel-
oped from scratch. Web crawling [2], as well as web scraping,
has been used for dataset preparation. By combining web
crawling and web scraping, more automation and less hassle
were ensured on the Web with less human labor and error.

Different types of web crawlers used are as follows:

(i) Job Listing Crawler
(ii) Ontology-based Crawler
(iii) HTML Crawler
(iv) API Crawler

1.2. Recommendation System. Recommendation systems
proposed in [3] are mechanisms for information filtering
that smartly identify and segregate information. +ey create
smaller chunks out of large amounts of dynamically

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7797548, 11 pages
https://doi.org/10.1155/2022/7797548

mailto:iofori@umat.edu.gh
https://orcid.org/0000-0002-8664-2244
https://orcid.org/0000-0002-1101-0613
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7797548


generated information. A recommendation system has the
ability to predict whether a specific user will prefer an article
or not based on their profile and its past information [4].

Collaborative filtering [5] makes recommendations
based on historical user behavior. +e model can only be
shaped based on the behavior of a single user, as well as the
behavior of other individuals who have used the system
before them. Recommendations are based on direct col-
laboration from multiple users and then filtered to match
those who express similar preferences or interests. Content-
Based recommendations are specific to a specific user, as the
model does not use any information about other users on the
page.

1.2.1. Content-Based Filtering. Content-based Filtering [6] is
a machine learning technique that makes decisions by taking
into account the similarities in the features of the data
present. Two methods used to decide are as follows:

(i) Firstly, users provide a list of features out of which
they can choose whatever they find the best.

(ii) Secondly, the algorithm can keep track of the
products that the user has shown interest in the past.
+ey are appended to the users’ already existing
data.
Content-based filtering recommenders do not need
the profiles of other users or any foreign data as they
do not greatly influence recommendations [7].

(iii) Collaborative Filtering. +e collaborative filtering
method is based on the historical interlinkages that
are documented among the users and items. +e
method tries to forecast the usefulness of articles for
a specific user on the articles previously evaluated by
fellow users. +ese memory-based methods work
directly with the recorded interaction values and are
based on finding the nearest neighbor, for example,
finding the closest user of interest and suggesting
the most popular product.

2. Related Work

In recent years, tremendous research has been done on the
topic of job recommendations. For the completion of this
paper, several research articles have been referenced which
were published recently. With the help of this literature
survey, it was seen that the basic steps involved in most of
these recommendation systems are as follows:

(i) Data acquisition
(ii) Data preprocessing
(iii) Record recommendation

While several research papers and existing papers gave
numerous insights on the problem statement at hand, all of
them had some of the other elements of such a successful job
recommendation system being in place: creating a scraping
template: need to define HTML documents of those websites
from where data needs to be collected; site navigation tra-
versal: preparing a system for website navigation and

exploration; automating navigation and extraction: con-
ducting automation for the facts and processed data col-
lected: computing data and packages from the website. +e
data acquired has to be saved in tables and databases.

+e authors of [1], however, only focus on job aggre-
gation and not filtering. One more limitation of [1] is that it
relies only onHTML scraping to crawl the job listings, which
does not always work in modern web applications due to
client-side rendering of ReactJS, etc. +ey propose classifi-
cation using Näıve Bayes on search engines. A web crawler is
used to crawl individual company websites where the jobs
are listed. For profile matching, they use two methods of
matching: semantic similarity, tree knowledge matching,
and query similarity. +ese are integrated based on the
representation of attributes by students and companies; then
the similarity is evaluated [2]. Kethavarapu et al. proposed
an automatic ontology with a metric to measure similarity
(Jaccard Index) and devise a reranking method.+e raw data
after collection goes through preprocessing. +e process of
ontology creation and mapping is done by calculating
various data points to derive alternative semantics, which is
needed to create a mapping.+emodule dealing with feature
extraction is based on TF-IDF similarity and then the
indexing and ranking of information by RF algorithm. +e
ranking/listing is achieved by the semantic similarity metric
[3]. +e authors of [4] focus on content-based filtering and
examining existing career recommender systems. +e dis-
advantages are the cold start, scalability, and low behavior.
Its process starts with cleaning and building the database and
obtaining data attributes. +en, the cosine similarity func-
tion is used to find the correlation between the previous user
and the available list.

Mishra and Rathi give immense knowledge of the ap-
plication domain accuracy measure and have finally com-
pared them all. However, they use third-party aggregators to
fetch the jobs and it is well known that these existing
aggregators are not always updated. +ey cannot fetch jobs
directly from the company portals [5]. Mhamdi et al. have
designed/devised a job recommendation product that aims
to extract meaningful data from job postings on portals.
+ey use text accumulating methods. Resultantly, job offers
are divided into job groups or clubs based on common
features among them. Jobs are matched to job finders based
on their actions [6]. +e authors of [7] designed and
implemented a recommender system for online job
searching by contrasting user and item-based collaborative
filtering algorithms. +ey use Log similarity, Tanimoto
coefficient, City block distance, and cosine similarity as
methods of calculating similarity. Indira and Rathika in their
paper draw a comparison between interaction and acces-
sibility of modern applications toward present conditions
and the trustworthiness of E-Recruitment. +e statistical
tools used are Simple Percentage, Chi-square, Correlation,
Regression, and ANOVA (One-way ANOVA) [8]. Pradhan
et al. reveal a comparison between exploring relations amid
known features and things describing items [9]. A system to
make the proper recommendations based on candidates’
profile matching as well as saving candidates’ job preferences
has been proposed in [10]. Here, mining is done for the rules

2 Computational Intelligence and Neuroscience



predicting the general activities.+en, recommendations are
made to the target candidate based on content-based
matching and candidate preferences [10]. Manjare et al.
proposed a specific model (CBF or content-based filtering)
and social interaction to increase the relevance of job rec-
ommendations. Research exhibits high levels of manage-
ment and flexibility [11]. In [12], matching and collaborative
filtering were used for providing recommendations. +ey
make a comparison of profile data and take a scoring in
order to rank candidates in the matching technique. Con-
sequently, the score ranking made recruiter decisions easier
and more flexible. But since the scoring still had a few
problems with coinciding candidate scores, a collaborative
filtering method was used to overcome it.

+e authors of [13] take a different spin on the topic by
using modern ML and/or DMBI techniques in a RESTful
Web application. +ey filled the difference between the
Backend (MongoDB instance) and Frontend (Android
Application) using APIs. An item-based collaborative fil-
tering method for making job recommendations is pre-
sented in [14]. +ey optimized the algorithm by combining
resume information and position descriptions. For opti-
mizing the job preference prediction formula, historical
delivery weight is determined by position descriptions.
Similar user weight is computed from resume information
[14, 15]. A system of web scraping for automatic data col-
lection from the web using markup HTML and XHTML
(classical markup languages) has been presented in [1]. +e
module of web scraping technique used by them was elu-
cidated by four processes.

3. Proposed System

As we have seen, the present-day job seeker is faced with an
array of problems before they can find a suitable job for
themselves. All existing work is so promising but lacks in
some of the other aspects. +e need is to eliminate these
issues posed by past research and minimize the weaknesses
of the systems. +e proposed system is designed to go forth
with developing a fully functional user interface supporting a
job aggregator and recommendation system. Every aspect of
the operation is made from scratch and in a customized sort
of manner.

Hence, the problem statement devised by us as a building
starter for the research is as follows:

(i) Developing a hybrid model [16] that aggregates
and recommends relevant jobs to the user based on
their profile, skills, or interests.

(ii) Emphasizing quality over quantity and delivering
only the most appropriate results to the user. +e
results were achieved by applying intelligent filters
and filtering out great amounts of data using ap-
propriate parameters.

(iii) Recommending jobs to users of any age and
background in real time, based on the popularity of
jobs among the other user base. Additionally,
allowing users to study job popularity, skill

demand, grossing market skills, etc. are discussed
in [17, 18].

(iv) Finally, designing a fully useable and under-
standable UI for the Recommender System for
practical usage.

(v) +e proposed system consists of the following
three major modules, which are completed as part
of this research as follows:

(vi) Data collection and preprocessing [19, 20] fol-
lowed by the unification of the database.

(vii) Recommendation of suitable results using a hybrid
system of content-based [21–23] and collaborative
filtering.

(viii) Development of a fully functional user interface in
the form of a web application.

+e flow diagram shown in Figure 1 is used as the
proposed system architecture for the modeling process and
demonstrates a high-level design of the entire aggregation
and recommendation system. +e modules of the proposed
architecture have been used in the implementation.

3.1. Data Collection and Preprocessing. +e data collection
and preprocessing module was further divided into four
submodules. All these modules depicting the different kinds
of data needed to be collected as part of this research are
categorized as follows.

3.1.1. Company Fetching Module. +is module is used to
fetch and list the top N companies (we started with the top
100 companies) based on the rankings on platforms such as
Crunch base [24]. To get the list of these companies auto-
matically, the web crawler [25, 26] reads and parses the API
calls of platforms. After parsing, this module converts the list
into the form of a large JSON array with each element of the
array being an object representing each company.

A superset of all potential companies is created. +is
ranking is not completely polished and further filtering is to
be performed. Appropriately selected critical parameters are
used to further enhance the quality of the database.

3.1.2. Company Detail Gathering Module. +is module is
used to collect important deciding details about a particular
company that will be used to filter the companies from the
list. +ese parameters are important to shortlist only the best
companies, so that irrelevant options are not displayed to the
user. +is was done by crawling and scraping the concerned
web listings [27, 28] for these companies.

+e parameters that have been used to filter out com-
panies are series of funding, total funding, number of in-
vestors, number of employees (organization size), unicorn
status [29], and latest technology stack.

Upon using these parameters, a new list of shortlisted
companies has been created which has fewer results. +is is
the final list of this research and recommendation system
[30] to work upon.

Computational Intelligence and Neuroscience 3



3.1.3. Job Listing Fetching Module. +is is a very critical
module and its function is to scrape and crawl the respective
sources for the job openings of the shortlisted companies
and aggregate them in the database. For the course of this
research paper, new and customized crawlers have been
designed from scratch, instead of using third-party aggre-
gators [31, 32]. Typically, all these common aggregators tend
to miss out on the latest job listings and a major objective of
this system is to remove this anomaly. +e job listing
fetching has been done using the following three types of
crawling techniques.

3.1.4. Job Listing Platform Crawling. Using this crawler, the
crawling was initiated from a set of URLs [32, 33]. BFS
technique [34] was used to further crawl the rest of the URLs.

3.1.5. Standalone Company Website Crawling. Nowadays,
many companies do not list their job openings on the
common job listing portals on the web [35–49]. It was
decided to individually crawl the API calls [50, 51] of these
companies’ personal job portals. Different companies had
different kinds of embedding of the abovementioned job
listing portals. Hence, a combination of many kinds of
crawling techniques was used as follows:

(o) Ontology-based crawler is being based on the con-
cept of ontology and only crawls pages related to a
given/specific topic.

(o) API-based crawler is very useful since most of the
web applications in today’s age do not use simple
HTML. It is required to make an API crawler that

can intercept API calls of the career pages and fetch
the required result.

(o) HTML crawling: a lot of older companies that were
part of the final list of shortlisted companies still used
HTML encoding. Hence, crawling of those company
portals was done using HTML scraping. +is is not a
single crawler but a group of crawlers working in
parallel, traditionally in the same network. +is
testifies the research that doing this improves the
efficiency of the crawler by optimizing the speed.

3.1.6. Data Fields Unifying Module. Data of various job
postings, listed by various platforms as well as standalone
companies’ job portals, is collected. +is was done after
culminating a list of the companies that the paper was going
to move ahead with, using various filters as mentioned in
submodule C. +is concluded the data collection part of the
research. +e job listings achieved as a result of the
abovementioned data collection are, however, not uniform.
+ere are irregularities in the data with respect to incoherent
key-value sets used by various companies. +ey did not have
a common schema [52].

For example, a company X might label their job de-
scription as “JD”, company Y could name the same infor-
mation under “Details”, and company Z could name it as
“Requirements”. With such incoherence and nonunifor-
mity, the database cannot be directly used for further tasks. It
was, hence, unified.

A procedure was devised for the one-time unification of
the database for each company [53]. It can then be reused for
all job listings from that company in the future. For each
company, however, this unification needs to be done at least
once. All fields related to the kind of role were unified and
named “Title”, all fields of job description and requirements
were filed under “Description”, etc. A total of nine such
headers or keys were unified. +e schema thus obtained
looked like this:

Schema({

job_id: String,
title: String,
description: String,
location: String,
company: String,
platform: String,
apply_url: String,
created_at: String,
updated_at: String

});

As a result of this, the unified database with a common
schema is now ready to be used by the filtering algorithm.

3.2. Recommendation System. Now, the data aggregation
and collection part has been implemented, and the data has
been unified in the database. It is ready to be used to rec-
ommend jobs to the user. +e proposed system calls for a
hybrid system of content-based and collaborative filtering.

Crawling
companies

Scraping jobs

Designing Job
schema

Filtering
companies

Adding jobs to
database

Processing job
descriptions

Content based
filtering

Collaborative
filtering

User Interface

Figure 1: Proposed system architecture.

4 Computational Intelligence and Neuroscience



+e system contrasts this particular hybrid method with the
two types of filtering used individually to see how the hybrid
system delivers results. +ese results are more practically
visualized in the web application when the recommenda-
tions are listed for the user.

(1) Content-based filtering finally provides the recom-
mendation of the list of appropriately matching jobs.
It is implemented in two ways:

(i) Profile-Description Matching. In this function-
ality, the user can be recommended for jobs on
the basis of the user profile that they have fed to
the portal. Using a host of algorithms, the user
profile is matched against the unified job listing
database previously created.

(ii) Keyword-Based Searching. In this functionality,
jobs will be recommended on the basis of explicit
searching by the user. +e user will be able to
enter the keywords, their skills, interests, or job
areas they are interested in. +e system will
recommend jobs after matching those particular
keywords with the job descriptions of companies.

+e jobs are listed in the decreasing order of appro-
priateness to the user. It is unique for each user based on
their profile. Both of these functionalities are achieved
through content-based filtering cum CBF. It attributes to
recommend another similar item that the user likes, based
on their past actions or clear feedback. User profiles are built
using existing actions or by explicitly asking users about
their preferences. For new users, the latter is a more proper
technique. As the system gets trained over time, the model
will learn to recommend the jobs that the user previously
showed interest in. +is hypothesizes the fact that if a user is
interested in a particular job category, they will be interested
in something similar in the future. It is true as the skillset of a
jobseeker remains more or less static over time. However,
there can always be room for new additions to their profiles.
As mentioned, for new users, explicitly taking an input of
their interests or skills or requirements is the best way to
move forward.

3.2.1. Content-Based Filtering Algorithm. After the recom-
mender is trained by an array of documents, it can tell the list
of documents that are more similar to the input document.
+e training process involves three main steps as follows:

(i) Content preprocessing is used to clean all job de-
scriptions and user profiles by removing and
eliminating all the common English connectors and
conjunctions. +ese are known as ‘stop words’.
+ese can be ‘and’, ‘can’, ‘but’, ‘is’, ‘has’, etc. In
addition to this, it also removed HTML tags that are
present in the descriptions due to HTML scraping.
+is is known as HTML tag stripping.

(ii) It computes document vectors using the concepts of
Term Frequency (TF) and Inverse Document Fre-
quency (IDF). It gives the count of occurrences of
the input term in the entire document domain.

(iii) Cosine similarity is one of the important elements of
content filtering. +is similarity is calculated be-
tween all vectors in the document.

TF and IDF concepts are used to assess the relative value
of documents, articles, or works. +e count of the word in a
document is measured in TF. +e recurrence of all docu-
ments is the IDF. +e effect of high-frequency repetitions in
evaluating the exclusion of an object is rejected by the TF-
IDF. However, the mathematical tool log is used to minimize
the impact of any repetitive words when calculating the TF-
IDF.

+e significance of the word in a document cannot be
determined by a simple raw number. It leads to the following :

wt,d � 1 + log10tft,dtft,d > 0,

wt,d � 0otherwise,

tft,d⟶ wt,d,

0⟶ 0, 1⟶ 1, 2⟶ 1.3, 10⟶ 2, 1000⟶ 4.

(1)

(o) Cosine Similarity. For two N-dimensional vectors’
cosine values, cosine similarity indicates the degree
of similarity between the vectors. +e higher the
values of cosine similarity, the closer the two doc-
ument vectors in question in similarity. +is value is
typically between 0 and 1 since there are no negative
vectors. Equation 2 is used to calculate the cosine.

S(Q, D) �
∈ Qw.Dw��������

∈ Q
2
w.D

2
w

􏽱 , (2)

where S is the similarity value, Q is the document vector 1,
and D is the document vector 2.

What the model does for new users is that it matches
the user’s profile with the job description listed by the
company in their respective job postings. It parses all job
descriptions, looking for matches suitable for the user’s
profile. Based on these matchings, a match percentage or a
match score is calculated. Using this score, job listings are
displayed to the user in descending order of their match
percentage.

+is module has been tested on a fair number of test
cases and has shown satisfactory results every time. Each test
case was catered to mimic the behavior of a different user,
each having a separate set of skills and interests.

3.2.2. Collaborative Filtering: In collaborative filtering, the
idea is to find similar users and recommend to each one of
them what users similar to them like. In this sort of rec-
ommendation system, instead of using the features of the
item to make recommendations, classification of the users
into clusters of analogous types is done. +e system rec-
ommends each user on the basis of the preference of its
respective cluster.

+ere are two types of collaborative filtering methods: (i)
user-based approach and (ii) item-based approach.

Computational Intelligence and Neuroscience 5



In the user-based approach, the users are the masters of
the ring. If some users have a similar preference, they tend to
join a group. Recommendations are given to the user, built
on the evaluation of items by other users in the same group.
+ese users share a common taste. +e reason for such a
filter being chosen in the paper is that the prediction is
mainly based on the average weight of recommendations
from many people. It is located in a single bank from the
same person. +e weight allocated to the individual as-
sessment determines the relationship between the user and
the other user. Pearson’s correlation coefficient was used to
measure this correlation.

(1) Pearson Correlation Coefficient. +is correlation method
was used to compute how much the similarity of mutual
users for particularly two items deviates from the average
ratings. +e range of the Pearson coefficient varies between
the values zero and one. +e larger the magnitude of this
coefficient, the higher the correlation between the two
documents. It is depicted in the following equation:

P �
n(∈ ab) − (∈ a)(∈ b)

������������������������������
n ∈ a

2
− ∈ a

2
􏼐 􏼑􏽨 􏽩. n ∈ b

2
− ∈ b

2
􏼐 􏼑􏽨 􏽩􏼐 􏼑

􏽱 , (3)

where P is the Pearson coefficient, and a and b are two
entities.

Talking about the implementation of collaborative fil-
tering, the system generates recommendations for a user
based on users with a similar taste.+ere is no normalization
based on popularity at the moment, hence, no room for any
bias depending on the user profile.

Another important assumption made is that the system
is not taking into account any dislikings or spam jobs. In
other words, the paper takes into account the jobs only
which have been recommended by similar users. An array
matrix is defined which is anM∗Nmatrix withM being the
number of users and N being the jobs.+e engine defines the
ratings of the users in the database. It contains only Boolean
values: 0 (not rated) or 1 (recommended or applied). After
the function gets the required input in the above format, it
runs through the collaborative filter algorithm. +e algo-
rithm effectively generates job recommendations using
Jaccard Similarity.

(2) Tanimoto Coefficient (Jaccard Index). +e Jaccard Sim-
ilarity Index or Tanimoto coefficient is a degree of similarity
between two sample sets of data. +e index arrays are from 0
to 1. +e closer to 1, the more similar are the two data sets.

(i) //Algorithm: – Hybrid Recommendation System
(ii) //Input: – User�U, All jobs� J

//Output: – Recommended Jobs with respective hybrid score
Step 1: – Start
Step 2: – Input_desc(U)
Step 3: – Content_Based_Filtering (U, J):

TF-IDF weight determination:
if tf[U, Ji]> 0: w[U, Ji] � SUM(1, log tf[U, Ji])

else:
w[U, Ji] � 0

Content_Score� w[U, Ji]

Cosine similarity:
CS(U, Ji) � ∈ U.Ji/∈ U2J2

Content_Score�Content_Score +CS [U, Ji]
end
Step 4: – Collaborative_Filtering (U, J):
Matrix [U, J]:

if INTERACT (Ui, Jj)� �TRUE:
Matrix [Ui, Jj]� 1

else:
Matrix [Ui, Jj]� 0

Similarity (Ui, Jj)�RATIO (INTERSECT (Ui, Jj), J)
Collaborative_Score�RATIO (N_INTERACT,

INTERSECT (N_Similar))
end

Step 5: – Total_Hybrid_Score (U, Ji):
Score�AVERAGE (Collaborative_Score, Content_Score)

end
Step 6: – SORT_JOBS (Total_Hybrid_Score)
Step 7: – Stop

ALGORITHM 1: Hybrid recommendation system.

6 Computational Intelligence and Neuroscience



Jaccard Similarity� (Intersection of the two sets of the
number of observations common in both sets)/(Union of the
two sets or the number in either of the sets).

Equation (4) is a mathematical representation:

J(A, B) �
A∩B

A∪B
. (4)

Using this concept, a methodology for computing
similar jobs based on collaborative filtering [53, 54] is de-
vised. Somemachine learning algorithms can also be devised
[55].+e system first finds similar users (who have applied to
the job) and the jobs to which these common users have
applied. Based on the correlation and similarity between the
two users, jobs will be recommended to the current user.
+at means a job applied by User 2 would be recommended
higher than the one applied by User 3 if User 1 is more
similar to User 2 than User 3.

3.2.3. Hybrid Recommendation System. +e concept of a
hybrid recommendation system is based on the fact that
content-based and collaborative filtering alone does not
provide the best job recommendations to the user. +ere-
fore, a method to combine the two types of filtering and
make the recommendation engine truly hybrid was devised.
To achieve this, the system first finds similar users and jobs as
discussed above in collaborative filtering. After this, the
correlation score for the recommended job is computed. To
calculate this, the ratio of the number of common jobs
between the main and suggested user to the number of all
common jobs present between all the users is taken. +is
way, a score between 0 and 1 is generated. Taking the average
of the score computed just above the content-based filtering
score, the system produces a final recommendation score for
each job. +is way, it is possible to rank all top-

recommended jobs to the user based on a hybrid model of
content-based and collaborative filtering.

4. Algorithm

Algorithmic steps for weight determination, content score,
collaborative filtering, and hybrid score calculation are
shown in Algorithm 1.

5. Results and Analysis

Table 1 shows the comparison between the standard existing
job recommendation models in the market (naukri.com,
indeed.com) and existing research papers. +e following
parameters were derived from it.

Table 2 summarizes the top seven jobs liked by some
particular users in the systemwere analyzed and the content-
based and hybrid scores for them were compared as shown
in the table.

From Figure 2, it is observed that the average percentage
increase in the match score is 59.78%. In content-based
filtering, it was tried to recommend the jobs as per the user’s
profile and resume by parsing all job descriptions and
computing a match score.

For this, two experiments were performed: one with the
raw job description and the second after processing the jobs.
+e comparison between the two can be seen in Table 3.

Figure 3, clearly, shows that the average percentage time
reduction after processing the descriptions is 37.74%.

Table 1: Comparing the features of existing systems with the proposed system.

Systems
Aspects Companies listed

Data collection method JD cleaning Recommendation methodology Real time Jupiter Pratilipi
Reference [2] College campus No Content-based filtering No NA NA
Reference [25] Single website crawler Yes No No No No
Naukri Direct listing Yes Collaborative No No Yes
Indeed Direct listing No Collaborative No No No
Proposed system Automate crawling Yes Hybrid system Yes Yes Yes

5 10 15 20 250

10
9
8
7
6
5
4
3
2
1

Jo
b_

ID

Rank Before
Rank After

Rank Before vs Rank After 

Figure 2: Comparing ranks of relevant jobs in content-based and
hybrid recommendations.

Table 2: Comparing ranks of relevant jobs in content-based and
hybrid recommendations.

Job_ID Rank before
(content)

Rank after
(hybrid)

61a29356c062e596f369e488 9 1
61a293c9c062e596f369e6ad 5 2
61a293c6c062e596f369e6a1 20 3
61a2936dc062e596f369e4f4 6 4
61a29357c062e596f369e491 1 5
61a293c7c062e596f369e6a4 3 6
61a2936dc062e596f369e4f7 19 7

Computational Intelligence and Neuroscience 7

http://naukri.com
http://indeed.com


Table 4 is an extension of the above experiment and a
more important metric was observed, i.e., the match score.
+e input was the same as the above previous one.

Figure 4 shows that job description processing increases
the chances of the user getting matched to his desired job by
103.44%.

6. Conclusion and Future Scope

In this paper, Content-Based Filtering and Collaborative
Filtering of recommendations have been compared. Addi-
tionally, an aggregation plus recommender system has been
devised. Content-Based Filtering recommends the results
based on matching the personal preferences of the user with
the given document whereas collaborative filtering recom-
mends based on the preferences of fellow users. On eval-
uating both of these methods, it was concluded that a hybrid
system of both of these overcomes the limitations of both of

Table 3: Comparison of the efficiency of the system with and without preprocessing the job descriptions

User skills/description Time taken for the raw
job description (s)

Time taken for the processed
job description (s)

Percentage reduction
in time (%)

Test case 1—frontend 33.38 20.87 37.48
Test case 2—backend 29.54 19.55 33.82
Test case 3—machine learning 51.07 36.69 28.16
Test case 4—DevOps 46.28 29.52 36.21
Test case 5—product management 38.48 18.07 53.04

Table 4: Comparing the ranks of jobs after preprocessing descriptions.

User skills/description Average match score for raw job
description

Average match score for processed
job description

Percentage increase in the match
score (%)

Test case 1—frontend 0.05629 0.12358 119.54
Test case—2 backend 0.04631 0.09131 97.17
Test case—3 ML 0.04672 0.10409 122.8
Test case—4 DevOps 0.06277 0.11382 81.33
Test case—5 product
management 0.22237 0.45107 102.85

Time in seconds

Product

DevOps

Machine Learning

Backend

Frontend

Pr
of

ile
s

40 600 20

Original
Processed

Figure 3: Comparing the efficiency of the system with and without preprocessing the job descriptions.

Frontend

Backend

Machine Learning

DevOps

Product

Sc
or

e

Score (Avg of top 5)

Original
Processed

0.1 0.2 0.3 0.4 0.50.0

Figure 4: Comparing ranks of jobs after preprocessing the
descriptions.

8 Computational Intelligence and Neuroscience



them and increases the efficiency of ranking. Problems of
cold start, sparse database, scalability, and lack of trend
recommendation [5] have been eliminated. +e proposal is
to design a Job Recommender system that prioritizes quality
over quantity. While there are websites and job listing
portals already recommending jobs to job seekers based on
their profiles, this research on aggregate quality recom-
mendations has been achieved by crawling selectively,
overcoming the limitations of [1, 4, 14]. A fully functioning
user interface was developed to combine everything together
to give the user a seamless experience.

For this system to be hybrid, content-based filtering is
required, which can only recommend jobs based on the
user’s current profile. It cannot deliver anything surprising
based on the user’s past searches. +is paper also uses
collaborative filtering which faces well-known problems of
privacy breaches and cold start. +e system has a broad
scope that can be used to make it more robust and foolproof.
Firstly, automating the crawling process is required, when a
new company is added to the database. In other words,
removing the one-time configuration step/process to fetch
jobs of a particular new company can be done. +ese models
can implement techniques such as KNN in collaborative
filtering. Implementing NLP in content-based filtering for
better and more accurate search matching can be done.
Along with this, testing and collecting more user data for
better performance of the collaborative filtering module is
required. Lastly, improving the cleansing process of the job
description and using natural language processing are re-
quired. While using collaborative filtering, this work can be
improved by giving different weights to different users based
on their LinkedIn skills.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

References

[1] C. Slamet, R. Andrian, D. S. A. Maylawati, W. Darmalaksana,
and M. A. Ramdhani, “Web scraping and Naı̈ve Bayes clas-
sification for job search engine,” IOP Conference Series:
Materials Science and Engineering, vol. 288, no. 1, Article ID
012038, 2018.

[2] D. V. Musale, M. K. Nagpure, K. S. Patil, and R. F. Sayyed,
“Job recommendation system using profile matching and web
crawling,” Int. J. Adv. Sci. Res. Eng. Trends.vol. 1, 2016.

[3] U. P. K. Kethavarapu and S. Saraswathi, “Concept based
dynamic ontology creation for job recommendation system,”
Procedia Computer Science, vol. 85, pp. 915–921, 2016.

[4] A. S. Parihar, Y. K. Gupta, Y. Singodia, V. Singh, and K. Singh,
“A comparative study of image dehazing algorithms,” in
Proceedings of the 2020, 5th International Conference on
Communication and Electronics Systems (ICCES), pp. 766–
771, Coimbatore, India, 2020, June.

[5] R. Mishra and S. Rathi, “Efficient and scalable job recom-
mender system using collaborative filtering,” in ICDSMLA
2019, pp. 842–856, Springer, Singapore, 2020.

[6] D. Mhamdi, R. Moulouki, M. Y. El Ghoumari, M. Azzouazi,
and L. Moussaid, “Job recommendation based on job profile
clustering and job seeker behavior,” Procedia Computer Sci-
ence, vol. 175, pp. 695–699, 2020.

[7] V. Desai, D. Bahl, S. Vibhandik, and I. Fatma, “Imple-
mentation of an automated job recommendation system
based on candidate profiles,” Int. Res. J. Eng. Technol, vol. 4,
no. 5, pp. 1018–1021, 2017.

[8] V. Indira and S. Rathika, “A study on E-recruitment and it’s
present condition towards job seekers,” International Re-
search Journal of Engineering and Technology (IRJET), ISSN:
ISSN: 2395-0056, vol. 7, no. 4, , pp. 3753–3758, 2020.

[9] R. Pradhan, J. Varshney, K. Goyal, and L. Kumari, “Job
recommendation system using content and collaborative-
based filtering,” in International Conference on Innovative
Computing and Communications, pp. 575–583, Springer
Nature, New York, NY, USA, 2022.

[10] R. G. Belsare and V. M. Deshmukh, “Employment recom-
mendation system using matching, collaborative filtering and
content- based recommendation,” International Journal of
Computer Applications Technology and Research, vol. 7, no. 6,
pp. 215–220, 2018.

[11] P. Manjare, J. Kumbhar, S. Ovhal, and R. Munde, “An ef-
fective job recruitment system using content-based filtering,”
International Journal of Engineering & Technology, vol. 4,
no. 3, pp. 2395–0056, 2017.

[12] C. P. Akshaya, “Enhancement of recommender system using
collaborative filtering,” International Research Journal of
Engineering and Technology, vol. 5, no. 4, pp. 2198–2200, 2018.

[13] H. Jain and M. Kakkar, “Job recommendation system based
on machine learning and data mining techniques using
RESTful API and android IDE,” in Proceedings of the 2019, 9th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 416–421, Noida, India, 2019,
January.

[14] P. Yi, C. Yang, C. Li, and Y. Zhang, “A job recommendation
method optimized by position descriptions and resume in-
formation,” in Proceedings of the 2016 IEEE Advanced In-
formation Management, Communicates, Electronic and
Automation Control Conference (IMCEC), pp. 761–764, Xi’an,
China, 2016, October.

[15] H. Apaza, A. A. Rubin de Celis Vidal, and J. E. Chire Saire,
“Job recommendation based on curriculum vitae using text
mining,” in Future of Information and Communication
Conference, pp. 1051–1059, Springer, New York, NY, USA,
2021.

[16] D. Nasution and Z. Sitorus, “Enhance web-based job search
recommendation system of hybrid-based recommendation,”
Budapest International Research and Critics Institute (BIRCI-
Journal): Humanities and Social Sciences, vol. 4, no. 3,
pp. 7214–7221, 2021.

[17] Q. Zhou, F. Liao, L. Ge, and J. Sun, “Personalized preference
collaborative filtering: job recommendation for graduates,” in
Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intel-
ligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation,
pp. 1055–1062, Leicester, UK, 2019, August.

[18] R. Patel and S. K. Vishwakarma, “An efficient approach for job
recommendation system based on collaborative filtering,” ICT

Computational Intelligence and Neuroscience 9



Systems and Sustainability: Proceedings of ICT4SD, Springer
Nature, vol. 1, p. 169, New York, NY, USA, 2020.

[19] Y. C. Chou and H. Y. Yu, “Based on the application of AI
technology in resume analysis and job recommendation,” in
Proceedings of the 2020, IEEE International Conference on
Computational Electromagnetics (ICCEM), pp. 291–296,
Singapore, 2020, August.

[20] D. Punitavathi, V. Shinu, S. Kumar, and V. P. Sp, “Online job
and candidate recommendation system,” International Re-
search Journal of Multidisciplinary Technovation, vol. 1,
pp. 84–89, 2019.

[21] T. V. Yadalam, V. M. Gowda, V. S. Kumar, D. Girish, and
M. Namratha, “Career recommendation systems using con-
tent based filtering,” in Proceedings of the 2020 5th Interna-
tional Conference on Communication and Electronics Systems
(ICCES), pp. 660–665, Coimbatore, India, 2020, June.

[22] N. Almalis, G. Tsihrintzis, and N. Karagiannis, “A new
content-based recommendation algorithm for job recruiting,”
in Proceedings of the International Conference on Innovative
Techniques and Applications of Artificial Intelligence,
pp. 393–398, Springer, Corfu, Greece, 2015, December.

[23] J. Suharyadi and A. Kusnadi, “Stay at home reservation: the
mitigation step in covid-19 pandemic,” International Journal
of New Media Technology, vol. 5, no. 2, pp. 116–120, 2018.

[24] S. R. Rimitha, V. Abburu, A. Kiranmai, and
K. Chandrasekaran, “Ontologies to model user profiles in
personalized job recommendation,” in Proceedings of the 2018
IEEE Distributed Computing, VLSI, Electrical Circuits and
Robotics (DISCOVER), pp. 98–103, Mangalore, India, 2018,
August.

[25] F. J. M. Shamrat, Z. Tasnim, A. S. Rahman, N. I. Nobel, and
S. A. Hossain, “An effective implementation of web crawling
technology to retrieve data from the world wide web
(WWW),” International Journal of Scientific & Technology
Research, vol. 9, no. 01, pp. 1252–1256, 2020.

[26] H. Nigam and P. Biswas, “From web scraping to web
crawling,” in Applications of Artificial Intelligence and Ma-
chine Learning, pp. 97–112, Springer, Singapore, 2021.

[27] T. Karthikeyan, K. Sekaran, D. Ranjith, and J. M. Balajee,
“Personalized content extraction and text classification using
effective web scraping techniques,” International Journal of
Web Portals, vol. 11, no. 2, pp. 41–52, 2019.

[28] N. Kumar and D. Aggarwal, “LEARNING-based focused
WEB crawler,” IETE Journal of Research, pp. 1–9, 2021.

[29] D. Rai, N. Kumar, and J. Mor, “Review on improving per-
formance of web crawler and search system Architecture,”
International Journal of Advanced Studies of Scientific Re-
search, vol. 3, no. 10, 2018.

[30] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Recom-
mendation independence,” in Proceedings of the Conference
on Fairness, Accountability and Transparency 187-201), New
York, NY, USA, 2018, January.

[31] M. Kumar, A. Bindal, R. Gautam, and R. Bhatia, “Keyword
query based focused Web crawler,” Procedia Computer Sci-
ence, vol. 125, pp. 584–590, 2018.

[32] R. Diouf, E. N. Sarr, O. Sall, B. Birregah, M. Bousso, and
S. N. Mbaye, “Web scraping: state-of-the-art and areas of
application,” in Proceedings of the 2019, IEEE International
Conference on Big Data (Big Data), pp. 6040–6042, Los
Angeles, CA, USA, 2019, December.

[33] D. Glez-Peña, A. Lourenço, H. López-Fernández, M. Reboiro-
Jato, and F. Fdez-Riverola, “Web scraping technologies in an
API world,” Briefings in Bioinformatics, vol. 15, no. 5,
pp. 788–797, 2014.

[34] E. Uzun, “A novel web scraping approach using the additional
information obtained from web pages,” IEEE Access, vol. 8,
Article ID 61726, 2020.

[35] M. Gupta, N. Kumar, B. K. Singh, and N. Gupta, “NSGA-III-
Based deep-learning model for biomedical search engine,”
Mathematical Problems in Engineering, vol. 2021, Article ID
9935862, 8 pages, 2021.

[36] J. Mor, N. Kumar, and D. Rai, “An improved crawler based on
efficient ranking algorithm,” International Journal of Ad-
vanced Trends in Computer Science and Engineering, vol. 8,
pp. 119–125, 2019.

[37] J. Mor, D. Rai, and N. Kumar, “An XML based web crawler
with page revisit policy and updation in local repository of
search engine,” International Journal of Engineering &
Technology, vol. 7, no. 3, pp. 1119–1123, 2018.

[38] J. Mor, N. Kumar, and D. Rai, “Research on mechanism and
challenges in meta search engines,” International Journal of
Innovative Technology and Exploring Engineering, vol. 8, no. 9,
pp. 281–284, 2019.

[39] N. Kumar, R. Nath, and P. Kherwa, “An automated frame-
work based on TLS to choose best search engine in a particular
domain,” International Journal of Computer Application,
vol. 83, no. 14, pp. 42–48, 2013.

[40] J. Mor, N. Kumar, and D. Rai, “Effective presentation of
results using ranking & clustering in meta search engine,
COMPUSOFT,” An International Journal of Advanced
Computer Technology, vol. 7, no. 12, 2018.

[41] N. Kumar and P. Dahiya, “Weighted similarity page rank: an
improvement in WPR and WSR,” International Journal of
Computer Engineering and Applications, vol. 11, no. VIII,
pp. 1–11, 2017.

[42] N. Kumar and R. Nath, “A meta search engine approach for
organizing web search results using ranking and clustering,”
International Journal of Computer, 2013.

[43] N. Kumar, D. Tyagi, and S. Awasthi, “Survey on crawling
techniques,” in Proceedings of the 5th International Conference
on “Computing for Sustainable Global Development,
pp. 2449–2455, New Delhi, India, March, 2018.

[44] N. Kumar, “Document clustering approach for meta search
engine,” IOP Conference Series: Materials Science and Engi-
neering, vol. 225, Article ID 012291, 2017.

[45] N. Kumar, D. Tyagi, S. Awasthi, and J. Mor, “Change de-
tection of web page in focused crawling system,” International
Journal of Control Heory and Applications, vol. 10, no. 6,
pp. 671–676, 2017.

[46] N. Kumar and P. Singh, “Meta search engine with semantic
analysis and query processing,” International Journal of
Computational Intelligence Research ISSN, vol. 13, no. 8,
pp. 0973–1873, 2017.

[47] N. Kumar, “Segmentation based twitter opinion mining using
ensemble learning,” International Journal on Future Revolu-
tion in Computer Science & Communication Engineering,
vol. 3, no. 9, 2017.

[48] R. Nath, N. Kumar, and S. Tuteja, “A survey on reduction of
load on the network,” Intelligent Distributed Computing,
pp. 239–249, Springer, New York, NY, USA, 2015.

[49] N. Kumar, N. N. Das, D. Gupta, K. Gupta, and J. Bindra,
“Efficient automated disease diagnosis usingmachine learning
models,” Journal of Healthcare Engineering, vol. 2021, Article
ID 9983652, 13 pages, 2021.

[50] V. Singrodia, A. Mitra, and S. Paul, “A review on web
scrapping and its applications,” in Proceedings of the 2019,
International Conference on Computer Communication and
Informatics, pp. 1–6, Coimbatore, India, 2019, January.

10 Computational Intelligence and Neuroscience



[51] R. Nath and N. Kumar, “A novel parallel domain focused
crawler for reduction in load on the network,” International
Journal of Computational Engineering Research, vol. 2, no. 7,
pp. 77–84, 2012.

[52] V. Shrivastava, “A methodical study of web crawler,” Journal
of Engineering Research and Application, vol. 8, no. 11, pp. 1–8,
2018.

[53] S. Amudha and M. Phil, “Web crawler for mining web data,”
International Research Journal of Engineering and Technology
(IRJET), vol. 4, no. 2, pp. 2395–0072, 2017.

[54] N. Nassar, A. Jafar, and Y. Rahhal, “A novel deep multi-
criteria collaborative filtering model for recommendation
system,” Knowledge-Based Systems, vol. 187, Article ID
104811, 2020.

[55] M. Fu, H. Qu, Z. Yi, L. Lu, and Y. Liu, “A novel deep learning-
based collaborative filtering model for recommendation
system,” IEEE Transactions on Cybernetics, vol. 49, no. 3,
pp. 1084–1096, 2018.

Computational Intelligence and Neuroscience 11


