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Abstract

Background: Prokaryotic viruses referred to as phages can be divided into virulent and temperate phages. Distinguishing
virulent and temperate phage–derived sequences in metavirome data is important for elucidating their different roles in
interactions with bacterial hosts and regulation of microbial communities. However, there is no experimental or
computational approach to effectively classify their sequences in culture-independent metavirome. We present a new
computational method, DeePhage, which can directly and rapidly judge each read or contig as a virulent or temperate
phage–derived fragment. Findings: DeePhage uses a “one-hot” encoding form to represent DNA sequences in detail.
Sequence signatures are detected via a convolutional neural network to obtain valuable local features. The accuracy of
DeePhage on 5-fold cross-validation reaches as high as 89%, nearly 10% and 30% higher than that of 2 similar tools,
PhagePred and PHACTS. On real metavirome, DeePhage correctly predicts the highest proportion of contigs when using
BLAST as annotation, without apparent preferences. Besides, DeePhage reduces running time vs PhagePred and PHACTS by
245 and 810 times, respectively, under the same computational configuration. By direct detection of the temperate viral
fragments from metagenome and metavirome, we furthermore propose a new strategy to explore phage transformations in
the microbial community. The ability to detect such transformations provides us a new insight into the potential treatment
for human disease. Conclusions: DeePhage is a novel tool developed to rapidly and efficiently identify 2 kinds of phage
fragments especially for metagenomics analysis. DeePhage is freely available via http://cqb.pku.edu.cn/ZhuLab/DeePhage
or https://github.com/shufangwu/DeePhage.

Introduction

In a microbial community, phages are the major component of
the viral genetic materials. It is estimated that the number of

phages is on average 10 times higher than that of bacteria [1].
They may destroy bacteria but meanwhile in some situations
benefit populations of bacteria, and thus crucially impact the
composition of the microbial community [2]. With the develop-
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ment of high-throughput sequencing technology, a large num-
ber of novel phages have been discovered from metagenomes
and viromes, in which viral particles are first enriched before se-
quencing [3, 4]. However, the analysis of these phage sequences
is a great challenge because the reference genomes of phages
are very limited as a result of the fact that most phages cannot
be cultured independently. There are far fewer complete phage
genomes in current databases than those of bacteria; there-
fore there are a large number of sequences from virome data
for which regions with homology to the known phages cannot
be found [3]. In addition, unlike bacteria, phages lack the uni-
versal marker genes such as 16S ribosomal RNA [5], so many
species identification strategies designed for bacterial analysis
are not applicable to phages. Moreover, for mobile elements such
as phages, sequence assembly is often poorer than for bacte-
ria, usually because the mobile elements carry repetitive regions
such as insertion sequences and share sequences that occurred
among different genomes [6]. As a result, the large number of
short fragments in metagenomic data also increases the diffi-
culty of the analysis.

To overcome these difficulties, several computational tools
focusing on 2 major tasks have been developed to analyse the
phage sequences from metagenome or virome. One of the tasks
is to identify phage fragments in metagenomic data, such as the
tools VirSorter [7], VirFinder [8], MARVEL [9], virMine [10], and
PPR-Meta [11]. Especially, we have developed PPR-Meta, a tool
with high performance that demonstrates much better accuracy
than the related tools. Another task is to assign the host for a
given phage contig, which can be performed by such tools as
WIsH [12], VirHostMatcher [13], and Hostphinder [14]. However,
these tools cannot answer the question of how the newly dis-
covered phages interact with their hosts. According to the in-
teraction mode, which is also referred to as the phage lifestyle,
phages can be divided into the virulent phages and the temper-
ate phages [15]. When a virulent phage infects its host, it will
produce many progeny as soon as the phage’s DNA is injected
into the host cell and then causes the death of the host through
bacterial lysis [15]. In contrast, temperate phages can undergo
the lysogenic cycle and lytic cycle. In the lysogenic cycle, a tem-
perate phage will integrate its genome into the host chromo-
some, which is also referred to as a kind of prophage, and then
copies its genome together with the host chromosome [1]. When
induced by appropriate conditions, especially nutritional condi-
tions and a sufficient number of co-infecting phages, temperate
phages will enter the lytic cycle, followed by releasing the viral
particle and killing the host through bacterial lysis [16]. Such dif-
ferent processes have a significant influence on the microbiota
especially in the human gut, which could be highly correlated
with human diseases or the treatment of human disease. Al-
though some kinds of hot spots, such as phage therapies that
make use of virulent phages in the context of therapeutic ap-
plications [17], have been investigated, limited by current bioin-
formatics tools, comparatively little is known about these differ-
ent lifecycles in view of their prevalence in the human gut [18].
Therefore, it is important to distinguish virulent and temperate
phages for further understanding of phage-host interactions.

Although the classification strategy of this issue for virome
data is still a challenge, there are several noteworthy works that
help to characterize the virulent and temperate phages. Even in
phages lacking marker genes, those studies show that they may
have some functional genes, which are high-frequency genes
and can tell us whether a given phage is virulent or temperate
in a relatively credible way. For example, Emerson et al. found
that there were some functional genes for temperate phages,

such as integrase and excisionase [19]; Schmidt et al. found that
leucine substitution in the DNA polymerase (polA) gene had a
strong connection with temperate phages [20]. Notably, McNair
et al. designed a computational tool called PHACTS to identify
whether a phage with a complete or partial proteome is vir-
ulent or temperate [15]. This tool uses all the sequence infor-
mation of proteins from a phage genome and uses the random
forest as a classifier to make the judgment. Researchers further
found that the existence of some kinds of genes helped PHACTS
present good results. For example, virulent phages usually have
genes related to phage lysis, nucleotide metabolism, or struc-
tural proteins, while temperate phages usually contain genes
related to toxins, excision, integration, lysogeny, or regulation
of expression [15]. Unfortunately, such strategies may not apply
to metagenomic data. To date, it is still a difficult task to recon-
struct complete genomes of all organisms in the metagenomic
data. Therefore, only a few DNA fragments may contain those
functional genes that can help to make the judgment. Accord-
ing to the report of PHACTS, this tool can achieve accuracy >95%
if ≥25 proteins are provided from a phage genome. However, if
fewer proteins are obtained, the accuracy of PHACTS decreases.
When only 5 proteins are obtained from a phage, PHACTS only
achieves an accuracy of ∼65%; if only 2 proteins are obtained
from a phage, PHACTS seems to produce random results, with
an accuracy <55%. Considering that most of the DNA sequences
in metagenomic data are short fragments that only contain a few
genes or even incomplete genes, it is essential to develop a tool
that does not depend on information from sufficient proteins to
reach the level of functional genes, while making the judgment
directly for each short DNA fragment in metagenomic data. Re-
cently, a new tool, PhagePred, was developed to identify phages’
lifestyle in metagenomic sequences [21]. Based on the Markov
model, PhagePred uses k-mer frequencies as the sequence fea-
ture to test the dissimilarity measures between new contig and
2 kinds of phages. Then it is used to determine the new con-
tig’s lifestyle. PhagePred was tested on various contig lengths
(500, 1,000, 3,000, 5,000, and 10,000 bp). However, as a global
statistic, such k-mer methods will generate much noise with a
short metagenomic sequence. When PhagePred is applied to se-
quences from 500 to 10,000 bp, for a short sequence, the k-mer
frequencies may be different from long sequences, and the vari-
ance may be higher than long sequences. Thus, the k-mer–based
method may not be applicable for all ranges of contig length for
PhagePred. Another concern is that k-mer frequency will lose de-
tailed sequence information when encoding sequence to k-mer
feature vectors. Considering all the aforementioned shortcom-
ings, it is better to develop a new method that is more suitable
for short phage sequences.

In this article, we present a 2-class classifier, DeePhage, to
identify whether a DNA fragment is derived from a virulent
phage or a temperate phage. Using the information of every
nucleotide without manually extracted features, DeePhage en-
codes sequences in “one-hot” form. Such representations are
suitable for the convolutional neural network (CNN) model to de-
tect helpful motifs for classification, which are commonly used
in biological sequence identification. Together with other kinds
of neural network layers, DeePhage learns to recognize differ-
ent features between virulent and temperate sequences and
then outputs a score indicating the possibility of being a cer-
tain kind of phage sequence. Tested on the same data, DeeP-
hage significantly outperforms the related methods PhagePred
and PHACTS on the metric of computational efficiency, using
only 1/245 and 1/810 the computation time, respectively. Simula-
tion tests on 5-fold validation show that DeePhage outperforms
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these 2 methods in accuracy metrics by ∼10% and 30%. DeeP-
hage’s evaluations on real metavirome data of bovine rumen are
better than PhagePred and PHACTS with much more accurate
results, which use annotations of the BLAST method as a rel-
atively accurate reference. Meanwhile, we present a new strat-
egy to conveniently detect the phage transformation by tracing
specific types of phage contigs, which can explore the influence
of phages that contribute to microbial communities and even
to human diseases. DeePhage can be used to analyse virome
data and metagenomic data directly. While handling metage-
nomic data, users need to first identify the phage sequences
using related software, such as PPR-Meta [11] as mentioned
above, and then use DeePhage to further annotate the phage
sequences.

Material and Methods
Data construction

Considering that there exist no real virome data with reliable
lifestyle annotations for each sequence to use as a benchmark,
we constructed artificial contigs extracted from well-annotated
complete phage genomes as the benchmark to train and test the
algorithm. We downloaded 227 complete phage genomes with
lifestyle annotations from the dataset of McNair et al., includ-
ing 79 virulent phages and 148 temperate phages [15]. Among
these phages, we removed 2 virulent phages from the dataset:
mycobacteriophage D29 (accession: NC 001900) and lactococcus
lactis bacteriophage ul36 (accession: NC 004066), because the
lifestyle of these 2 phages may be ambiguous. Although these 2
phages are annotated as virulent phages, researchers found that
they both contained functional integrases, indicating that they
can integrate their genomes into host chromosomes like tem-
perate phages [15]. Besides, D29 is very similar to the temperate
phage L5 [22], while ul36 has 46.6% homology with the temperate
phage Tuc2009 [23]. Therefore, 77 virulent phages and 148 tem-
perate ones are used in the dataset of the present study, named
Dataset-1. In addition, following the phage lifestyle dataset con-
struction strategy of Song [21], we recruited >1,500 phage Ref-
Seq genomes from the NCBI database [24]. Their lifestyle anno-
tations are labelled using a bioinformatic method [25]. Exclud-
ing the overlapped phages in Dataset-1, we included 1,211 viru-
lent and 429 temperate phage genomes (Dataset-2). Dataset-1
is manually curated with credible lifestyle annotations, while
Dataset-2 is not. Therefore, based on genomes, we used all
phages of Dataset-2 and 80% of the phages of Dataset-1 to be
the training set, and 20% of the phages of Dataset-1 to be the test
set. Detailed information on each phage genome and their host
information from Dataset-1 and Dataset-2 is provided in Supple-
mentary Data 1. Moreover, a usage label (Training usage or Test
usage) indicates in which cross-validation the phage genome
was used for training or test set in Supplementary Data 1. For
convenience, herein the virulent phages are referred to as the
positive sample and the temperate phages as the negative sam-
ple.

We further used MetaSim (v0.9.1) [26] to extract artificial con-
tigs from the complete phage genomes. Considering that the
length of contigs in real metagenomes may cover a wide range,
we divided the artificial contigs into 4 groups A–D, according
to their length range, 100–400, 400–800, 800–1,200, and 1,200–
1,800 bp, respectively. Those 4 groups may cover the length of
raw reads and the mean length of assembled contigs from the
next-generation sequencing technology. We evaluated the per-
formance of DeePhage on the 4 different groups.

We also used real virome data to estimate the reliability of
DeePhage qualitatively. We downloaded virome data of bod-
ily fluids in the bovine rumen [27] from MG-RAST [28]. They
were downloaded as raw reads (accessions: mgm4534202.3 and
mgm4534203.3). We used SPAdes (v3.13.0) [29] to assemble the
raw reads and obtained 118,918 contigs with an N50 of 291 bp.

Mathematical model of phage sequences

To evaluate the feasibility of the sequence signature used for
classifying virulent and temperate phages, we first analysed the
distribution of k-mer frequencies, which have been widely used
to distinguish genomes from different species, among virulent
phage genomes and temperate phage genomes from Dataset-1.
Using 4-mer frequencies with the anosim (analysis of similar-
ities) test shows that there is a significant difference between
those 2 groups (R = 0.080, P = 0.001), which means that they have
different sequence signatures to characterize the 2 categories of
phage genomes. To visualize this result, we performed princi-
pal component analysis (PCA) [30] based on 4-mer frequencies
features (see Supplementary Fig. S1).

Although k-mer frequencies have shown their ability to clas-
sify virulent and temperate phage genomes, using such frequen-
cies to characterize short DNA fragments will usually be hin-
dered by noise [12]. Also, because global statistics may miss
some local information, it is difficult to use k-mer frequencies to
characterize the details of mobile elements that contain a mo-
saic structure [31]. To describe the local sequence information in
detail, we consider the one-hot encoding form, which can rep-
resent every base continuously and entirely. For each sequence,
we used the “one-hot” encoding form to represent each base in
a sequence. Specifically, bases A, C, G, and T were represented
by [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], and [1, 0, 0, 0], respectively.
In particular, the one-hot encoding form could be regarded as a
special 1-mer frequency detector.

Algorithm structure of DeePhage

Deep learning algorithms are recognized as an extremely effec-
tive method in many fields including in biology. Compared with
recurrent neural networks, the CNN models are faster to train
and more efficient in sequential spatial correlations [32]. Specif-
ically, CNN is a universal network for extracting local patterns
in terms of biology, which in the present context can be used
as a motif detector of DNA sequences. In DeePhage, we present
a deep learning algorithm with CNN models to handle the in-
put sequences represented by the one-hot encoding form. The
network contains 8 layers: a 1D convolutional (Conv1D) layer, a
1D maximum pooling (Maxpooling) layer, a 1D global average
pooling (Globalpooling) layer, 2 batch normalization (BN1 and
BN2) layers, a dropout (Dropout) layer, and 2 dense (Dense1 and
Dense2) layers.

The Conv1D layer takes a sequence encoded by an L × 4 ma-
trix X (L is the length of the sequences, equal to 400, 800, 1,200,
and 1,800) as the input and generates a total of F feature maps
as output by a corresponding F convolutional kernels. Those ker-
nels can be used to detect vital motifs. Using ReLU (Rectified Lin-
ear Unit) [33] as the activation function, the Conv1D layer out-
puts an L × F matrix YC and computes for the fth feature map
at the lth location like this:

YC
l, f = ReLU

( ∑M−1

m = 0

∑3

n = 0
Wf

m,n Xl+m,n + bC
f

)
,

for l = 0, 1, 2, . . . , L − 1, f = 0, 1, 2, . . . , F − 1.
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The Wfand bC
f are an M×4 weight matrix and a bias of the fth

kernel. The aforementioned ReLU function is defined as [33]:

ReLU(x) =
{x if x ≥ 0

0 if x < 0
.

As a traditional nonlinear function, the ReLU function is eas-
ier to train and achieves better performance, which can rectify
the shortcomings of sigmoid functions. Those kernels scan se-
quences one after another to extract the features relevant to the
classification, and the ReLU function achieves a nonlinear trans-
formation.

Such a combination is followed by the Maxpooling layer
downsampling the input representation by taking the maximum
value over an input channel with a pooling size S1 and a stride
size S2. The window is shifted along with each channel inde-
pendently and can generate F new channels with the size of
L ′ ( L ′ = L/S2 ). The Maxpooling layer outputs an L ′ × F feature
matrix YM and one of the pooling operation for a specific chan-
nel at the lth location is defined as follows:

YM
l, f = max

(
YC

l×S2,f , YC
l×S2+1,f , YC

l×S2+2,f , . . . , YC
l×S2+S1−1,f

)
,

for l = 0, 1, 2, . . . , L ′ − 1, f = 0, 1, 2, . . . , F − 1.

Its main function is to reduce the dimensions of each input
channel using the final summarized features, which can also
adapt to location variations of valuable features.

Features from the Maxpooling layer are passed to the BN1
layer to scale the inputs. At each batch, it usually transforms in-
puts to have a mean close to 0 and a standard deviation close to
1, which can avoid the vanishing gradient problem and acceler-
ate the convergence rate of the model. Thus, the output feature
matrix YB1 of the BN1 layer is also an L ′ × F matrix as YM but is
scaled.

The next is a Dropout layer, which randomly drops a certain
proportion (denoted as P) of input elements by setting them to
zero during training [32]. The output YDb is formulated as:

YDp = K � YB1, where K ∼ B(1, P ).

The drop mask K denotes a Bernoulli distribution with n = 1
and p = P. It could effectively reduce overfitting especially in our
small dataset [34].

After a dropout layer, the Globalpooling layer takes the YDb

as input and reduce features from the same channel into 1 di-
mension by using the average value of those features, which can
integrate global spatial information. More formally:

yG
f = 1

L ′
∑L ′−1

l = 0
YDp

l, f , for f = 0, 1, 2, . . . , F − 1,

where yG
f is the average value of features from the fth input chan-

nel. Considering all the F channels from the previous layer, the
output of the Globalpooling layer yG is an F-dimensional vector.

Subsequently, a Dense1 layer using the ReLU function as ac-
tivation function outputs R units. It has an R × F weight matrix
WD1 and an R-dimensional bias vector bD1. Each output units is
processed by:

yD1
r = ReLu

(∑F −1

f = 0
WD1

r, f yG
f + bD1

r

)
, for r = 0, 1, 2, . . . , R − 1.

The Dense1 layer can compile the features from different
input channels together and finally generate an R-dimensional
vector yD1, while the Conv1D layer just extracts features into dif-
ferent feature maps.

The vector yD1 is then sent into a BN2 layer to generate a new
feature vector yB2 that has a mean close to 0 and a standard de-
viation close to 1, which has the same effect as the BN1 layer.

Using a sigmoid function as an activation function, the fi-
nal layer is the Dense2 layer and outputs only 1 score between
0 and 1 representing the probability of prediction. Using an R-
dimensional weight vector WD2 and a bias scalar bD2, the output
score is given by:

yD2 = sigmoid
(∑R−1

r = 0
WD2

r yB2
r + bD2

)
.

The sigmoid function is defined as:

sigmoid (x) = 1
1 + e−x

.

By default, a sequence with a score >0.5 would be regarded
as a positive sample (a virulent phage) and a sequence with a
score <0.5 would be regarded as a negative sample (a temperate
phage). When training, we used the Adam optimizer [35] (learn-
ing rate = 0.0001), binary cross-entropy as the loss function, and
32 as the batch size to train the neural network and update net-
work weights. Altogether, we found that setting the size F to 64,
M to 6, S1 to 3, S2 to 3, P to 0.3, and R to 64 produced the best
performance. The structure of DeePhage is shown in the upper
part of Fig. 1.

It is worthwhile to know more about the importance of
the encoding method for sequences and each specific layer in
our model, so we tested 6 different models (including DeeP-
hage) by using k-mer frequencies as an encoding representation
or removing a certain layer. The 6 model architectures (DeeP-
hage, Kmer-4, No-Maxpooling, No-Dropout, No-Globalpooling,
and No-BN) are shown in Supplementary Fig. S2 and their perfor-
mance is shown in Supplementary Table S1. It can be seen that
the Kmer-4 model produced a terrible prediction. As mentioned
above, when we used 4-mer frequencies to characterize each
phage at the level of genome sequences, it could slightly distin-
guish 2 kinds of phages. It was proved that k-mer frequencies did
not have enough power to represent short sequences and are fit
only for capturing the global signature of long sequences rather
than the local signature of short sequences. Thus, we used con-
volutional kernels to detect sequence motifs, where each col-
umn of kernels represents the probabilities of having A/C/G/T
at 1 position (position weight matrices) [36]. Those kernels can
involve k-mer frequencies but in a more detailed and local way.
As for those models removing a certain layer, the performance
decreased compared with DeePhage. Especially, the prediction
accuracy decreased 14% and 5% when using a model without a
Globalpooling layer and BN layers (No-Globalpooling and No-BN
model), respectively. Other models decreased slightly. We can
see that the architecture and the one-hot encoding representa-
tion of DeePhage are better than others.

Although deep neural networks are considered to be black-
box models, we hope to gain insights into the learning process
for features. We chose 5 layers (One-hot input, Conv1D, BN1,
Globalpooling, and BN2) to observe their learned features. Be-
cause it is hard to gain an intuitive display about high-dimension
features, we used t-distributed stochastic neighbour embedding
(t-SNE) [37], which is a machine learning algorithm for dimen-
sionality reduction, for the visualization of high-dimensional
data in a 2D projected space. After the training process, we first
used PCA to reduce the features of the 5 aforementioned layers
into a 10D space and then used t-SNE to reduce them into a 2D
space using the sequences from Group D. The visualizations of
the 5 layers are shown in the lower part of Fig. 1. It could be seen
that the effects of classification are better when focusing on the
deeper layers. In detail, 2 types of phages were first mixed to-
gether and then separated gradually, which demonstrated the
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Figure 1: Structure of deep learning neural network and visualization of 5 layers by reducing dimensions. DeePhage uses the CNN model as the classifier. The neural
network (in the upper part) takes the sequence in the “one-hot” coding form as input and outputs a score between 0 and 1. In general, the sequence with a score
>0.5 can be referred to as the virulent phage–derived fragment and the sequence with a score <0.5 can be referred to as the temperate phage–derived fragment. The
visualization demonstrates the learning process of DeePhage. The performance would be better when we observe a deeper layer (in the lower part).

learning process of DeePhage. Furthermore, it should be empha-
sized that the visualizations by dimensionality reduction cannot
reflect the complete power of DeePhage.

Considering other lengths of sequences beyond our 4 trained
groups, we designed some strategies. For those sequences
longer than 1,800 bp, DeePhage will split the sequence into sev-
eral 1800-bp-long subsequences without overlapping, usually
except the last subsequence. DeePhage will then use the neu-
ral network in the corresponding group to predict each subse-
quence, and calculate the weighted average score according to
the score and length of each subsequence. Because training the
neural network using long sequences is very time-consuming,
we do not train additional neural networks for longer sequences.
For those sequences shorter than 100 bp, DeePhage uses the
neural network in Group A to make a prediction.

Results
Identification performance of DeePhage, PhagePred,
and PHACTS

We first used the 5-fold cross-validation to evaluate the perfor-
mance of DeePhage. To test whether DeePhage can distinguish
the lifestyle of novel phages, for each validation, we divided the
training set and the test set on the basis of complete genomes
rather than artificial contigs and then simulated 80,000 train-
ing sequences and 20,000 test ones using MetaSim [26]. The per-
formance evaluation criteria here are defined as follows: Sn =
TP/(TP + FN); Sp = TN/(TN + FP); and Acc = (TP + TN)/(TP + TN
+ FN + FP). Among these criteria, sensitivity (Sn) and specificity
(Sp) are used to evaluate the accuracy of virulent phages and
temperate phages, respectively, while accuracy (Acc) is used to
evaluate the overall performance. As shown in Table 1, DeePhage
demonstrates overall reliable and stable performance with Acc
from 76% to 89%. Compared with PhagePred, the Acc criteria of
PhagePred are ∼11–14% lower than DeePhage, as shown in Ta-
ble 1. We used d∗

2 dissimilarity measures, k-mer length of 9, and
Markov order of 2 as prediction parameters. Although the Sn val-

ues are close to those of DeePhage, the Sp values are >18% lower
than DeePhage. This result is probably owing to some aforemen-
tioned limitations when the k-mer–based method is applied to
short sequences. Thus, the performance of DeePhage is supe-
rior to that of PhagePred. Compared with PHACTS, the Acc val-
ues of PHACTS are only ∼50%, which is also lower than DeeP-
hage. For PHACTS, sequences are input in the form of amino acid
sequences and sequences without coding region are flagged as
wrong predictions. Such results indicate that the input of func-
tional genes with several proteins is not required for DeePhage.
Therefore, our DeePhage method shows an evident advantage
compared with the tool PHACTS. Because DeePhage can iden-
tify each DNA fragment as either virulent phage–derived se-
quence or temperate phage–derived sequence directly and inde-
pendently, it would be a more suitable tool for analysing phages
in metagenomic data. In this case, it is difficult to reconstruct the
complete or near-complete genomes for phages from the data,
especially for those with low abundance or in a low-coverage
sequencing condition. Clearly, our tool DeePhage has the ad-
vantage of being applicable to processing the data by means of
current short-read sequencing technologies and performs bet-
ter when the short reads could be assembled into longer contigs.
More details about the performance of the ROC curves and AUC
scores of DeePhage in each rotation of the 5-fold cross-validation
are shown in Supplementary Fig. S3.

In general, sequences with scores near 0.5 are not as reliable
as those sequences with a score near 0 or 1. Therefore, DeeP-
hage is designed with an adjustable cut-off to filter out these
uncertain predictions. Users can specify a cut-off using a param-
eter. In this way, a sequence with a score in the range (0.5 − cut-
off/2, 0.5 + cut-off/2) will be labelled as “uncertain.” In general,
with a higher cut-off, the percentage of uncertain predictions
will be higher while the remaining predictions will be more reli-
able. We recommend 0.5 as a suitable value of cut-off. It means
a sequence with a score in the range (0.25, 0.75) should be ig-
nored. When tested on the cross-validation set, it can receive a
high average AUC score and retain enough sequences. If hoping
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Table 1: Results of 5-fold cross-validation for DeePhage, PhagePred, and PHACTS

Mean ± SD

Tool Criterion (%)
Group A

(100–400 bp)
Group B

(400–800 bp)
Group C

(800–1,200 bp)
Group D

(1,200–1,800 bp)

DeePhage Sn 77.3 ± 4.2 82.2 ± 3.4 86.2 ± 3.2 87.5 ± 3.3
Sp 74.6 ± 6.9 84.4 ± 8.2 86.3 ± 10.2 89.5 ± 8.5

Acc 76.2 ± 1.9 83.7 ± 2.5 86.6 ± 3.6 88.9 ± 2.9
PhagePred Sn 75.8 ± 1.4 80.8 ± 1.9 84.2 ± 2.1 87.4 ± 2.0

Sp 56.6 ± 5.0 60.3 ± 6.2 62.8 ± 7.2 64.7 ± 7.8
Acc 65.7 ± 2.4 70.1 ± 2.9 72.9 ± 3.5 75.5 ± 3.6

PHACTS Sn 73.7 ± 0.7 64.7 ± 1.0 65.8 ± 1.6 69.1 ± 1.7
Sp 26.3 ± 1.5 36.9 ± 1.2 39.1 ± 0.3 42.3 ± 2.4

Acc 48.6 ± 1.7 49.9 ± 1.2 51.5 ± 0.8 54.8 ± 1.5

The validation of each group was performed independently.

for a more reliable prediction, users could assign the parame-
ter t to 0.50 as described in the manual of DeePhage. When 0.50
is used as cut-off, the main results do not change for analysing
a real dataset. Thus, we do not use a cut-off in the following
analysis.

Comparison with PhagePred and PHACTS for protein
sequence identification

It should be noted that DeePhage and PHACTS are designed for
different tasks: PHACTS is designed for complete genomes while
DeePhage is designed for metagenomic fragments. Therefore,
their input data requirements are actually different. PHACTS re-
quires users to input all proteins (amino acid sequences) within
1 phage genome, so proteins from different phages should not
be put into the same file. In contrast, DeePhage’s requirement
is only to input all DNA fragments (nucleic acid sequences), no
matter whether they contain coding regions and whether they
are from the same phage, and DeePhage can directly judge each
fragment independently. Although it was difficult to compare 3
tools based on the same condition, we tried to test the perfor-
mance of PHACTS only in DNA short fragments with coding re-
gion. Because PHACTS requires a collection of protein sequences
as input, we first annotated the protein sequences of 100,000
DNA sequences of the test set in each length group using FragGe-
neScan (v1.31) [38], and proteins from the same sequence (se-
quences without coding regions were ignored) were input into
the program PHACTS (v0.3). As for comparison, DeePhage and
PhagePred are also used to predict these DNA sequences with
coding regions. The total Acc (the number of correct predic-
tions divided by the total number of sequences having the cod-
ing regions in each length group) of DeePhage, PhagePred, and
PHACTS in each length group is shown in Fig. 2. For short frag-
ments covering data sets of Group A–D, PHACTS demonstrates
Acc values of ∼50%, which are nearly the results of random pre-
dictions. In Group D, PhagePred demonstrates Acc ∼76% and still
13% lower than that of DeePhage. In contrast, DeePhage can sat-
isfactorily classify the sequences with Acc ∼76%–89%.

In addition, we have evaluated the performance of DeePhage,
PhagePred, and PHACTS on the coding sequences (CDSs) from all
225 phage genomes. Because PHACTS could only process protein
sequences, we extracted all CDSs from the genomes according
to the GenBank annotation and each CDS was independently in-
put to PHACTS (in the form of amino acid sequences), PhagePred
(in the form of nucleic acid sequences), and DeePhage (in the

Figure 2: Comparison results of DeePhage, PhagePred, and PHACTS in each
length group.

form of nucleic acid sequences). We found that PHACTS can only
achieve an Acc of 54.3%, which is also near to random judgment
results, while DeePhage achieves an Acc of 82.7%, nearly 30%
higher than that of PHACTS. PhagePred achieves an Acc of 68.4%,
which is also lower than DeePhage. Considering that the number
of CDSs in each metagenomic fragment is limited, PHACTS actu-
ally has a limited ability to analyse metagenomic data especially
when the complete genomes could not be reconstructed using
these fragments. Overall, as a state-of-the-art tool designed for
phage lifestyle classification from metagenomic data, DeePhage,
a de novo tool using the deep learning algorithm, presents an ef-
ficient prediction method.

Also, DeePhage can handle large-scale high-throughput data
within an acceptable running time. To test, we recorded the run-
time of DeePhage, PhagePred, and PHACTS to predict 100 DNA
sequences (converted to protein sequences for PHACTS) rang-
ing from 100 to 1,800 bp. DeePhage spends 10 seconds, which
is 245 times faster than PhagePred and 810 times faster than
PHACTS (using 41 minutes and 135 minutes), when tested on
a virtual machine with the following configuration: CPU: Intel
Core i7 4790; and memory: 8G, DDR3. As for PHACTS, every se-
quence needs to be aligned and every prediction needs to be
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replicated 10 times, while DeePhage could directly predict every
sequence without any alignments. Therefore, DeePhage is much
faster than PHACTS.

Evaluation of DeePhage, PhagePred, and PHACTS using
real metavirome data

Although it was difficult to make exact evaluations using real
data, some functional genes could help us to make an approxi-
mately effective assessment of our model. In this subsection, we
used DeePhage to predict all the sequences in metavirome data
of bovine rumen [27] with 118,918 contigs assembled by SPAdes
(v3.13.0) [29]. As a result, 53.6% (63,691/118,918) of the con-
tigs are predicted as virulent phage–derived contigs and 46.4%
(55,227/118,918) as temperate phage–derived contigs. For assess-
ment of DeePhage’s prediction, we then assessed the RefSeq vi-
ral protein database [39] as a reference. Because the viral pro-
teins labelled as “excision,” “integration,” or “lysogeny” are more
likely to exist in temperate phages [15], we used those proteins
to build an MTPD (mini temperate phage-derived) set contain-
ing 107 protein sequences. We then searched all 118,918 contigs
against the MTPD data using Blastx v2.7.1 [40] and obtained 16
targeted contigs having homologous regions (e-value ≤ 1e−10,
hits length ≥ 400). These hits present an extremely small pro-
portion (16/118,918), which confirms that a huge quantity of data
have no reliable homologous regions in known databases. When
it comes to DeePhage, 13 of 16 targeted contigs can be identified
as temperate phage–derived contigs, while only 6 and 10 contigs
can be classified as temperate phage–like contigs by PhagePred
and by PHACTS, respectively. It shows that DeePhage performs
better than PhagePred and PHACTS and has rather the potential
to analyse newly sequenced phage data. However, the fact that
the prediction scores are nearly 0.5 shows that PHACTS actually
made random inferences, while DeePhage had a majority of re-
liable scores and made better predictions. The information of 16
targeted contigs and predicted results by DeePhage, PhagePred,
and PHACTS are listed in Table 2.

Furthermere, we found that 16 contigs contain homologous
regions of the functional proteins with e−value <1e−10, but
they do not have high identity scores to these proteins (iden-
tity <50%). These results indicate that the 16 contigs are not
close to the viral proteins from the database in genetic relation-
ship. They also show that the diversity of phages in the environ-
mental samples might be much higher than that in the present
database, and DeePhage can handle these novel phages. In fact,
when we examined the RefSeq viral protein database, we found
that a large number of proteins are labelled as “putative” or “hy-
pothetical” and the percentage of such proteins might be much
higher than that of bacteria, which further demonstrates the
higher diversity of phages.

Not only the several aforementioned contigs but also whole
sequences could be considered to examine the full scope of the
predictive ability of DeePhage. Using the whole genomes of 77
virulent and 148 temperate phages in Dataset-1, we annotated
all the sequences in the virome data of bovine rumen by means
of Blastn v2.7.1 [40]. When setting the default parameters (the
default e-value is 10), 118,564 contigs could be annotated as vir-
ulent or temperate phage genomes by BLAST. Among those con-
tigs, DeePhage distinguishes 56.4% virulent and 48.3% temper-
ate phage contigs with an overall proportion of 51.5%. In com-
parison, PhagePred and PHACTS seem to prefer virulent contigs
(62.3% and 68.2%, respectively) over temperate contigs (39.5%
and 28.9%). It is a limitation of those 2 tools that they would miss
a large proportion of temperate contigs. Although the proportion

of virulent contigs is higher, PhagePred and PHACTS only receive
an overall proportion of 48.6% and 44.5%, which is much lower
than DeePhage. Estimated on the level of the entire amount of
real data, the superiority of DeePhage is certainly considerable.

To sum up, the evaluation of DeePhage using real metavi-
rome data demonstrates that DeePhage makes much better and
reliable predictions than PhagePred and PHACTS. As an ab ini-
tio tool, we can conclude that DeePhage has a good ability to
adapt to this diversity and has the potential to analyse newly
sequenced phage data.

An application of a cross-sectional study indicating
that phage transformations impact the change of gut
microbiota structure

Viruses, especially the phages, contribute importantly to the gut
microbiota structure. Particularly, temperate phages could ex-
ist free from the genome of their bacterial hosts and then kill
them driven by suitable environmental conditions, while vir-
ulent phages directly attack their host. Therefore, such phage
transformations would change the gut microbiota composition
profile and community structure. However, it is hard to anal-
yse this result entirely using the database method because of
the limitation of database and marker genes like 16S RNA. As
a result, there are no effective computational tools. For exam-
ple, alignment of phage sequences to the known phage database
using the traditional BLAST program could just output some
known phages without any new phages. Indeed, the number of
unknown phages is huge. Fortunately, DeePhage now could de-
tect phage transformations over the whole genomes of phages
from complete virome data. The downstream findings based on
DeePhage could give us instructive insights into the function of
phages in the gut microbiota.

In this subsection, we then design a new strategy about how
to use DeePhage to estimate the transformations of phages in
the cross-sectional study. Especially, we analyse the virome data
from patients with UC and healthy people as an example to find
associations between phages and gut microbiota. For phages in a
community, owing to lack of marker genes like 16S RNA to detect
their abundance or diversity, it is difficult to determine the asso-
ciation between the transformation of phages and the change of
gut microbiota structure. Herein we collected 21 metagenomic
samples (randomly selected) of UC patient guts and 21 (ran-
domly selected) metagenomic samples of healthy human guts
by Nielsen et al. [41]. In addition, we collected 54 virome samples
(viral particles were enriched before sequencing) of UC patient
guts (being diagnosed as a specific state) and 23 virome sam-
ples of healthy controls by Norman et al. [42]. The accessions
(including disease state of virome samples) are provided in Sup-
plementary Tables S2 and S3). We used SPAdes [29] to assemble
raw reads of each sample.

For each metagenomic sample, we first used PPR-Meta [11] to
identify all the phage-derived contigs. The average percentages
of phage contigs in metagenomic data of UC patient and healthy
individual guts are similar (23.7% in UC patient and 25.7% in
healthy human guts) without significant difference (see Supple-
mentary Fig. 3A, P-value = 0.170, the difference in location =
0.021, and 95% confidence interval = (−0.007, 0.045) for 2-sided
Wilcoxon rank-sum test). For convenience, in the following text,
phage contigs in gut microbiota annotated by PPR-Meta are re-
ferred to as computational phages while contigs from virome
data are referred to as experimental phages. It is worth not-
ing that experimental phages only included virulent phages and
temperate phages in the lytic cycle. However, temperate phages
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Table 2: Information of 16 targeted contigs and predicted results by DeePhage, PhagePred, and PHACTS

Contig length DeePhage PHACTS PhagePred

Contig ID (bp) Identity (%) E-value Hit length (bp) Prediction Score Prediction Score Prediction

4 28,516 26.32 1e−10 513 Temperate 0.3907 Temperate 0.4835 Virulent
12 11,212 27.23 2e−14 606 Temperate 0.3407 Temperate 0.4667 Temperate
52 5,349 29.89 1e−30 798 Temperate 0.0814 Temperate 0.4995 Temperate
88 3,734 24.68 1e−11 828 Temperate 0.2238 Temperate 0.4925 Temperate
173 2,530 26.22 2e−25 1,044 Temperate 0.0691 Virulent 0.5000 Virulent
223 2,233 23.27 1e−12 834 Temperate 0.4770 Virulent 0.5161 Virulent
1257 1,029 29.87 1e−16 462 Virulent 0.7138 Virulent 0.5082 Virulent
1639 921 23.96 2e−11 849 Temperate 0.3558 Temperate 0.4735 Virulent
3299 702 28.18 8e−25 609 Temperate 0.2644 Temperate 0.4744 Temperate
3326 699 30.88 9e−15 405 Temperate 0.3408 Virulent 0.5055 Virulent
6405 549 25.14 1e−13 519 Temperate 0.1150 Virulent 0.5080 Virulent
7704 514 39.86 2e−22 429 Temperate 0.1639 Virulent 0.5110 Temperate
8130 503 36.05 3e−22 441 Temperate 0.0492 Temperate 0.4944 Temperate
9804 470 31.69 2e−16 423 Temperate 0.1605 Temperate 0.4952 Virulent
10819 454 38.61 2e−30 450 Virulent 0.7710 Temperate 0.4951 Virulent
12636 430 34.04 2e−21 417 Virulent 0.7236 Temperate 0.4743 Virulent

“Contig ID” refers to the ID of 16 targeted contigs. “Identity,” “E-value,” and “Hits length” refer to the alignment results using Blastx.

in the lysogenic cycle could not be included because temperate
phages in the lysogenic cycle would integrate their genomes into
host cells and would not assemble the viral particles. In contrast,
computational phages include all kinds of phages.

We then used DeePhage to predict the lifestyle of the ex-
perimental phages. An average of 56.5% of the contigs are pre-
dicted as temperate phages in patients with UC while 47.3%
in healthy individuals, with significant difference (see Fig. 3B,
P-value = 0.020, difference in location = 0.092, and 95% confi-
dence interval = (0.017, 0.170) for 2-sided Wilcoxon rank-sum
test). This indicates that the proportion of temperate phages in
UC patients’ gut is higher than in healthy individuals. However,
we still could not infer the detailed transformations from this
result because both the decreased richness of virulent phages
and increased richness of temperate phages in patients with UC
will lead to a higher proportion of temperate phages. More im-
portantly, even if the number of virulent phages and temper-
ate phages is the same in healthy individuals and patients with
UC, the proportion of temperate phages in experimental phages
could also increase when more temperate phages were under-
going the transformation from the lysogenic cycle to the lytic cy-
cle, in which they would assemble free viral particles. To make
the population dynamics clearer, we further used DeePhage to
predict the lifestyle of the computational phages. Surprisingly,
an average of 44.9% and 44.4% of the contigs are predicted as
temperate phages in patients with UC and healthy individuals,
respectively, without significant difference (see Fig. 3C, P-value
= 0.521, the difference in location = –0.01, and 95% confidence
interval = (–0.034, 0.017) for 2-sided Wilcoxon rank-sum test), in-
dicating that the proportions of virulent phages and temperate
phages in patients with UC and healthy individuals are similar.
Considering the results from computational phages and exper-
imental phages together, it seems that the higher proportion of
temperate phages among experimental phages of patients with
UC might result from the fraction of temperate phages under-
going a transformation from the lysogenic cycle to the lytic cy-
cle. In particular, there is a general tendency that more temper-
ate phages are transforming into the lytic cycle when patients
with UC are experiencing more acute disease states. Figure 3E
shows the average proportion of temperate phages in experi-

mental phages of patients with UC at different disease states. As
we can see, the 2 severe symptom states, “Flare” and “Late re-
solve”, show higher average proportions, while slight symptoms
show lower average proportions, such as “Mild” and “Improve”
states.

From these preliminary results, we inferred that the phage
populations in patients with UC were undergoing a kind of
change that influences the gut microbiota structure, in which
some kinds of temperate phages were transforming from
prophages to free viral particles. To investigate the transforming
temperate phages, we picked out all the temperate contigs an-
notated by DeePhage from the UC and healthy virome samples.
Using all the phage genomes [43] as the database of the BLAST
method (e-value ≤ 1e−10), 286 species of phages are existing
in both healthy and UC samples, and just 137 species, 98% of
which are from the Caudovirales order, only existing in healthy
samples (as shown in Fig. 3D). As a comparison, we found dif-
ferent phage contigs coming from 533 species that only exist
in UC samples, which probably means that there were more
kinds of temperate phages in UC samples than in healthy sam-
ples. Those phages could be classified into 10 families: Siphoviri-
dae, Herelleviridae, Podoviridae, Myoviridae, Ackermannviridae,
Autographiviridae, Drexlerviridae, Inoviridae, Microviridae, and
Sphaerolipoviridae. The first 7 families belong to the Caudovi-
rales order, which accounts for 97% (516 of 533) different species.
In addition, a very small proportion (9 different species) is com-
ing from the Microviridae family. The order Caudovirales and
family Microviridae are dominant in human gut virome [18];
meanwhile, they are more abundant in patients with UC com-
pared with household members and controls [44]. Especially,
Norman et al. observed an increase in the richness of some
members of the Caudovirales in patients with UC [42]. This sup-
ports our inference to a certain degree. The last several fami-
lies, which lack researchers’ concerns in the human gut, could
roughly be ignored. Because the release of prophages is often
associated with the death of bacterial hosts, the activation of
the temperate phages may be associated with the change of
species composition. We can infer that more kinds of temper-
ate Caudovirales phages switch into a lytic cycle after having
the disease and become free viral particles from the bacterial
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Figure 3: (A) The proportions of phage DNA predicted by PPR-Meta from metagenomic samples of healthy human and UC patient guts are shown using box plots. (B)
The proportions of temperate phage DNA predicted by DeePhage from experimental phages (phages from virome samples) of healthy human and UC patient guts are
shown using box plots. (C) The proportions of temperate phage DNA predicted by DeePhage from computational phages (phages predicted by PPR-Meta) of healthy

human and UC patient guts are shown using box plots. (D) The different species of phages in healthy and UC samples. (E) The average proportion of temperate phages
in experimental phages of UC samples. PD-MS: phage DNA from metagenomic samples; TPD-VS: temperate phage DNA from virome samples; TPD-PPR: temperate
phage DNA from PPR-Meta; n.s.: no significant difference; ∗∗∗: significant difference; a.u.: arbitrary unit.

genomes; in consequence, such a switch changes the structure
of the microbiota by killing the bacterial host. Consistently, pre-
vious research shows that the species compositions of the bac-
terial community in patients with UC are different from that of
healthy individuals [45] and that virulent core phages could be
substituted by temperate phages in patients with UC [46]. All
those discoveries indicate that maybe it was the temperate Cau-
dovirales phages having a primary impact on human UC disease,
which was also verified by us. However, not only could DeePhage
detect well-studied phages, such as Caudovirales phages, but it
also can trace any known and unknown phages to distinguish
their lifestyles. With integrated data, we gain deep access to dis-
ease conditions.

To sum up, such a strategy being independent of databases
may further provide insights into the specific and integral inter-
actions between phages and bacterial hosts according to phage
lifestyles, which could not have been found out before. Re-
searchers can gain more valuable information about the disease
process and facilitate the study of human disease.

Discussion

In this article, we present DeePhage as an effective tool to distin-
guish virulent phage–derived and temperate phage–derived se-
quences in metavirome data. Coding a DNA sequence, DeePhage
needs no previously extracted features but uses each nucleotide
as input. There are some advantages. DeePhage can bypass us-
ing the information of some functional genes to make the judg-
ment and directly and rapidly identify each DNA fragment in-

dependent of assembly. Such a function is important because
many novel phage genomes are difficult to reconstruct and the
amount of sequences is large when focused on metagenomic
data. Thus, DeePhage can solve the bottleneck of reliably evalu-
ating all phage sequences from metagenomic fragments, while
PHACTS, which is based on complete or partial proteome, can-
not. CNN models here occupied the core strength of DeePhage
for their excellent ability on feature extraction, which is hard
to discover by statistics. We have tested that the traditional k-
mer frequency encoding form was not superior to the one-hot
encoding form because the Kmer-4 model produced a terrible
prediction as shown in Supplementary Table S1. However, ker-
nels can be seen as position weight matrices to detect motifs,
which means that CNN models could still use motifs such as k-
mer frequencies and perform better. As we can see, DeePhage
gradually separates virulent and temperate phage–derived se-
quences along with deeper neural networks. DeePhage’s ability
to distinguish 2 kinds of sequences is superior to PhagePred and
PHACTS on the assessment of both simulated data and real data.
To be specific, DeePhage presents a huge improvement in pre-
diction accuracy (nearly 10% higher and 30% higher on simu-
lated data) and computational efficiency (almost 245 times and
810 times faster). More importantly, DeePhage shed new light on
the phage transformations by tracing the variation of a specific
type of phage in the human gut. It also demonstrated a possi-
ble tendency regarding a larger proportion of temperate phages
transforming into the lytic cycle in the gut of patients with UC
with a more severe disease state. As we can see, the previous
study speculated the possibility that the expansion of the Cau-
dovirales phages is related to the activation of prophages in pa-
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tients with UC [47]. Fortunately, now we can be more convinced
that more temperate Caudovirales phages are entering a lytic cy-
cle. We believe that DeePhage will engender an increasing num-
ber of new discoveries, just like the aforementioned problem.
Ultimately, DeePhage reduces the reliance on culture-dependent
methods and promotes human disease research.

It is also interesting to explore the biological mechanism that
helps DeePhage distinguish fragments from these 2 kinds of
phage using the sequence signature. In our opinion, this may
be because virulent phages and temperate phages face different
evolutionary pressures and therefore contain different sequence
signatures, such as k-mer frequencies as we showed in Supple-
mentary Fig. S1. Genome amelioration often occurs on foreign
DNA, such as phage or plasmid, in the host cell, and foreign DNA
will change its sequence signatures according to the host chro-
mosome to help it exist stably in the host cell [48]. The similar-
ity of sequence signatures between foreign DNA and bacterial
chromosome is often used to predict the bacterial host of the
foreign DNA [12, 13, 48]. Because temperate phages will spend
more time in the host cell, they may adjust their sequence sig-
natures toward host chromosomes. Related research also shows
that temperate phages do contain more similar sequence signa-
tures to their hosts than virulent phages [22, 49]. Therefore, we
consider that the difference of sequence signatures played an
important role in DeePhage’s ability to identify these 2 kinds of
phages. To further prove this conjecture, we collected all avail-
able bacterial reference genomes (120 bacterial genomes in to-
tal) from the RefSeq database [50] (the accession numbers can
be seen in Supplementary Table S4) and then used MetaSim to
extract artificial contigs between 100 and 1,800 bp. We observed
how DeePhage would judge these bacterial sequences. Although
DeePhage’s training set did not contain any bacterial sequences,
DeePhage identifies 74.5%, 77.2%, 71.8%, and 76.9% of the bac-
terial sequences as temperate phages in Group A, B, C, and D,
respectively (the sequence length in each group corresponds to
Table 1). We consider that the reason why more than half of
the bacterial sequences are identified as temperate phages is
that the bacteria contained sequence signatures similar to those
of temperate phages. This phenomenon also demonstrates that
using the information of sequence signatures may be the work-
ing principle of DeePhage. More importantly, we tried to find out
some specific sequence features that DeePhage learned. From
all the protein sequences of phages in Dataset-1, we picked out
a highly trusty set of 3,993 virulent protein sequences and 5,530
temperate protein sequences (prediction score is >0.75 for viru-
lent and <0.25 for temperate by DeePhage). Using the Clusters of
Orthologous Genes (COG) database to annotate those proteins,
virulent and temperate protein sequences show different dis-
tributions in 26 COGs (see Supplementary Fig. S4). Virulent pro-
tein sequences show a peak at the “Replication, recombination
and repair” category, while temperate protein sequences show
a peak at the “Mobilome: prophages, transposons” category. The
different distributions may reflect the extracted features of se-
quences, which are learned by DeePhage and are helpful for this
classification task. As we can see in Supplementary Fig. S4, the
biggest difference between virulent and temperate protein se-
quences is located in the “Mobilome: prophages, transposons”
category. Temperate phages could exist as prophages and me-
diate horizontal gene transfer via transduction [51], while such
genetic exchanges might be rare when involving virulent phages
[52]. Thus, such differences could be comprehended and obvi-
ously learned by DeePhage.

DeePhage also has some limitations. Although prokaryotic
viruses are dominant in virome samples, a few eukaryotic

viruses could also be included. However, DeePhage cannot iden-
tify these sequences before distinguishing the lifestyle of each
contig. Fortunately, the related tool that helps to distinguish
prokaryotic and eukaryotic viruses has been developed recently
[53] and we are also considering constructing a preprocess-
ing module for DeePhage to filter out the eukaryotic viruses
so that DeePhage can generate more reliable results for the
downstream analysis. Furthermore, database biases of different
phage species naturally existed in our dataset, for most of the
species coming from the Myoviridae, Podoviridae, and Siphoviri-
dae families in the order Caudovirales. It is one of our limi-
tations that the accuracy would be higher for sequences from
those families than other families. However, those 3 families are
the most abundant among known phages in the human gut [1];
such biases would not seriously affect our performance on those
phages. We also believe that this situation will be improved with
more accurate labels for phages’ lifestyle.

In conclusion, DeePhage is a novel tool that can quickly and
directly judge each fragment as a virulent phage–derived or
temperate phage–derived sequence for virome data. Therefore,
DeePhage is expected to be a powerful tool for researchers who
are interested in the function of phage populations and phage-
host interactions.

Availability of Supporting Source Code and
Requirements

Project name: DeePhage
Project home page: http://cqb.pku.edu.cn/ZhuLab/DeePhage or
https://github.com/shufangwu/DeePhage
Operating system: The code of DeePhage was written on Linux.
We optimized the program in a virtual machine; thus, DeePhage
is platform independent.
Programming language: Python, MATLAB
Other requirements: None if running in the virtual machine. If
not, Python 3.6.7, TensorFlow 1.4.0, Keras 2.1.3, numpy 1.16.4,
h5py 2.9.0, and MATLAB Component Runtime 2018a (for free) are
needed. MATLAB is not necessary.
License: GPL-3.0
RRID: SCR 019243

Data Availability

The artificial contigs, related scripts, and original results are
available at http://cqb.pku.edu.cn/ZhuLab/DeePhage/data/ or ht
tps://github.com/shufangwu/DeePhage. All the other data are
available at corresponding references mentioned in the main
text. Snapshots of our code and other data further supporting
this work are openly available in the GigaScience repository, Gi-
gaDB [54].

Additional Files

Supplementary Fig. S1. The PCA of 4-mer frequency distribution
among virulent and temperate phage genomes
Supplementary Fig. S2. The architectures of 6 different models
Supplementary Fig. S3. The ROC curves and AUC scores of DeeP-
hage performance in each set of 5-fold cross-validation
Supplementary Fig. S4. Virulent and temperate proteins show
different distributions in 26 COGs
Supplementary Table S1. The Sn, Sp, and Acc of 6 different
models

http://cqb.pku.edu.cn/ZhuLab/DeePhage
https://github.com/shufangwu/DeePhage
https://scicrunch.org/resolver/RRID:SCR_019243
http://cqb.pku.edu.cn/ZhuLab/DeePhage/data/
https://github.com/shufangwu/DeePhage
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Supplementary Table S2. The accession numbers of 21 metage-
nomic samples of the healthy human gut and 21 metagenomic
samples of UC patients’ gut
Supplementary Table S3. The accession numbers of 23 virome
samples of the healthy human gut and 54 virome samples of UC
patients’ gut (with the disease state information)
Supplementary Table S4. The accession numbers of 120 bacterial
genomes from RefSeq database
Supplementary Data 1. The detailed information of phage
genomes and hosts of phages used in DeePhage from Dataset-1
and Dataset-2.
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embedding; UC: ulcerative colitis.
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