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The ongoing COVID-19 pandemic has increased awareness about sex-specific
differences in immunity and outcomes following SARS-CoV-2 infection. Strong
evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated
by sex differential immune responses against SARS-CoV-2. This hypothesis is based on
data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and
others that have demonstrated sex-specific immunity to viral infections. Although males
are more susceptible to most viral infections, females possess immunological features that
render them more vulnerable to distinct immune-related disease outcomes. Both sex
chromosome complement and related genes as well as sex steroids play important roles
in mediating the development of sex differences in immunity to viral infections.
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INTRODUCTION

The ongoing coronavirus infectious disease 2019 (COVID-19) pandemic has raised awareness
about sex-specific differences in immunity against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection. Although individual countries report sex biases in rates of confirmed
infections (1) on a global scale, infection rates appear to be similar between males and females (2). A
more consistent observation across diverse countries and cultures is that severe COVID-19 is more
likely to occur in males than females (3–8). Male COVID-19 patients are twice as likely to require
ICU admission and are 30% more likely to die due to COVID-19 compared to female patients (9).
Sex differences in outcomes of viral infections are not limited to SARS-CoV-2 and numerous clinical
and epidemiological studies have provided evidence that biological sex broadly affects immunity to
viral infection (10–12). Infections with viruses, such as Dengue virus, hantaviruses, and hepatitis B
(HBV) and C (HCV) viruses, are more prevalent in human males than females suggesting that
behavioral or occupational exposures contribute (13–17). The intensity and severity of disease
caused by some viruses, including but not limited to Epstein Barr virus, HBV, HCV, and West Nile
virus, are also greater for males than females (16–21). There are, however, some viruses that are
more prevalent in females than males, such as cytomegalovirus, herpes simplex virus type 2 (HSV2),
and human T-cell leukemia virus type 1 (22–25), and that cause more severe disease following
infection, including hantaviruses, HSV2, human immunodeficiency virus (HIV), pandemic
influenza A viruses (IAVs), and measles virus (14, 23, 24, 26–29). With regard to beta
coronaviruses specifically, in addition to SARS-CoV-2, being male is a risk factor for more severe
disease following infection with both SARS-CoV and middle-east respiratory syndrome virus
(MERS) (30–33).
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Sex differences in disease outcomes are not limited to
infectious diseases but are also observed in outcomes of
autoimmune diseases and cancers, for example. While males
have a higher incidence of non-reproductive cancer and are
generally more susceptible to severe outcomes from a broad
variety of pathogens, including bacterial, parasitic, fungal and
viral infections (10, 11, 34), females are more likely suffer from
autoimmune disorders, including systemic lupus erythematosus
and multiple sclerosis (35, 36). Inflammatory diseases, including
those of the skin, respiratory, and gastrointestinal tract, also are
more prevalent among adult females than males (37–43). Sex as a
biological variable not only affects outcomes of diverse diseases
but also impacts drug and vaccine efficacy (44). The latter being
especially important in the context of the ongoing COVID-19
pandemic and world-wide SARS-CoV-2 immunization roll out
(45–48).
THE DIFFERENCES BETWEEN
BIOLOGICAL SEX AND GENDER

The terms ‘sex’ and ‘gender’ are often used interchangeably and,
therefore, incorrectly. Sex refers to biological features that differ
between males and females as a result of sex chromosome
complement, the development of reproductive tissues, and
concentration of sex steroids. Sex differences are often analyzed
as a binary variable (i.e., male/XY vs. female/XX), but intersex
individuals (i.e. , individuals born with reproductive
characteristics of both males and females) as well as Turner
syndrome (i.e., XO individuals) and Kleinfelder’s syndrome (i.e.,
XXY individuals) patients provide evidence that sex occurs on a
continuum, which deserves greater empirical consideration in
the context of infectious diseases. Sex differences can affect the
control and clearance of viruses which is primarily mediated by
the immune responses initiated and the pathology that may
occur following infection, which will be the focus of this review
(Figure 1). Although not the focus of this review, anatomical sex
differences in the genital tract are associated with increased
transmission of certain pathogens, including sexually
transmitted viruses, in females compared with males (38, 49).

Gender differences are reflected in the social-cultural
construct of being a man, woman, or transgender (27). Gender
differences reflect behaviour, cultural, and social factors that in
the context of infectious diseases might impact exposures, access,
and decision making about care or treatments. In a majority of
individuals, biological sex (male or female) matches the subject’s
gender (man or woman), with the biomedical implications of
being transgender not thoroughly evaluated in the context of
infectious diseases, including COVID-19. Other than
consideration of whether transgender individuals trust of the
medical establishment in the context of SARS-CoV-2 testing,
COVID-19 treatment, and receipt of SARS-CoV-2 vaccines (50)
as well as how receipt of gender-confirming hormone treatments
and surgical procedures have been affected by the pandemic (51),
there have been no reports comparing cis and transgender
individuals in terms of infection rates or outcomes of either
Frontiers in Immunology | www.frontiersin.org 2
infection or vaccination against SARS-CoV-2. There also has
been little to no COVID-19 tracking of data from transgender
individuals at either country to state levels (9), which is a missed
opportunity. There is, however, a call to include transgender
individuals in studies evaluating the impact of sex steroids on
COVID-19 outcomes (52).

Binary gender differences have been primarily characterized
in the behaviors, occupations, and attitudes that impact risk of
exposure to viruses, care-seeking behaviors, as well as access to
care and reporting (11, 34). Importantly, cultural differences
across the world may result in inconsistent or even contradictory
observations about gender-specific differences in viral infections
(53). Additionally, because sex and gender intersect, it is difficult
to ascribe differential outcomes from viral infections in humans
to either sex or gender. This is where animal models and primary
cell culture systems can be integral for interpretations related to
biological sex (54). Sex and gender further intersect with other
demographic variables and comorbidities to influence viral
infection outcomes. Obesity, for example, is more prevalent in
females compared to males and is often linked to impaired
immunity (55, 56). Male-female differences in the outcome of
viral infections are also significantly affected by age as a result of
genetic modifications as well as changing sex steroid
concentrations throughout different stages of life (57). Females
generally live longer than males, with increased frailty at older
ages in females compared to males (58, 59). A longer life-span in
females provides a natural bias in infection rates in this age
group. Despite age-related changes in sex steroids, post-
menopausal females remain immune-privileged even after the
decline in sex steroid hormone concentration, suggesting genetic
mechanisms are involved (58). Although the decline of sex
steroids with age is more pronounced in females than males,
the age-related decline of functional immunity paralleling this is
slower in females compared to males (57, 60). An intersectional
analysis provides a deeper understanding of the causes of
differences between males and females in viral infection
outcomes (61).
IMMUNOLOGICAL DIFFERENCES
BETWEEN THE SEXES

Several studies have shown that innate and adaptive immune
responses are generally greater in females than males across
diverse species (22, 34, 62, 63). The activity of innate immune
cells, such as macrophages and dendritic cells (DCs), as well as
the overall inflammatory response is generally greater in females
than males, particularly during reproductive ages (62, 64). In
humans, cytokine production following ex vivo stimulation of
monocytes with lipopolysaccharide (LPS) is greater in cells from
males than females, with evidence that hormone-based
contraceptive use in females further reduces the production
of cytokines, including IFNg and TNFa (65). In response to
SARS-CoV infection, male mice experience more severe
outcomes within one week of infection, which corresponds
with a more dramatic infiltration of inflammatory monocytes
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and neutrophils into the lungs of males as compared with
females (66). Depletion of inflammatory monocytes in males
resulted in SARS-CoV outcomes that are similar to females (66).
Testosterone dampens infiltration of inflammatory monocytes
and pulmonary inflammation during IAV infection (67).
Macrophages from males are also more susceptible to infection
with HIV-1 than are macrophages from females, which is at least
partially caused by reduced virus restriction by SAMHD1 (i.e.,
SAM and HD domain containing deoxynucleoside triphosphate
triphosphohydrolase 1) in cells from male donors (68).
Plasmacytoid dendritic cells (pDCs) isolated from human
females show greater expression of the X-linked gene, TLR7,
and type 1 IFNs than pDCs from males, which is mediated by
TLR7 escape from X chromosome inactivation (69). Sex-based
Frontiers in Immunology | www.frontiersin.org 3
differences are reported in innate immune responses of pDCs to
HIV-1-encoded TLR7 ligands, in which pDCs from HIV-1
infected women produce significantly more IFNa and show
greater expression of interferon stimulated genes (ISGs),
including interferon regulatory factor 5 (IRF5) than pDCs
from HIV-1 infected men following ex vivo stimulation (70–72)

Females also have greater CD3+ and CD4+ T-cell counts as
well a higher CD4+/CD8+ ratio compared to males, whereas
frequencies of CD8+ T cells and NK cells are greater in males
(73–78). Activity of both CD4+ and CD8+ T cells following
stimulation is often greater in females than males (63, 72, 79).
Additionally, antigen-presenting cells (APC) in female mice are
reported to be more efficient in antigen presentation compared to
APCs from male mice (80). Adult females present an immune
FIGURE 1 | Mechanistic causes of sex differences in immunity to viral infection. Biological sex is defined by sex chromosome complement (i.e., XX or XY) in a
majority of individuals, which results in sex differential development of gonadal tissues in utero, with development of ovaries in XX individuals and testes in XY
individuals. The development of testes in XY individuals is primarily mediated by the expression of SRY on the Y chromosome, which encodes for testes determining
factor. The ovaries and testes secrete differential concentrations of sex steroids, including estrogens, progesterone, and androgens. Numerous immune cells,
including but not limited to macrophages, dendritic cells, neutrophils, NK cells, T cells, and B cells express cytoplasmic receptors for sex steroids, which can
transcriptionally regulate gene expression, signal transduction, and responses of immune cells following viral infection. As a result, biological females tend to have
greater immune system activation resulting in faster clearance of viruses, but also increased probability of developing immune-mediated pathology. In biological
males, reduced immune system activation results in slower clearance of viruses, and in some cases viral persistence as well as reduced vaccine-induced immunity.
Created using Biorender.
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response that is biased towards a more pro-inflammatory TH1
cytokine milieu while adult males show a predominant TH2
phenotype with increased frequencies of regulatory T cells (Treg)
(22, 73, 81, 82). Adult females also have higher B-cell frequencies
compared to males (74, 78). Basal levels and antibody response
to viruses and vaccination also are greater in females than males
(83–86). Because the pathogenesis of viruses is affected by both the
hosts immune response and the virus, greater immunity among
females can both be a cause and a consequence of viral disease (11).
Specifically, the immune responses necessary to control virus
replication, if excessive can cause immune-mediated pathology
and tissue damage. While control of virus replication is often
superior in females (e.g., HBV, HCV, and HIV), females also may
experiencemore severe immune-mediatedpathology (e.g., IAVand
HIV) (11). A notable exception is SARS-CoV-2, in which males
shed virus for a longer duration of time (87, 88) and present with
greater inflammation (89) than females.

During SARS-CoV-2 infection, it has been reported that
males present higher pro-inflammatory cytokine expression,
including IL-6, than females (90, 91). While COVID-19 is
known to cause lymphopenia in both sexes, T cell frequencies
and activation remains greater in females than males during
SARS-CoV-2 infection, even at older ages (91, 92). In contrast,
male sex is associated with greater anti SARS-CoV-2 antibody
production in convalescent patients (91, 93, 94) as well as fewer
breakthrough SARS-CoV-2 infections following vaccination
(95). Females have greater antibody responses to the mRNA
SARS-Cov-2 vaccines than males (96).
SEX STEROIDS DIRECTLY AFFECT
IMMUNITY TO VIRUSES

Sex differences in immunity are often most pronounced in aged
matched males and pre-menopausal females, with age-associated
reductions in sex steroid concentrations paralleling changes in
functional immunity (57, 58). Multiple mechanisms have been
described for how sex steroids affect immune function directly
and differentially in females and males. Sex steroids have been
shown to directly affect gene expression on an epigenetic level
(97, 98). Even viruses can directly interact with sex steroids; for
example, HCV contains a progesterone response element
suggesting that this virus can be regulated by the progesterone
receptor (99).

Sex steroids affect the functioning of immune cells by binding
to cytoplasmic receptors and interacting with nuclear hormone
response elements (HRE) (100). Many genes involved in antiviral
immunity, like IFNG and IRF5, possess estrogen response
elements (63, 101, 102), and sex steroid mediated activation of
HREs can directly result in increased cytokine and chemokine
production (100). Expression of immune-regulatory miRNAs
also can be under hormonal control (103). Estrogen receptors
(ER) are differentially expressed among different immune cell
subsets, with higher expression of ERa reported in T cells and
high expression of ERb found in B cells (102). In addition
to classical nuclear signaling, non-classical ER signaling can
Frontiers in Immunology | www.frontiersin.org 4
affect many immune-related pathways, including through
transcriptional regulation of NF-kB (104). Estrogens can have
dose-dependent and bipotential effects on many immune cells
(105–108). For example, estradiol (E2) affects the cytotoxicity of
NK cells, activation and differentiation of monocytes,
macrophages and dendritic cells, in a dose-dependent manner
(109–112). Generally, low (non-pregnant) concentrations of E2
are thought to promote a TH1-based immune response, whereas
high (pregnancy) E2 concentration, can drive the immune
response more towards TH2 immunity (107). This is further
supported by the fact that E2 at pregnancy doses enhances TReg

proliferation (113). E2 induces somatic hypermutation and
antibody class switching, with humoral responses to viral
infection being greater in the presence as opposed to the
absence of E2 (108, 114, 115).

Progesterone (P4) typically skews the immune profile of
females from TH1 to either TH2 or Treg immunity (116, 117).
Progesterone receptors are found on many different immune
cells, including T-cells, NK-cells, macrophages, and DCs (118).
Progesterone reduces macrophage activation and production of
pro-inflammatory cytokines in rodents and can antagonize TLR-
signaling and signaling pathways involving NF-kB (119).
Progesterone also dampens inflammation and promotes
amphiregulin and Th17-mediated tissue repair after viral
infection at mucosal sites, including the respiratory tract (120).
As a result, P4-based therapies and contraceptives have been
reported to reduce susceptibility to IAV infection, at last in mice
(120, 121).

Androgens, in particular testosterone (T), are generally anti-
inflammatory. Testosterone can decrease NK cell, neutrophil,
and macrophage activity in vitro resulting in reduced production
of pro-inflammatory cytokines, such as TNF-a and reactive
oxygen species (e.g., iNOS and NO) (122–124). Testosterone
can also increase the production of anti-inflammatory cytokines,
such as IL-10 and TGF-b via androgen receptor signaling (124,
125). Production of anti-inflammatory cytokines (e.g., IL-10)
after TLR9 activation, which is the pattern recognition receptor
used for detection of DNA viruses, is greater in males and this
effect positively correlates with androgen concentrations (126).
Antibody response to vaccination are repeatedly described to be
lower in males compared to females (83), with a T-sensitive gene
cluster identified to correlate with lower vaccine-induced
antibody responses in males (85).

The immunomodulatory function of T is most convincing in
experimental studies in which T is removed and replaced
exogenously. In the context of infection with IAV, T dampens
pulmonary inflammation, including frequencies of inflammatory
monocytes, eosinophils, and virus-specific CD8+ T cells after
virus has been cleared (67). This effect is reversed by
gonadectomy (i.e., surgical removal of the testes) or co-
treatment of an androgen receptor antagonist in combination
with T. In the context of vaccination, gonadectomy increases
whereas treatment of gonadectomized male mice with T reduces
vaccine-induced antibody responses (115). Aging is associated
with reduced concentrations of T in male rodents and humans
(115). Treatment of aged male mice with T improves the
outcome of infection of IAV primarily by dampening
August 2021 | Volume 12 | Article 720952
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inflammation as opposed to altering antiviral immunity and
virus replication (127). Taken together there is growing evidence
that immunity to viruses and vaccines is impacted by the
concentrations of sex steroid hormones and signaling through
their respective receptors, which impacts the outcome of viral
infections differently for males and females over the life course,
and in females with pregnancy.
GENETIC FACTORS CONTRIBUTE TO SEX
DIFFERENCES IN IMMUNITY TO VIRUSES

Multiple studies highlight a significant role of sex chromosome
complement on overall immunity (11, 128, 129). Many genes
with immunomodulatory function are encoded on the X
chromosome (130). The XX complement provides females with
two copies of X chromosomes, one derived from the father and
one derived from the mother. To compensate for gene dosage
effects, one X chromosome is randomly inactivated in every
single cell of a female. As this happens randomly, females show
an X-chromosome mosaicism that provides many advantages
compared to the XY complement. Disadvantageous mutations in
one X-chromosome possibly affecting immune function will only
affect half of the cells in a female, but necessarily all cells in a
male. Furthermore, the XX chromosome complement provides
females with additional allelic diversity that was hypothesized to
be another advantage when facing new immune challenges (131–
133). Genetic disorders like Klinefelter syndrome, resulting in
males having an additional X chromosome (XXY) result in
immune responses that are more similar to the typical female
than male phenotype (134). Additionally, Turner’s syndrome,
resulting in females with only one X chromosome (X0), is
associated with lower lymphocyte counts and reduced antibody
production in females (135). Sex chromosome complement is
associated with multiple sex differences in diverse organs, even
before gonadal development (129).

The X chromosomes encode for several immune-related
genes such as TLR7, IRAK1, FOXP3 as well as many miRNAs
that are important for immune system gene regulation (136).
Certain regions of the X-chromosome may escape inactivation
with a direct effect on dosage compensation of X-linked immune
genes (136, 137). TLR7, which is important for sensing RNA-
viruses, is encoded on the X-chromosome and TLR7 expression
levels as well as immune sensing of RNA antigens, including
virus vaccine and self-antigens are stronger in females (137, 138).
Studies in the context of systemic lupus erythematosus show that
substantial fractions of immune cells, including primary B
lymphocytes, monocytes, and DCs express TLR7 from both X-
chromosomes, resulting in higher TLR7-driven functional
responses in these cells (139, 140). Furthermore, TLR7 is an
important mediator of B cell maturation and therefore
antibody production (141). Greater expression of TLR7 in B
cells from females compared with males consequently is
associated to greater antiviral antibody responses following
receipt of the influenza vaccine in mice (142). In contrast,
deleterious mutations in TLR7, which are only observed among
Frontiers in Immunology | www.frontiersin.org 5
males, can be associated with increased susceptibility to viral
infections, including with SARS-CoV-2 (143). In addition to
genes, a disproportionally high number of miRNAs is encoded
on the X-chromosome (i.e., 10% of all miRNAs encoded in the
human genome). In contrast, the Y-chromosome only encodes
for two known miRNAs (144–146). There is evidence supporting
that X-linked miRNAs are indeed a significant contributor to
sex-differences in immunity (144).

Only biological males can be affected by Y chromosome
(ChrY) polymorphisms, which can result in aberrated
expression of immune-related genes (147, 148). This has
primarily been studied in the context of autoimmunity, but also
has implications on immunity to viral infections, including
coxsackievirus and IAV (149). Strains of ChrY consomic mice
have been used to show that variation in ChrY affects survival of
male mice after IAV infection, which is associated with increased
frequencies and activation of IL-17-producing gd T cells that are
linked to acute lung injury during IAV infection (150, 151).
Polymorphisms in ChrY can affect global gene expression in
immune cells through epigenetically mechanisms (149). The effect
of ChrY polymorphisms on IAV pathogenesis are independent of
sex steroids, underpinning the mechanistical features of genetic
effects on sex-differences in immunity (152). Another important
mechanism associated to the XY complement is loss of the Y
chromosomes (LOY) primarily in leukocytes during aging,
leading to widespread dysregulation of autosomal genes among
leukocytes in men with possible implications on immunity (153–
155). Taken together, sex chromosome complement, activity of
regulatory elements on sex chromosomes, and the expression of
sex chromosomal genes contribute to sex differences in immunity
to viral infections.
SEX DIFFERENCES IMMUNITY BEGIN
IN UTERO

Sex differential mechanisms that are likely independent of sex
steroids are also found in peri- and postnatal immunity and
epigenetic imprinting during in utero development. There is
increasing evidence that adverse prenatal conditions result in
fetal epigenetic imprinting with long-term consequences on sex-
specific immune system development. For example, prenatal
micronutrition as well as maternal vitamin supplementation can
have sex-differential effects on immunity in offspring, mostly on an
epigenetic level (156, 157). Neurodevelopmental defects and
neuroimmunological impairments observed in offspring born to
mothers who experienced gestational stress have been shown to be
sex-specific (158–160). Some studies suggest that female fetuses
are more resistant to intra-uterine stress (161, 162). Postnatally,
the protective effect of breast feeding seems to be stronger in
female neonates compared to males, resulting in increased
protection against respiratory infections in female neonates
(163). Sex steroid concentrations do not differ between the sexes
in infancy, except during the first three months of life, when male
neonates express increased testosterone concentrations, followed
by a gradual decline (164). Although most studies on maternal
August 2021 | Volume 12 | Article 720952
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immune activation and in utero priming of the offspring are
focused on neurodevelopment, there is increasing evidence from
animal models that prenatal stress also affects the offspring’s
immune-development in a sex-specific manner (165–167).
Maternal immune activation in mice can disrupt the offspring’s
immunological homeostasis with increased Th1 immunity in
male offspring, particularly (165). Offspring born to dams that
receive immunological stimulation (e.g., injection with
lipopolysaccharide) also present with more activated, pro-
inflammatory macrophages through adulthood (166); these
studies, however, neglect consideration of the sex of the offspring.

The long-term effects of SARS-CoV-2 infection on offspring
exposed to infection during pregnancy are currently not
know. While most studies do not report vertical transmission
of SARS-CoV-2, other mechanisms such as maternal and fetal
hypoxia, disruption of placental integrity, or maternal immune
activation and trans-placental transfer of pro-inflammatory
cytokines must be assessed to understand possible implications
on the offspring’s development and underlying sex-specific
effects (168). Transfer of antibodies across the placenta might
be an important contributor to sex-specific pathogenesis during
SARS-CoV-2. While it has been shown that the neonatal Fc-
receptor is crucial for antibody-transfer across the placenta, the
placental interferon response affects Fc-receptor expression
(169). Infection with SARS-CoV-2 during pregnancy results in
sex differences in placental expression of interferon-stimulated
genes and the Fc-receptor, with an upregulation in male fetuses,
resulting in male-biased impaired transplacental antibody-
transfer (169). Another study involving over 88.000 infants
born in Sweden during the COVID-19 pandemic found a
significant association between maternal SARS-CoV-2 infection
and the absolute risk of respiratory and other neonatal disorders,
but no increase in neonatal mortality. Unfortunately, neonatal
outcomes were not sex disaggregated (170). Whereas several
studies report that neonates born to SARS-CoV-2 positive
women are more likely to need neonatal ICU admission, these
data are generally not stratified for the offspring’s sex (171).
CONCLUSIONS AND FUTURE
DIRECTIONS

There are sex differences in immunity to viruses that result in
differential outcomes and pathogenesis of viral infections. Future
Frontiers in Immunology | www.frontiersin.org 6
studies should not only evaluate how sex differences in immunity
alter the pathogenesis of viral infection and responses to
vaccines, but consider the other pathways that may be
differentially regulated between the sexes. For example, in the
context of COVID-19, females show greater expression of type I
IFN signaling and other innate immune responses and T cell-
associated genes while cells frommales exhibit greater expression
of inflammatory genes (172). Sex differences in immunity
are directly affected by sex chromosome complement through
the differential activity of X-linked genes as well as ChrY gene
polymorphisms that are regulated by escape from X inactivation
and epigenetic mechanisms, respectively. The concentrations of
sex steroids change over the life course, and directly affect
immunity to viruses through the sex differential expression of
sex steroid receptors in immune cells. Knowledge of sex
differences in immunity to viruses and vaccines should inform
greater consideration of sex disaggregation of data rather than
statistical controlling for sex in clinical studies (173). Reporting
of the sex of animals and primary cells as well as comparing
immunological responses between the sexes in preclinical
research is necessary (174). The COVID-19 pandemic has
raised awareness about the significance of sex as a biological
variable and how sex intersects with other variables, including
age and race (45, 89, 91, 175). Intersectional approaches are
going to be necessary to better understanding outcomes of viral
infections as well as treatments for infection, with knowledge
that both will likely differ between the sexes.
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