Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl rac-(2R,11S,12R)-12-(2-chlorophenyl)-22-oxo-9,13,21-trioxapentacvclo[12.8.0.0^{2,11}.0^{3,8}.0^{15,20}]docosa-1(14),3,5,7,15(20),16,18-heptaene-11carboxylate

K. Swaminathan,^a K. Sethusankar,^a* G. Sivakumar^b and M. Bakthadoss^b

^aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and ^bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 20 August 2011; accepted 13 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.143; data-to-parameter ratio = 20.6.

In the title compound $C_{27}H_{19}ClO_6$, the coumarin ring system is not exactly planar, with a dihedral angle of 4.12 $(7)^{\circ}$ between its benzene and lactone rings. The cis-fused pyran rings adopt half-chair conformations. The carbomethoxy and chlorophenyl groups are in a trans configuration. The crystal packing is stabilized by intermolecular $C-H\cdots O$ interactions, which produce a centrosymmetric $R_2^2(14)$ dimer and two centrosymmetric $R_2^2(18)$ dimers connecting the molecules in a twodimensional fashion.

Related literature

For uses of coumarins, see: Kayser & Kolodziej (1997); Fan et al. (2001); Wang et al. (2002). For related structures, see: Kanchanadevi et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

erystat aata	
$\begin{array}{l} C_{27}H_{19}{\rm CIO}_6 \\ M_r = 474.87 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 8.4441 \ (3) \ {\rm \mathring{A}} \\ b = 9.7556 \ (3) \ {\rm \mathring{A}} \\ c = 13.8546 \ (5) \ {\rm \mathring{A}} \\ \alpha = 73.831 \ (2)^{\circ} \\ \beta = 82.858 \ (2)^{\circ} \end{array}$	$\gamma = 87.962 (2)^{\circ}$ $V = 1087.65 (6) \text{ Å}^{3}$ Z = 2 Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.25 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer 26685 measured reflections	6336 independent reflections 4968 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.046$ wR(F ²) = 0.143 S = 1.01	308 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.57$ e Å ⁻³

$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$ 6336 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C2 - H2 \cdots O5^{i}$ $C12 - H12 \cdots O4^{ii}$ $C23 - H23 \cdots O5^{iii}$	0.93 0.98 0.93	2.59 2.53 2.47	3.271 (2) 3.3316 (16) 3.355 (3)	130 139 159
Symmetry codes:	(i) $-r + 1 -$	-v + 1 - z + 1	(ii) $-r + 1 - 1$	+1 - 7 (iii)

-x, -y, -z+1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

K. Swaminathan and K. Sethusankar thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2025).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Fan, G. J., Mar, W., Park, M. K., Wook Choi, E., Kim, K. & Kim, S. (2001). Bioorg. Med. Chem. Lett. 11, 2361-2363.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kanchanadevi, J., Anbalagan, G., Sivakumar, G., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1990.

Kayser, O. & Kolodziej, H. (1997). Planta Med. 63, 508-510.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, C. J., Hsieh, Y. J., Chu, C. Y., Lin, Y. L. & Tseng, T. H. (2002). Cancer Lett. 183, 163-168.

Acta Cryst. (2011). E67, o2673 [doi:10.1107/S1600536811037196]

Methyl *rac-(2R,11S,12R)-12-(2-chlorophenyl)-22-oxo-9,13,21*trioxapentacyclo[12.8.0.0^{2,11}.0^{3,8}.0^{15,20}]docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carboxylate

K. Swaminathan, K. Sethusankar, G. Sivakumar and M. Bakthadoss

Comment

The title compound $C_{27}H_{19}Cl O_6$ was synthesized using domino Knoevenagel intramolecular hetero-Diels-Alder reaction, used extensively in the synthesis of heterocyclic and polycyclic compounds. Coumarin derivatives find applications as active components in pesticides and additives in the manufacture of pharmaceuticals and cosmetics. They are also known to posses antibacterial (Kayser & Kolodziej, 1997), anticancer (Wang *et al.*, 2002) and steroid 5a-reductase inhibitory (Fan *et al.*, 2001) activities.

The title compound $C_{27}H_{19}ClO_6$ comprises a chromene ring and a coumarin ring fused to alternate sides of a pyran ring. A chlorobenzene ring and a carboxylate group are also trans-attached to the same pyran ring in adjacent positions. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The chlorine atom Cl1 deviates from the least square plane of the phenyl ring (C20-C25) by 0.0568 Å and the deviation of atom O4 from the least square plane of the coumarin ring (O3,C10,C11,C13-C19) is 0.3315 (12) Å. Also, the dihedral angle between the least square planes of the pyran ring (O2,C8-C12) and the carboxylate side chain is 56.47 (6)°. The title compound exhibits sturctural similarities with a reported structure (Kanchanadevi *et al.*, 2011).

The crystal packing is stabilized by C—H..O intermolecular ineractions, which include a $R_2^2(14)$ dimer and two $R_2^2(18)$ dimers formed through a bifurcated hydrogen bond between a carboxylate O atom and two C atoms, one each from the nearby chromene and chlorobenzene rings, respectively (Bernstein *et al.* 1995). (Table 1). The symmetry codes are: (i) 1 - *x*,1 - *y*,1 - *z*; (ii) 1 - *x*,1 - *y*,-*z* and (iii) -*x*,-*y*,1 - *z*. The packing arrangement of the title compound is shown in Fig.2.

Experimental

A mixture of (*E*)-methyl 2-((2-formylphenoxy)methyl)-3-(2-chlorophenyl) acrylate (0.330 g, 1 mmol) and 4-hydroxy-2*H*-chromen-2-one (0.162 g, 1 mmol) was placed in a round bottom flask and melted at 180°C for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethylacetate:hexane mixture (1:49 ratio) which successfully provided the pure product, methyl *rac*-(2*R*,11S,12*R*)- 12-(2-chlorophenyl)-22-oxo-9,13,21-trioxapentacyclo $[12.8.0.0^{2,11}.0^{3,8}.0^{15,20}]$ docosa-1(14),3,5,7,15 (20),16,18- heptaene-11-carboxylate, as colourless solid in 92% yield.

Refinement

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometically constrained. The hydrogen atoms bound to the C atoms were treated as riding atoms, with d(C-H)=0.93Å and $U_{iso}(H)=1.2U_{eq}(C)$ for aromatic, d(C-H)=0.98 Å and $U_{iso}(H)=1.2U_{eq}(C)$ for methyne, d(C-H)=0.97 Å and $U_{iso}(H)=1.2U_{eq}(C)$ for methylene and d(C—H)=0.96 Å and $U_{iso}(H)=1.5U_{eq}(C)$ for methyl groups. The rotation angles for methyl group were optimized by least squares.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.

Fig. 2. Part of the crystal structure of the title compound viewed down c axis, showing the formation of $R_2^2(14)$ and $R_2^2(18)$ dimers. C—H···O intermolecular interactions are indicated by dashed lines. Symmetry code: (i) 1 - *x*, 1 - *y*, 1 - *z*; (ii) 1 - *x*, 1 - *y*, -*z* and (iii) -*x*, -*y*, 1 - *z*.

Methyl rac-(2R,11S,12R)-12-(2-chlorophenyl)- 22-oxo-9,13,21-trioxapentacyclo[12.8.0.0^{2,11}.0^{3,8}.0^{15,20}]docosa-1(14),3,5,7,15 (20),16,18-heptaene-11-carboxylate

Crystal data	
C ₂₇ H ₁₉ ClO ₆	Z = 2
$M_r = 474.87$	F(000) = 492
Triclinic, P1	$D_{\rm x} = 1.450 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.4441 (3) Å	Cell parameters from 6336 reflections
b = 9.7556 (3) Å	$\theta = 2.2 - 30.0^{\circ}$
c = 13.8546 (5) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\alpha = 73.831 \ (2)^{\circ}$	T = 293 K
$\beta = 82.858 \ (2)^{\circ}$	Block, colourless
$\gamma = 87.962 \ (2)^{\circ}$	$0.30 \times 0.25 \times 0.25 \text{ mm}$
V = 1087.65 (6) Å ³	

Data collection

Bruker Kappa APEXII CCD diffractometer	4968 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.026$
graphite	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -11 \rightarrow 11$
26685 measured reflections	$k = -12 \rightarrow 13$
6336 independent reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.143$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0742P)^{2} + 0.3227P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6336 reflections	$(\Delta/\sigma)_{max} < 0.001$
308 parameters	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	or e	auivalent	isotroi	oic dis	placement	parameters ($(Å^2$)
		000.000000			· · ·	900000000000000000000000000000000000000	1001.01		p	per en ce e e	(/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.65779 (17)	0.56358 (17)	0.40142 (11)	0.0427 (3)
H1	0.6784	0.5199	0.4674	0.051*
C2	0.6817 (2)	0.70748 (18)	0.36081 (13)	0.0485 (4)
H2	0.7199	0.7612	0.3989	0.058*
C3	0.6491 (2)	0.77270 (17)	0.26310 (13)	0.0493 (4)
Н3	0.6674	0.8699	0.2349	0.059*
C4	0.58945 (19)	0.69331 (15)	0.20757 (11)	0.0424 (3)
H4	0.5632	0.7389	0.1431	0.051*
C5	0.56753 (15)	0.54613 (14)	0.24582 (9)	0.0331 (3)
C6	0.60257 (15)	0.48263 (14)	0.34399 (10)	0.0345 (3)
C7	0.51941 (16)	0.25398 (14)	0.33923 (10)	0.0355 (3)
H7A	0.4668	0.1716	0.3874	0.043*
H7B	0.6078	0.2197	0.3004	0.043*
C8	0.40116 (14)	0.33317 (13)	0.26765 (9)	0.0302 (2)
C9	0.48878 (14)	0.45976 (13)	0.18856 (9)	0.0301 (2)
Н9	0.4088	0.5205	0.1515	0.036*
C10	0.59876 (14)	0.40135 (13)	0.11382 (9)	0.0311 (2)
C11	0.58170 (14)	0.26821 (14)	0.10487 (9)	0.0323 (2)

C12	0.33567 (14)	0.23433 (14)	0.21156 (9)	0.0322 (2)
H12	0.2696	0.2912	0.1614	0.039*
C13	0.71735 (16)	0.49406 (15)	0.04264 (9)	0.0369 (3)
C14	0.81399 (16)	0.29644 (16)	-0.01975 (10)	0.0391 (3)
C15	0.68874 (15)	0.21021 (15)	0.03630 (9)	0.0347 (3)
C16	0.67418 (18)	0.07365 (17)	0.02455 (11)	0.0432 (3)
H16	0.5907	0.0146	0.0615	0.052*
C17	0.7832 (2)	0.0264 (2)	-0.04158 (14)	0.0546 (4)
H17	0.7722	-0.0637	-0.0505	0.066*
C18	0.9098 (2)	0.1137 (2)	-0.09498 (14)	0.0590 (4)
H18	0.9841	0.0806	-0.1387	0.071*
C19	0.92701 (19)	0.2478 (2)	-0.08424 (12)	0.0531 (4)
H19	1.0128	0.3051	-0.1195	0.064*
C20	0.23943 (16)	0.10893 (14)	0.27860 (10)	0.0362 (3)
C21	0.3141 (2)	-0.01302 (16)	0.33065 (13)	0.0484 (4)
H21	0.4247	-0.0198	0.3203	0.058*
C22	0.2274 (3)	-0.12563 (19)	0.39802 (15)	0.0646 (5)
H22	0.2798	-0.2062	0.4331	0.078*
C23	0.0635 (3)	-0.1172 (2)	0.41250 (16)	0.0699 (6)
H23	0.0051	-0.1916	0.4584	0.084*
C24	-0.0138 (2)	-0.0002 (2)	0.35981 (15)	0.0619 (5)
H24	-0.1246	0.0045	0.3690	0.074*
C25	0.07359 (17)	0.11175 (18)	0.29258 (12)	0.0454 (3)
C26	0.26076 (15)	0.38165 (15)	0.33110 (10)	0.0352 (3)
C27	0.0578 (3)	0.5498 (3)	0.33678 (18)	0.0788 (7)
H27A	-0.0335	0.4941	0.3363	0.118*
H27B	0.0379	0.6486	0.3049	0.118*
H27C	0.0771	0.5384	0.4054	0.118*
01	0.57971 (13)	0.34145 (11)	0.39277 (7)	0.0437 (2)
O2	0.46794 (11)	0.17495 (10)	0.15960 (7)	0.0386 (2)
O3	0.82713 (12)	0.43425 (12)	-0.01572 (8)	0.0439 (2)
O4	0.72725 (15)	0.62092 (12)	0.02839 (8)	0.0514 (3)
O5	0.21355 (14)	0.31564 (13)	0.41573 (8)	0.0511 (3)
O6	0.19620 (14)	0.50185 (13)	0.28202 (9)	0.0556 (3)
Cl1	-0.03104 (5)	0.25730 (6)	0.22616 (5)	0.07724 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0385 (7)	0.0535 (8)	0.0382 (7)	-0.0064 (6)	-0.0058 (5)	-0.0149 (6)
C2	0.0478 (8)	0.0524 (9)	0.0516 (8)	-0.0101 (7)	-0.0021 (6)	-0.0251 (7)
C3	0.0576 (9)	0.0389 (7)	0.0524 (9)	-0.0087 (6)	0.0015 (7)	-0.0165 (6)
C4	0.0510 (8)	0.0350 (7)	0.0385 (7)	-0.0050 (6)	-0.0011 (6)	-0.0068 (5)
C5	0.0313 (6)	0.0350 (6)	0.0319 (6)	-0.0047 (5)	-0.0005 (4)	-0.0081 (5)
C6	0.0290 (5)	0.0388 (6)	0.0342 (6)	-0.0039 (5)	-0.0029 (4)	-0.0076 (5)
C7	0.0352 (6)	0.0341 (6)	0.0331 (6)	-0.0027 (5)	-0.0057 (5)	-0.0017 (5)
C8	0.0277 (5)	0.0324 (6)	0.0271 (5)	-0.0046 (4)	-0.0006 (4)	-0.0034 (4)
C9	0.0291 (5)	0.0307 (5)	0.0274 (5)	-0.0034 (4)	-0.0031 (4)	-0.0028 (4)

C10	0.0285 (5)	0.0365 (6)	0.0255 (5)	-0.0065 (4)	-0.0017 (4)	-0.0036 (4)
C11	0.0286 (5)	0.0379 (6)	0.0276 (5)	-0.0062 (5)	-0.0005 (4)	-0.0050 (5)
C12	0.0282 (5)	0.0355 (6)	0.0307 (6)	-0.0062 (4)	0.0013 (4)	-0.0070 (5)
C13	0.0361 (6)	0.0446 (7)	0.0270 (5)	-0.0118 (5)	-0.0015 (5)	-0.0046 (5)
C14	0.0335 (6)	0.0520 (8)	0.0312 (6)	-0.0056 (5)	-0.0007 (5)	-0.0109 (5)
C15	0.0317 (6)	0.0432 (7)	0.0285 (5)	-0.0025 (5)	-0.0029 (4)	-0.0090 (5)
C16	0.0424 (7)	0.0480 (8)	0.0405 (7)	-0.0034 (6)	-0.0032 (6)	-0.0149 (6)
C17	0.0566 (9)	0.0605 (10)	0.0527 (9)	0.0029 (8)	-0.0030 (7)	-0.0275 (8)
C18	0.0516 (9)	0.0769 (12)	0.0530 (9)	0.0047 (8)	0.0062 (7)	-0.0312 (9)
C19	0.0396 (7)	0.0755 (11)	0.0428 (8)	-0.0071 (7)	0.0084 (6)	-0.0190 (8)
C20	0.0349 (6)	0.0387 (6)	0.0339 (6)	-0.0119 (5)	0.0037 (5)	-0.0100 (5)
C21	0.0486 (8)	0.0377 (7)	0.0531 (9)	-0.0091 (6)	0.0019 (7)	-0.0051 (6)
C22	0.0836 (13)	0.0398 (8)	0.0603 (10)	-0.0189 (8)	0.0015 (9)	0.0005 (7)
C23	0.0819 (13)	0.0590 (11)	0.0600 (11)	-0.0388 (10)	0.0225 (10)	-0.0105 (9)
C24	0.0466 (9)	0.0712 (12)	0.0680 (11)	-0.0298 (8)	0.0193 (8)	-0.0268 (10)
C25	0.0360 (7)	0.0533 (8)	0.0483 (8)	-0.0140 (6)	0.0025 (6)	-0.0177 (7)
C26	0.0306 (6)	0.0418 (7)	0.0335 (6)	-0.0060 (5)	-0.0007 (5)	-0.0113 (5)
C27	0.0661 (12)	0.0860 (15)	0.0753 (13)	0.0301 (11)	0.0142 (10)	-0.0209 (12)
01	0.0515 (6)	0.0415 (5)	0.0361 (5)	-0.0080 (4)	-0.0168 (4)	-0.0013 (4)
O2	0.0364 (5)	0.0369 (5)	0.0401 (5)	-0.0104 (4)	0.0090 (4)	-0.0114 (4)
O3	0.0380 (5)	0.0518 (6)	0.0385 (5)	-0.0139 (4)	0.0087 (4)	-0.0108 (4)
O4	0.0623 (7)	0.0433 (6)	0.0423 (6)	-0.0195 (5)	0.0093 (5)	-0.0061 (4)
05	0.0472 (6)	0.0628 (7)	0.0355 (5)	-0.0051 (5)	0.0094 (4)	-0.0065 (5)
O6	0.0474 (6)	0.0591 (7)	0.0499 (6)	0.0164 (5)	0.0078 (5)	-0.0059 (5)
Cl1	0.0375 (2)	0.0878 (4)	0.1006 (4)	-0.0003 (2)	-0.0181 (2)	-0.0121 (3)

Geometric parameters (Å, °)

C1—C2	1.371 (2)	C13—O3	1.3753 (17)
C1—C6	1.3938 (19)	C14—O3	1.3700 (18)
C1—H1	0.9300	C14—C15	1.3873 (18)
C2—C3	1.383 (2)	C14—C19	1.388 (2)
С2—Н2	0.9300	C15—C16	1.398 (2)
C3—C4	1.379 (2)	C16—C17	1.376 (2)
С3—Н3	0.9300	С16—Н16	0.9300
C4—C5	1.3955 (18)	C17—C18	1.390 (3)
C4—H4	0.9300	С17—Н17	0.9300
C5—C6	1.3925 (18)	C18—C19	1.372 (3)
С5—С9	1.5247 (17)	C18—H18	0.9300
C6—O1	1.3634 (16)	С19—Н19	0.9300
C7—O1	1.4195 (17)	C20—C21	1.384 (2)
С7—С8	1.5304 (17)	C20—C25	1.3900 (19)
С7—Н7А	0.9700	C21—C22	1.389 (2)
С7—Н7В	0.9700	C21—H21	0.9300
C8—C26	1.5279 (17)	C22—C23	1.376 (3)
C8—C9	1.5436 (16)	C22—H22	0.9300
C8—C12	1.5497 (17)	C23—C24	1.365 (3)
C9—C10	1.5203 (17)	С23—Н23	0.9300
С9—Н9	0.9800	C24—C25	1.387 (2)

C10—C11	1.3530 (18)	C24—H24	0.9300
C10—C13	1.4545 (16)	C25—C11	1.7404 (18)
C11—O2	1.3499 (14)	C26—O5	1.1959 (16)
C11—C15	1.4455 (18)	C26—O6	1.3180 (18)
C12—O2	1.4449 (15)	C27—O6	1.449 (2)
C12—C20	1.5067 (17)	C27—H27A	0.9600
C12—H12	0.9800	С27—Н27В	0.9600
C13—O4	1.2021 (18)	С27—Н27С	0.9600
C2—C1—C6	120.12 (14)	O3—C13—C10	118.33 (12)
C2—C1—H1	119.9	O3—C14—C15	120.97 (12)
C6—C1—H1	119.9	O3—C14—C19	117.76 (13)
C1—C2—C3	119.92 (14)	C15—C14—C19	121.24 (14)
C1—C2—H2	120.0	C14—C15—C16	118.92 (13)
С3—С2—Н2	120.0	C14—C15—C11	117.02 (12)
C4—C3—C2	119.88 (14)	C16—C15—C11	124.05 (12)
С4—С3—Н3	120.1	C17—C16—C15	120.10 (14)
С2—С3—Н3	120.1	C17—C16—H16	120.0
C3—C4—C5	121.53 (14)	C15—C16—H16	120.0
C3—C4—H4	119.2	C16—C17—C18	119.80 (16)
С5—С4—Н4	119.2	С16—С17—Н17	120.1
C6—C5—C4	117.51 (12)	С18—С17—Н17	120.1
C6—C5—C9	120.32 (11)	C19—C18—C17	121.11 (15)
C4—C5—C9	121.74 (12)	C19—C18—H18	119.4
O1—C6—C5	123.90 (12)	C17—C18—H18	119.4
O1—C6—C1	115.05 (12)	C18—C19—C14	118.78 (15)
C5—C6—C1	120.98 (12)	C18—C19—H19	120.6
O1—C7—C8	112.52 (11)	C14—C19—H19	120.6
O1—C7—H7A	109.1	C21—C20—C25	117.39 (13)
С8—С7—Н7А	109.1	C21—C20—C12	120.77 (12)
O1—C7—H7B	109.1	C25—C20—C12	121.82 (13)
С8—С7—Н7В	109.1	C20—C21—C22	121.45 (16)
H7A—C7—H7B	107.8	C20-C21-H21	119.3
C26—C8—C7	108.02 (10)	C22—C21—H21	119.3
C26—C8—C9	112.31 (10)	C23—C22—C21	119.55 (19)
С7—С8—С9	108.42 (10)	С23—С22—Н22	120.2
C26—C8—C12	108.12 (10)	C21—C22—H22	120.2
C7—C8—C12	111.28 (10)	C24—C23—C22	120.32 (15)
C9—C8—C12	108.71 (9)	С24—С23—Н23	119.8
C10—C9—C5	116.45 (10)	C22—C23—H23	119.8
C10—C9—C8	108.37 (10)	C23—C24—C25	119.77 (17)
C5—C9—C8	107.63 (9)	C23—C24—H24	120.1
С10—С9—Н9	108.0	C25—C24—H24	120.1
С5—С9—Н9	108.0	C24—C25—C20	121.43 (17)
С8—С9—Н9	108.0	C24—C25—Cl1	117.87 (14)
C11—C10—C13	117.87 (11)	C20—C25—Cl1	120.70 (11)
С11—С10—С9	122.10 (10)	O5—C26—O6	123.95 (13)
C13—C10—C9	119.78 (11)	O5—C26—C8	123.17 (13)
O2—C11—C10	124.46 (11)	O6—C26—C8	112.87 (11)
O2—C11—C15	113.05 (11)	O6—C27—H27A	109.5

C10-C11-C15	122.47 (11)	O6—C27—H27B	109.5
O2—C12—C20	106.06 (10)	H27A—C27—H27B	109.5
O2—C12—C8	109.13 (10)	O6—C27—H27C	109.5
C20—C12—C8	115.06 (10)	H27A—C27—H27C	109.5
O2—C12—H12	108.8	H27B—C27—H27C	109.5
С20—С12—Н12	108.8	C6—O1—C7	117.78 (10)
C8—C12—H12	108.8	C11—O2—C12	116.06 (10)
O4—C13—O3	115.96 (11)	C14—O3—C13	122.10 (10)
O4—C13—C10	125.69 (13)	C26—O6—C27	115.38 (14)
C6—C1—C2—C3	0.8 (2)	O2-C11-C15-C14	-177.14 (12)
C1—C2—C3—C4	1.3 (2)	C10-C11-C15-C14	1.25 (19)
C2—C3—C4—C5	-3.0(2)	O2-C11-C15-C16	2.06 (19)
C3—C4—C5—C6	2.3 (2)	C10-C11-C15-C16	-179.55 (13)
C3—C4—C5—C9	174.80 (14)	C14—C15—C16—C17	0.1 (2)
C4—C5—C6—O1	176.77 (12)	C11—C15—C16—C17	-179.04 (14)
C9—C5—C6—O1	4.20 (19)	C15—C16—C17—C18	1.4 (3)
C4—C5—C6—C1	-0.15 (19)	C16—C17—C18—C19	-1.1 (3)
C9—C5—C6—C1	-172.71 (12)	C17—C18—C19—C14	-0.9 (3)
$C_2 - C_1 - C_6 - O_1$	-178.59(13)	O3-C14-C19-C18	-175.40(15)
C_{2} $-C_{1}$ $-C_{6}$ $-C_{5}$	-14(2)	C15-C14-C19-C18	2.5 (2)
01 - C7 - C8 - C26	-60.63(13)	02-C12-C20-C21	40.09(17)
01 - 07 - 08 - 09	61 33 (13)	C_{8} C_{12} C_{20} C_{21}	-80.64(16)
01 - C7 - C8 - C12	-17917(10)	02 - C12 - C20 - C25	-141.37(13)
C_{6} C_{5} C_{9} C_{10}	-98 76 (13)	$C_{2} = C_{12} = C_{20} = C_{25}$	97.89 (15)
C4-C5-C9-C10	89.00 (15)	$C_{25} = C_{20} = C_{21} = C_{22}$	-30(2)
$C_{4} = C_{5} = C_{9} = C_{8}$	23.08 (16)	$C_{23} = C_{20} = C_{21} = C_{22}$	17557(16)
C4-C5-C9-C8	-14917(12)	$C_{12} = C_{20} = C_{21} = C_{22}$	1/0.(3)
$C_{2}^{2} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	-16673(10)	$C_{20} = C_{21} = C_{22} = C_{23} = C_{24}$	1.0(3)
C_{7}^{-} C_{8}^{-} C_{9}^{-} C_{10}^{10}	73 98 (12)	$C_{22} = C_{23} = C_{24} = C_{25}^{25}$	-1.0(3)
$C_{12} = C_{8} = C_{9} = C_{10}$	-47.12(12)	$C_{22} = C_{23} = C_{24} = C_{23}$	-1.1(3)
$C_{12} = C_{8} = C_{10} = C_{10}$	47.12 (12) 66 55 (13)	$C_{23} = C_{24} = C_{25} = C_{20}$	1.1(3) 179 17 (15)
$C_{20} = C_{8} = C_{9} = C_{5}$	-52.74(13)	$C_{23} = C_{24} = C_{25} = C_{14}$	(17)(17)(13)
$C_{12} = C_{8} = C_{9} = C_{5}$	-173.85(10)	$C_{21} = C_{20} = C_{25} = C_{24}$	-175 47 (15)
$C_{12} = C_{0} = C_{12} = C_{12}$	175.05(10) 129.72(12)	$C_{12} - C_{20} - C_{25} - C_{24}$	173.47(13)
$C_{3} = C_{9} = C_{10} = C_{11}$	130.72(12) 17.07(16)	$C_{21} = C_{20} = C_{25} = C_{11}$	-177.20(12)
$C_{8} = C_{9} = C_{10} = C_{11}$	17.27 (10)	$C_{12} - C_{20} - C_{23} - C_{11}$	4.2(2)
$C_{3} = C_{9} = C_{10} = C_{13}$	-47.09(13)	$C_{1} = C_{8} = C_{26} = 05$	-32.03(17)
$C_{8} = C_{9} = C_{10} = C_{13}$	-108.34(11)	$C_{9} = C_{8} = C_{20} = 0.5$	-132.17(13)
C13 - C10 - C11 - O2	-1/4.11(12)	C12 - C8 - C20 - O5	87.89 (15)
C9—C10—C11—O2	0.2(2)	C/-C8-C26-O6	148.50 (12)
	/.69 (19)	$C_{9} = C_{8} = C_{26} = 0_{6}$	28.98 (15)
C9—C10—C11—C15	-1/8.02(11)	C12 - C8 - C26 - O6	-90.96 (13)
$C_{26} = C_{8} = C_{12} = O_{2}$	-1/3.94(10)	$C_{5} = C_{6} = 01 = C_{7}$	1.24 (19)
C7C8C12O2	-55.46 (13)		1/8.32 (12)
C9—C8—C12—O2	63.88 (13)	$C_8 - C_7 - O_1 - C_6$	-34.54 (16)
$U_{2} = U_{2} = U_{12} = U_{20}$	-54.89(14)	C10-C11-O2-C12	15.68 (18)
U = U = U = U = U = U = U = U = U = U =	05.59 (14)	C15-C11-O2-C12	-165.96 (11)
C9—C8—C12—C20	-1//.08(10)	C_{20} C_{12} C_{2} C_{11}	-1/1.76 (10)
C11—C10—C13—O4	165.57 (14)	C8—C12—O2—C11	-47.26 (14)
C9—C10—C13—O4	-8.9 (2)	C15-C14-O3-C13	-0.6(2)

C11—C10—C13—O3	-13.09 (18)	C19—C14—O3—C13		177.27 (13)
C9—C10—C13—O3	172.48 (11)	O4—C13—O3—C14		-168.99 (13)
O3—C14—C15—C16	175.70 (13)	C10-C13-O3-C14		9.80 (19)
C19—C14—C15—C16	-2.1 (2)	O5—C26—O6—C27		-1.6 (2)
O3—C14—C15—C11	-5.06 (19)	C8—C26—O6—C27		177.28 (16)
C19-C14-C15-C11	177.12 (13)			
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C2—H2···O5 ⁱ	0.93	2.59	3.271 (2)	130
C12—H12···O4 ⁱⁱ	0.98	2.53	3.3316 (16)	139
C23—H23…O5 ⁱⁱⁱ	0.93	2.47	3.355 (3)	159

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*, -*z*+1.

Fig. 1

Fig. 2

