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A B S T R A C T   

Recently, ℓ1-norm based reconstruction approaches have been used with linear array systems to improve pho-
toacoustic resolution and demonstrate undersampled imaging when there is sufficient sparsity in some domain. 
However, such approaches have yet to beat the half-wavelength resolution limit. In this paper, the ability to beat 
the half-wavelength diffraction limit is demonstrated using a 5 MHz ring array photoacoustic tomography system 
and ℓ1-norm based reconstruction approaches. We used the array system to image wire targets at ≈ 2 − 3cm 
depth in both intralipid scattering solution and water. The minimum observable separation was estimated as 
70 ± 10μm, improving on the half-wavelength resolution limit of 145μm. This improvement was demonstrated 
even when using a random projection transform to reduce data by 99%, enabling substantially faster recon-
struction times. This is the first photoacoustic tomography approach capable of beating the half-wavelength 
resolution limit with a single laser shot.   

1. Introduction 

Photoacoustic tomography is a relatively recent imaging modality 
that provides optical absorption contrast with acoustic resolution. While 
optical resolution photoacoustic imaging provides micron-scale resolu-
tion at superficial depths, ultrasound diffraction limits spatial resolution 
at depths beyond an optical transport mean free path. Abbe’s diffraction 
limit of λ/(2⋅NA), where λ is the received sensing wavelength and NA is 
the acoustic numerical aperture, has long stood as a lower bound on 
resolution of wave-based imaging systems. In the case of half-view (or 
more) detector geometries this limit becomes ≈ λc/2, where λc is the 
center wavelength. 

Significant widespread attention has been given to approaches 
capable of beating this diffraction limit. One approach to super- 
resolution is to modify target interrogation to sharpen the point 
spread function (PSF). Examples of this approach in a fluorescence mi-
croscopy setting include stimulated emission depletion (STED) micro-
scopy [1] and structured illumination microscopy [2]. In an optical 
resolution photoacoustic microscopy setting, this approach generally 
requires additional laser excitation, and harnesses nonlinear effects such 
as optical absorption saturation [3], Grüneisen relaxation [4], or 
reversible photoswitching [5]. However, these approaches are only 
appropriate for superficial optical imaging. 

Super-resolution can also be obtained by super-localizing point 
sources, without necessarily seeking to sharpen the PSF of the interro-
gation system. This is done by estimating the centroids of sufficiently 
separated signal sources. Examples of this approach in a fluorescence 
microscopy setting include stochastic optical reconstruction microscopy 
(STORM) [6] and photoactivated localization microscopy (PALM) [7]. 
Localization-based methods have also been explored in the context of 
ultrasound imaging [8,9]. 

In the acoustic resolution photoacoustic imaging context, 
localization-based methods have achieved super-resolution by locali-
zation of time-varying point sources [10,11], and by localization of 
flowing absorbing particles [12,13]. These localization-based methods 
require that signal sources be sufficiently well separated. Consequently, 
these approaches generally require multiple acquisition events, with 
sufficient sparsity in each frame. Such approaches require long acqui-
sition times and may be challenged by tissue motion. 

Another approach being investigated to improve spatial resolution 
compared to diffraction-limited imaging is sparsity-based reconstruction 
(SBR). SBR poses reconstruction as an optimization problem and in-
corporates prior information about the phantom in a regularization term 
that promotes sparsity in a specified domain. The inclusion of prior in-
formation then makes it possible to surpass traditional resolution limits. 
In contrast to the super-resolution methods reviewed above, SBR does 
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not necessarily require external agents, multiple acquisitions, or other 
target interrogation modifications. In addition, instead of requiring 
signal sources to be well-separated, as required by super-localization 
methods, SBR requires the target to be sufficiently sparse in a known 
domain. In an ultrasound setting, SBR has enabled improved resolution 
of point targets [14], although to our knowledge it has not yet been 
demonstrated to enable resolution below the λc/2 limit. In a photo-
acoustic setting, application of SBR has primarily made use of sparsity 
different from point-target sparsity (e.g. gradient sparsity) and often 
seeks to improve reconstruction while undersampling [15–22]. In 
addition, some work applying SBR to improve resolution begins by 
applying a backprojection or delay and sum algorithm [17,23], a step 
which may lose information. For these reasons, much of the prior work 
on photoacoustic SBR tells us little about the limits of the technique to 
resolve point targets. 

Some recent work has used a SBR approach optimized for resolving 
point targets but did not surpass the λc/2 resolution limit. This recent 
work [24–28] makes use of linear arrays and a dictionary designed to 
sparsify point targets and performs reconstruction directly in the 
channel-data domain. The approach in [24] was able to reduce artifacts 
and obtain higher signal-to-noise ratio. Prior work from our group [25] 
used a high-frequency linear array transducer and a SBR approach to 
beat the aperture-limited diffraction limit. The work in [26] used a 
similar approach to surpass the aperture-limited diffraction limit with a 
focus on using a sparse linear array. The approach in [27] also utilized a 
similar reconstruction approach, with a focus on reducing the data used 
for reconstruction. The work in [28] incorporated attenuation 
compensation into the SBR algorithm. However, none of these ap-
proaches demonstrated resolution below the λc/2 limit. 

While SBR has been shown to improve spatial resolution, its high 
computational burden (and hence slow reconstruction speed) poses a 
barrier to practical application. The computational problem arises from 
the fact that, as a model-based reconstruction approach, SBR involves 
the manipulation of very large matrices. Various approaches have been 
explored for reducing the size of the data to be manipulated in model- 
based reconstruction, such as exploiting symmetries to reduce model 
size [29], splitting the reconstruction problem into several smaller 
problems [30,31], using a GPU to perform matrix calculations in parallel 
and on-the-fly [32,33], reducing sampling rate by discarding negative 
frequencies [34], and using hardware or software to obtain measure-
ments corresponding to projections of scrambled versions of the original 
data to be measured [35,27,36,37]. However, to our knowledge, the 
only work exploring data-reduction while obtaining super-resolved 
photoacoustic images is [26], which used as little as ≈ 6% of the 
available data by using a subset of the transducer elements available. To 
date, the robustness of SBR to retain super-resolution capability even 
under the application of data reduction schemes remains largely 
uncharacterized. 

In addition to computational burden, the potential presence of non- 
sparse signal sources is an additional challenge for the practical imple-
mentation of SBR. However, to our knowledge, none of the recent work 
applying SBR optimized for point-target reconstruction has sought to 
characterize reconstruction performance in the presence of less-sparse 
signal sources [24,26,27,25]. Instead, testing of this SBR approach so 
far has been restricted to the imaging of point targets. 

In this work we sought to demonstrate resolution surpassing the λc/2 
limit with a single laser shot, while taking initial steps towards charac-
terizing the robustness of SBR to data reduction (for reconstruction ac-
celeration) and to the presence of non-sparse signals. Given that a full- 
view tomography system can achieve a resolution close to the λc/2 
limit to begin with, we hypothesized that SBR methods could surpass the 
half-wavelength limit when applied to full-view tomography data. To 
explore the robustness of SBR to data reduction, we performed SBR 
using a randomly projected version of the channel data, and also per-
formed SBR in several smaller quadrants partitioning the field of view. 
Finally, to explore robustness to the presence of less-sparse signals, we 

imaged a phantom containing a less-sparse target, as well as a sparse 
target. We found that SBR could surpass the half-wavelength diffraction 
limit by roughly a factor of two, even when reducing the size of the data 
by 99% using a random projection approach. This enabled rapid 
reconstruction (< 1s, corresponding to > 60-fold acceleration) of super- 
resolved images. Our results demonstrate resolution beyond the λc/2 
limit with a single laser shot and indicate at least some robustness of the 
method to the presence of less-sparse signal sources and to the appli-
cation of data reduction techniques. 

2. Theory 

SBR reconstructs an image by optimizing an objective function that 
incorporates a priori sparsity information, making use of ideas from 
compressive sensing (see [38] for an overview). To define the optimi-
zation problem, we begin by modeling the imaging system as g = Hf + η, 
where f is a vector of optical absorption coefficients for a collection of 
points in space, H is a system matrix (“dictionary”) with columns cor-
responding to photoacoustic responses from these same points in space, 
η is a noise vector, and g is the observed photoacoustic channel data (see 
Fig. 1). We include a spatial sparsity promoting ℓ1-norm regularization 
term, and an ℓ2-norm term which ensures an approximate match be-
tween the observed channel data g and the expected channel data Hf̂ 
under the estimated absorber intensity vector ̂f . Finally, we introduce a 
parameter τ > 0 which controls the extent to which sparsity is encour-
aged in the reconstructed image. The SBR image is then obtained by 
solving the following optimization problem: 

f̂ = argminf {τ ‖ f‖1 +
1
2
‖ g − H f‖2

2},witheachfi ≥ 0.

One drawback of the SBR implementation described above is that it 
requires working with a very large dictionary matrix H, which increases 
rapidly in size as the reconstruction grid is refined or as the recon-
struction area is increased. We hypothesized that we could reduce 
computational burden by modifying the system g = Hf to a system Rg =

RHf, where R is some random (fixed) projection matrix to a lower 
dimension. The optimization problem then becomes: 

f̂ = argminf {τ ‖ f‖1 +
1
2
‖ Rg − RH f‖2

2},witheachfi ≥ 0.

Calculating Rg can be done rapidly, while on the other hand calcu-
lating RH is intensive, but only must be done once. This modification 
effectively changes the sensing matrix to RH, which is much smaller and 
consequently requires much less memory and computation to manipu-
late. We can justify this approach by noting that random projection 
matrices have excellent theoretical properties that allow for recovery of 
sparse signals after they have been applied (see e.g. [38]). We hypoth-
esized that this projection approach should enable high-speed, low--
memory, acceptable-quality SBR imaging. 

3. Materials and methods 

To estimate the minimum separation at which SBR can resolve point 
sources, we imaged a crossed-wire target at successive cross-sections 
(see Fig. 2), using a ring array to detect photoacoustic signals gener-
ated by pulsed illumination. Experimental channel data was collected 
using a 532nm pulsed nanosecond Nd:YAG laser (Surelite OPO Plus, 
Continuum), a 5MHz Imasonic ring array (with 256 elements spread 
over 256∘), and a programmable ultrasound system (Vantage 256, 
Verasonics, US). The crossed-wire target was constructed from 
aluminum wires 17.8μm in diameter (ALW-29S, Heraeus) angled at ≈
20∘ relative to each other. We first imaged the target through ≈ 2-3cm 
water, and then repeated the experiment at a similar depth in 1% 
intralipid tissue mimicking solution. Cross-sectional images of the target 
were taken at 13μm steps. To improve the signal-to-noise ratio, we 
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collected data repeatedly at each cross-section (50x per cross-section in 
water and 100x per cross-section in intralipid) for selectable levels of 
signal averaging, including for reconstructions with no averaging. 

As an initial step towards characterizing the applicability of SBR for 
obtaining super-resolution in less-sparse contexts, we also imaged a less 
spatially-sparse phantom, containing both in-plane (as opposed to 
through-plane) crossed wires and a single through-plane wire. The same 
laser, ring array, ultrasound system, and aluminum wire were used as in 
the resolution sub-experiment described above. We imaged the target 
through ≈ 10cm of water with 43 times averaging. 

To generate the dictionary matrix H, we made use of the dictionary 
refinement procedure described in [25]. This procedure forms a dic-
tionary by starting with an initial approximate dictionary (estimated 
using simulation), and then modifying this dictionary to sparsify esti-
mated absorber locations (for an experimental reference image of a 
point in water) at a low τ value. The responses from other points are then 
estimated by delaying and scaling this calibrated point response. For 
numerical stability, we normalized H to have the maximum element 
normalized to unity magnitude, so that after normalization maxi,j|Hij| =

1. The location of the points corresponding to the dictionary entries 
were selected by taking points generated by a uniform random 

distribution, and then moving these selected points apart to avoid 
clustering. This was done by applying displacements proportional to the 
reciprocal of the squared distance between points until clustering was 
visually minimized. Future work could select these points using a reg-
ular grid, or utilize an automated approach such as perturbation of a 
regular grid to reduce clustering, such as in [39]. 

We solved the SBR optimization problem using the L1-homotopy 
package [40], as we found it to provide fast and high-quality recon-
struction performance relative to other SBR packages available. To 
accelerate the speed of reconstruction and reduce memory usage, we 
broke this reconstruction into two steps. We began by performing an 
initial reconstruction using a coarse dictionary. Working from the 
resulting image, we then formed a second finer dictionary, omitting 
spatial locations more than some small radius from locations with esti-
mated nonzero signal. The radius used was 50 μm in the experiment 
where we imaged two wires in cross-section in water, and the radius 
used was 25 μm in the other experiments. We refer to the discarded set of 
points far from the initial phantom reconstruction and having zero 
amplitude as the non-relevant point set. For reconstruction, the value of 
τ on each reconstruction step was selected manually (to maximize 
qualitative image quality) and held constant across all cross-sections. A 
final B-scan image was then formed by using a kernel smoothing oper-
ator (with respect to a fine regular grid) which calculated image in-
tensity at a point as a distance-weighted average of nearby intensities 
within a specified radius of 25 μm. All reconstructions were performed 
on a system with a Ryzen 3 1300X Quad-Core 3.5 GHz Processor and 
16 GB of RAM. 

We now detail the specific parameter values used for reconstruction. 
In the first sub-experiment (with through-plane wires) when imaging in 
intralipid, we set τ = 10 and used a dictionary with 2500 points for 
initial reconstruction, and then set τ = 60 and used a dictionary with 
22500 points (prior to the removal of the non-relevant point set) for 
finer reconstruction. When imaging in water we set τ = 80 and used a 
dictionary with 2500 points for initial reconstruction, and then set τ =

80 and used a dictionary with 22500 points (prior to the removal of the 
non-relevant point set) for finer reconstruction. In the second sub- 
experiment (with in-plane wires) when reconstructing the entire field 
of view at once, we set τ = 2 and used a dictionary with 2500 points for 
initial reconstruction, and then set τ = 0.2 and used a dictionary with 
22500 points (prior to the removal of the non-relevant point set) for 
finer reconstruction. We also performed reconstruction in the second 
sub-experiment using one quarter of the field of view at a time, with the 
aim of further testing robustness to less-sparse background signals. For 
each reconstruction quadrant we used τ = 2 and a dictionary with 2500 

Fig. 1. In a noiseless setting, the received pressure-over-time channel data is the superposition of responses from individual absorbers. Generating an image cor-
responds to forming an estimate f̂ of the location and strength f of these absorbers and can be done using methods including sparsity-based reconstruction and 
back-projection. 

Fig. 2. To characterize resolution, we imaged two converging wires over a 
range of cross-sections. This experiment was performed both in water and 
in intralipid. 
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points. 
In addition to reconstructing the data using SBR, we also used a 

simple form of back-projection (BP) to provide a basis for comparison. 
The BP reconstruction algorithm used is the universal back-projection 
algorithm [41] with the derivative term omitted. In addition, to 
reduce the level of generated artifacts, we truncated negative absor-
bance values. It should be noted that further reduction of oscillatory BP 
artifacts can be obtained by applying deconvolution, although we did 
not do this in this paper. 

To test the ability of the projection approach to provide acceptable- 
quality images at accelerated reconstruction rates, we applied the pro-
jection approach to a cross-section close to the SBR resolution limit in 
the intralipid sub-experiment. The random projection matrix R was 
generated by drawing each entry from a standard normal distribution. 
We used R to project from a space with 256256 dimensions to a space 
with 2078 dimensions. To reconstruct quickly in a phantom independent 
way, we used only the first step in the reconstruction process described 
above. That is, we omitted the second step that uses a dictionary 
determined using an initial rough reconstruction. 

4. Results 

The reconstructed experimental images of the through-plane 
crossed-wire phantom are shown in Fig. 3. The C-scan images were 
generated by taking maximum amplitude projections of a collection of 
B-scans, and then upsampling by a factor of 10. We observe that SBR 
resolved the two wires to a smaller separation than BP, as well as 
providing reduced background signal. 

To quantify the performance of SBR, we compared its estimated wire 
separation to that estimated by BP, as shown in Fig. 4. The reported 
separation on a given frame was calculated as the distance between the 
two highest intensity points in the reconstructed image, while requiring 
that the second highest intensity point be more than 35μm or 90μm from 
the first point in the case of SBR and BP, respectively. The failure point of 
a method was assessed qualitatively by observing when the image 
generated no longer contained two distinct peaks. In the case of BP, we 

also report the “half-maximum resolution”. We define this as the BP 
peak-separation just before the two BP intensity peaks are no longer 
separated by a dip in intensity (in a maximum amplitude projection) to 
half the value of the average of the two peaks. The half-maximum res-
olution of SBR is not plotted, as it is roughly equal to the separation 
between the points at SBR failure. 

In both the water and intralipid case, we observe in Fig. 4 a strong 
correlation between the separations reported by the two reconstruction 
approaches up until BP fails to resolve the two wires. Beyond the sep-
arations at which BP fails, SBR provides separation estimates that are 
consistent with a roughly linear rate of reduction in separation, which is 
reasonable for the crossed-wire target. The source of the jump in sepa-
rations seen in Fig. 4 (a) is not currently well understood, but could 
simply be an experimental artifact due to vibrations causing small 
movements in the wire during the imaging procedure. 

We estimated the final separation of the points prior to SBR failure by 
using a linear fit on BP-estimated separations up to BP failure. This 
approach produced point separation estimates of 70μm and 75μm prior 
to SBR failure in the intralipid and water experiments, respectively. In 
each case, these estimates for wire separation prior to SBR failure are 
substantially below the 145μm half-wavelength resolution limit corre-
sponding to the 5MHz center frequency assuming 1450m/s speed of 
sound in water. 

We also wished to determine whether random projection could be 
used to accelerate reconstruction while preserving super-resolution. As 
illustrated in Fig. 5, we were able to use random projection to accelerate 
the reconstruction process by a factor of > 60, while retaining the ability 
to separate targets closer than λc/2. 

To explore SBR resolution with variable levels of noise, we addi-
tionally used only 10x, 2x and 1x averaging to reconstruct images of 
Fig. 3. These results are shown in Fig. 6. 

SBR was able to successfully reconstruct the less-sparse phantom 
containing in-plane wires, as show in Fig. 7 (b). We note that SBR largely 
recovers the in-plane wires, albeit with some gaps, and that it also lo-
calizes the through-plane wire. This was achieved even when recon-
structing one quarter of the field of view at a time (Fig. 7 (c)). 

Fig. 3. In both intralipid (a–f) and water (g–l), sparsity-based reconstruction (SBR) (d–f, j–l) was able to resolve two wires to a closer separation than back-projection 
(BP) (a–c, g–i). All reconstructions in this figure were generated using the full data observed. 
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Fig. 4. The wire separations reported by back-projection (BP) and sparsity-based reconstruction (SBR) in both intralipid (a) and water (b) correlate well, and follow 
the expected linear trend for the crossed-wire phantom. In each case SBR was able to resolve the two wires at separations below the half-wavelength limit. 

Fig. 5. We found that using a random projection matrix accelerated sparsity-based reconstruction while preserving super-resolution in the intralipid sub-experiment. 
The reconstruction times listed are those required to perform optimization after forming the dictionary matrix and calculating any projections. 

Fig. 6. We explored the robustness of sparsity-based reconstruction resolution to variable levels of noise, achieved with 10x (a), 2x (b), and 1x (c) averaging. In 
intralipid, super-resolution was obtained with a single laser shot. 

Fig. 7. Sparsity-based reconstruction (SBR) successfully imaged a less-sparse phantom consisting of in-plane crossed wires and a through-plane wire. SBR succeeded 
when used to reconstruct the entire field of view at once (b), and when used to reconstruct one quarter of the field of view at a time (c). SBR reduced ringing 
compared to back-projection (BP) (a) but failed to reconstruct portions of the in-plane wires. 
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5. Discussion 

We found that SBR was able to resolve points separated by a distance 
roughly half of the λc/2 resolution limit. To our knowledge, this is the 
first time that this limit has been surpassed in photoacoustic tomography 
without making use of super-localization of moving absorbers. This 
could be important for imaging structures where there is no motion (e.g. 
micro-metastases). The resolution improvement ratio, defined as the 
ratio of the obtained super-resolution to the diffraction resolution limit, 
was 75/145 = 0.52 in water and 70/145 = 0.48 in intralipid. These 
results using a ring array system offer a larger resolution improvement 
than that reported in prior work using linear arrays (125/155 = 0.81 in 
[26], and 75/117 = 0.64 in [25]). 

The super-resolution results obtained here were achieved using 
sparse targets in an idealized imaging environment. Compressive 
sensing performance in general depends on the properties of the sensing 
matrix H, on the sparsity level, and on the noise level of the system. So, 
the best resolution obtainable will be context specific. That is, we can 
expect it to vary with the geometry and impulse response of the imaging 
system used, the noise level, the level of sparsity actually present in the 
imaged target, the effective sparsity obtained by using approximate 
point-response estimates, the size of the projection matrix used for data 
reduction, and the locations in space selected for reconstruction. Future 
work could seek to precisely characterize the impact these parameters 
have on the resulting SBR images. Importantly for application to in vivo 
imaging, we can expect performance to degrade as the imaging target 
becomes less sparse or as our ability to characterize the (potentially 
spatially varying) impulse response of the imaging system decreases. For 
applications involving sources of signal that are not spatially sparse, it 
may be appropriate to reconstruct with respect to a different sparsifying 
prior. In this case, performance may be improved by using a total 
variation prior or a linear combination of priors that includes spatial 
sparsity. Future work could explore the relative performance of SBR and 
traditional reconstruction approaches in these more challenging 
contexts. 

Besides noise, an additional source of uncertainty in our super- 
resolution measurements was the selected pseudorandom reconstruc-
tion locations generated by a user-supervised algorithm. We explored 
this briefly for the transverse slice shown in Fig. 3 (e). Using five 
different realizations of the reconstruction locations, we found that the 
estimated distance between the two wires in this transverse slice varied 
by 7.4 μm. This along with the uncertainty in localization over multiple 
noise realizations is contained within the ±10μm uncertainty we report 
in the abstract. 

The high degree of computational burden associated with SBR poses 
another challenge to its practical implementation. The computational 
burden increases with the fineness of the dictionary used and the size of 
the field of view. By using a random projection operator R to reduce the 
size of the dictionary matrix H by 99%, we reduced reconstruction time 
to < 1s per frame, while preserving super-resolution capability. This 
corresponded to a speed up by a factor of ≈ 60 compared to when 
random projection was not used. While results did depend on the pro-
jection used, even an aggressive random projection allowed us to create 
super-resolved images, as illustrated in Fig. 5. We also found that we 
could reconstruct a larger field of view by performing several re-
constructions independently over a collection of smaller areas. In the 
particular case shown in Fig. 7, each quadrant took ≈ 20s to reconstruct 
with a dictionary containing 2500 point responses, but a 100 × 100 
dictionary (roughly 20 GB) would not fit in the RAM of the computer 
used for reconstruction. Both random projection and piecewise recon-
struction may help enable faster SBR imaging, or help enable SBR im-
aging with larger fields of view or in three dimensions. 

In regards to Fig. 6, note that the results in intralipid indicate the 
ability to achieve super-resolved images with a single laser shot. This is 
in contrast to super-localization approaches which typically require 
thousands of laser shots. It was seen that different realizations of the 

random projection matrix as well as different experimental noise re-
alizations could impact image reconstruction and lead to failure of 
super-resolution and should be investigated in future work. 

6. Conclusion 

We implemented a photoacoustic tomography ring-array system 
with sparsity-based reconstruction to demonstrate super-resolution im-
aging with a single laser shot. We found we were able to experimentally 
resolve points with separation of roughly half the half-wavelength res-
olution limit (70 ± 10μm vs. 145μm). By making use of a random pro-
jection matrix, we were able to accelerate reconstruction to < 1s per 
frame while preserving super-resolution. In addition, we found that our 
SBR implementation optimized for point targets was able to generate a 
reasonable image in the presence of a less-sparse target, and even when 
reconstructing only a quarter of the field of view at a time. This suggests 
SBR has some robustness to non-sparse background signals. Both data 
reduction approaches explored (sub-region piecewise reconstruction 
and random projection) may help enable SBR imaging in contexts with 
larger field of view or in three dimensions. Future work may explore 
whether SBR can achieve super-resolution in less ideal contexts, where it 
is harder to form a high-quality dictionary of point responses and there is 
substantial non-sparse background signal. 
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