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Abstract
Recurrent neural networks are frequently studied in terms of their information-processing capabilities. The structural properties
of these networks are seldom considered, beyond those emerging from the connectivity tuning necessary for network training.
However, real biological networks have non-contingent architectures that have been shaped by evolution over eons, constrained
partly by information-processing criteria, but more generally by fitness maximization requirements. Here, we examine the
topological properties of existing biological networks, focusing in particular on gene regulatory networks in bacteria. We
identify structural features, both local and global, that dictate the ability of recurrent networks to store information on the fly
and process complex time-dependent inputs.

Keywords Biological networks · Reservoir computing · Feedback circuits · Feedforward circuits · Mutual regulation

Biological computation via networks
of dynamical elements

One of the defining characteristics of living organisms is their
ability to adapt to changing environments. Cognition arising
from the human brain is usually considered the culmination
of this achievement. Given that the information-processing
capabilities of the brain are known to emerge from the net-
works of neurons that form it, it is not surprising that idealized
representations of neural networks have been used for com-
putational purposes for over 80 years (McCulloch and Pitts
1943). The fact that abstract neuronal network models are
able to perform complex information processing tasks is a
reflection of the substrate independence that characterizes
network computation (Barack andKrakauer 2021). This sub-
strate independence not only has led to the current revolution
in machine learning, but also is enabling us to extend the
idea of network computation to other types of biological
systems beyond the brain (Gunawardena 2022). A particular
and relevant situation is that of individual (non-neural) cells,
whose adaptability has been postulated to rely on complex
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networks of interactions among their biomolecular compo-
nents, including (but not restricted to) genes and proteins
at the level of transcriptional regulation (Lee et al. 2002;
Martinez-Antonio and Collado-Vides 2003). Interestingly,
these gene regulatory networks (GRNs) are in some ways
more accurate instantiations of artificial neural networks
(Mjolsness et al. 1991) than the networks of biological neu-
rons on which they were inspired.

Mounting evidence in recent years has shown that indi-
vidual cells perform complex computations. The bacterium
Escherichia coli, for instance, has been seen to exhibit tem-
poral associative learning, relating pairs of stimuli that tend
to occur together in a specific order, such as a rise in tem-
perature followed by low oxygen conditions, which can be
indicative of the microbe having been ingested by a mammal
(Tagkopoulos et al. 2008). A similar phenomenon has been
observed in the fungal pathogen Candida albicans, which
can learn to respond to a glucose increase (indicative that the
pathogen has entered a host) by upregulating genes respon-
sible for oxidative stress resistance, as a way to preemptively
react to the host’s immune system (Schild et al. 2007).

Learning the temporal structure of the environment, such
as in the examples listed above, and processing time-
dependent information in general, requires memory. In that
context, studies have shown that bacteria display both short-
and long-term memory. Specifically, carefully designed cul-
ture experiments have revealed that the stress response of
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Bacillus subtilis cells relies not only on their present growth
conditions, but also on their environmental history (Wolf et al.
2008). While classical approaches to memory are usually
based on hard-wiring network connections using Hebbian
rules (Brown and Milner 2003), recent work has shown that
memory can also be soft-wired through generalized chaos
synchronization (Casal et al. 2020). To that end, the network
must exhibit self-sustained dynamical behavior, which natu-
rally results from recurrent connections (Sussillo and Abbott
2009). Such recurrent networks are indeed known to process
time-dependent information, in what is known as state-
dependent computations (Buonomano and Maass 2009). A
particular type of computational paradigm in that respect is
based on the concept of reservoir computing (Verstraeten
et al. 2007), which was initially proposed almost simultane-
ously in the fields of machine learning and computational
neuroscience, implemented by computational systems that
came to be known as echo state networks (Jaeger 2001a) and
liquid state machines (Maass et al. 2002), respectively.

Following previous work (Jones et al. 2007; Gabalda-
Sagarra et al. 2018), here we propose that the inherent
structure and dynamics of gene regulatory networks allow
bacteria to process temporal information. Our aim is to estab-
lish how the structural properties of the network, both global
and local, determine its computational capabilities, focusing
in particular on its ability to store information from the envi-
ronment on the fly (what we term soft memory). Specifically,
in what follows, we first study the effect of the global net-
work dynamics on its memory capacity.We then examine if a
balance between activation and repression is needed to have
a functional network (similarly to what happens in neuronal
networks (VanVreeswijk and Sompolinsky 1996)). Next, we
analyzewhether the local topological properties of biological
gene regulatory networks contribute to their memory encod-
ing. Finally, we search for smaller set of genes within the E.
coli’s network that can perform well in memory-demanding
tasks, which could be helpful for the experimental validation
of this computational paradigm in single cells.

Global structural determinants of soft
memory

The gene regulatory network of E. coli has been extensively
documented and made publicly available in resources such
as EcoCyc (Keseler et al. 2011). Using the EcoCyc database,
we previously established that the architecture of this biolog-
ical network fits within the paradigm of reservoir computing
(Gabalda-Sagarra et al. 2018). Specifically, the network has
a core sub-structure formed by a relatively small number of
genes that are recurrently connected to each other, known as
the reservoir (Fig. 1a). This recurrent core receives input sig-
nals, shown in blue in the figure, and projects their dynamics

nonlinearly into a high-dimensional space, which enables
further on-the-fly classification of those dynamical signals
by a downstream readout layer (red nodes in the figure). As
shown in Table 1, the recurrent core is a small fraction of the
entire network, yet it endows the systemwith notable compu-
tational properties, while simultaneously admitting training
procedures that are biologically feasible (Gabalda-Sagarra
et al. 2018), as we discuss below.

Network simulations

The dynamics of the recurrent core can be simulated using a
temporally discrete update rule given by

xt = tanh(Winut + Wxt−1), (1)

where t = 1, . . . , T are the discrete time points in the train-
ing dataset, xt ∈ R

N×1 is the state vector of the reservoir
units (with N representing the number of reservoir nodes),
and ut ∈ R

Nin×1 is the input signal vector (with Nin denoting
the number of inputs), both at time t . The weight matrices
Win ∈ R

N×Nin and W ∈ R
N×N represent the input-

reservoir connections and the recurrent connections within
the reservoir, respectively. The elements ofWin are randomly
chosen to be either −0.05 or 0.05. At the same time, the ele-
ments of W are real random numbers drawn from a uniform
distribution U(0,1) if the link exists (i.e., if a protein and
its corresponding target gene are connected in the EcoCyc
database), and 0 otherwise. The sign of the non-zero elements
of W is set according to whether the regulation is an activa-
tion or a repression. Additionally, theW matrix is normalized
to have a given spectral radius. A spectral radius close to,
but below, 1 gives rise to the so-called echo-state property
(Lukoševičius and Jaeger 2009; Jaeger 2001a), whichwewill
discuss in some detail in what follows.

The dynamics of the reservoir is then fed into the readout
nodes, which define the output as a weighted sum of the state
of the nodes from which it receives information:

Y = Wout X (2)

Here, Y ∈ R
Nout×T is a matrix with all predicted out-

puts over time (with Nout denoting the number of readout
nodes/outputs), X ∈ R

N×T is a matrix that contains the
states of the reservoir nodes over time, andWout ∈ R

Nout×N

is the weight matrix for the reservoir-readout connections.
In the reservoir computing paradigm, training the network
corresponds to fitting the Wout weights so that the network
output approximates the target outputs of the training dataset.
A simple training method used in machine learning is ridge
regression, where the Wout weights are obtained from

Wout = Y targetX tr(XX tr + γ 2 I )−1 (3)
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Fig. 1 a Schematic representation of a reservoir computing architec-
ture. The input nodes in blue denote the external signals acting upon the
reservoir nodes. The recurrent core is represented by the green nodes.
The output nodes (red) form a feedforward subgraph that reads the infor-
mation encoded in the reservoir to make decisions. Only the readout
weights Wout (red arrows) are trained so that the output Y approxi-
mates target output signal(s). b Maximum Lyapunov exponent (blue)
and critical memory capacity (magenta) as a function of the spectral
radius of the reservoir. The maximal critical memory capacity occurs in
the vicinity of the transition from ordered to chaotic dynamics (when

λ ≈ 0, horizontal dashed line in blue). The values shown are the mean
over 50 realizations of the network with different random input and
recurrent weights. Errors were estimated as the standard deviation over
those 50 realizations. cNetwork performance for a 10th-order NARMA
task and d critical memory capacity as a function of the percentage of
repressing nodes in randomized networks, while the real network results
are shown in orange. The values shown are the mean over 100 realiza-
tions. Errors were estimated as the standard deviation over those 100
realizations

Here, Y target ∈ R
Nout×T is a matrix with the target outputs

over time, and X tr is the transpose of X . I is the identity
matrix, and the regularization coefficient γ is introduced
to avoid overfitting (Lukoševičius and Jaeger 2009). Ridge
regression is a variation of the least squares method that
penalizes regression coefficients with large absolute values.
In doing so, it introduces a certain bias, but on the other
hand, it also reduces the variance of the estimate. This allows
estimating the linear regression parameters when the predic-
tor variables are strongly correlated, making it a common

Table 1 Structural properties of E. coli’s gene regulatory network

Nodes Edges Mean degree

Whole graph 3236 8366 5.17

Recurrent core 70 317 9.05

readout choice in the context of reservoir computing (Wyf-
fels et al. 2008). On the other hand, it is not a realistic training
method for biological networks. In that case, genetic algo-
rithms mimicking the learning role of evolution can be used
(Gabalda-Sagarra et al. 2018; Watson and Szathmáry 2016).

To be functional, recurrent cores need to exhibit particular
design properties. In particular, to combine both separability
and generalizability, they need to operate between ordered
and chaotic dynamics, i.e., near the so-called edge of chaos
(Bertschinger and Natschläger 2004; Legenstein and Maass
2007;Morales andMuñoz 2021;Vidal-Saez et al. 2024). This
refers to a critical state between ordered dynamics (where
perturbations quickly die out into an attractor) and chaotic
dynamics (where perturbations are amplified). This property
is particularly interesting, because of existing evidence indi-
cating that cortical circuits are close to criticality (Beggs
2007; Beggs and Plenz 2003; Chialvo 2004). There is so
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far no direct evidence suggesting that gene regulatory net-
works operate near criticality (but see (Vidiella et al. 2021)
for a synthetic implementation of critical behavior inE. coli).
Since we are interested in memory encoding in these types of
networks, we measure in what follows the memory capacity
of E. coli’s reservoir as it undergoes a phase transition from
ordered to chaotic dynamics. With this analysis, we seek to
establish if the dynamical regime of the reservoir has an effect
on its memory capacity.

To control the phase transition from ordered to chaotic
dynamics, we tune the spectral radius ρ of the adjacency
matrix representing the recurrent core of E. coli’s gene reg-
ulatory network. This quantity corresponds to the largest
absolute value of all eigenvalues of the matrix and deter-
mines the dynamical stability of the reservoir when no input
is fed into the network (Lukoševičius and Jaeger 2009). Large
spectral radius values can lead to multiple fixed points or
to periodic or even chaotic (for large enough nonlinearity)
attractor modes. On the other hand, a spectral radius around
1 leads to the so-called echo state property, which ensures
that the effect of initial conditions on the reservoir state fades
away asymptotically in time (Jaeger 2001b, a; Yildiz et al.
2012). Taking this into account, we have tuned the spectral
radius value in order to obtain reservoirs with ordered as well
as chaotic dynamics.

Critical memory capacity

To analyze the memory capacity of E. coli’s reservoir, we
have chosen avariationof a commonbenchmark task, namely
the memory capacity (Jaeger 2001b), as a quantifier of the
degree ofmemory exhibited by the network. In this task, a sin-
gle input node feeds into the reservoir a signal ut drawn from
a randomuniformdistributionU(-1,1).A readout node is then
trained to produce an output thatmatches a delayed version of
the input signal. To evaluate the short-term memory capac-
ity of the network, we compute the normalized covariance
between the delayed input and the output:

MCk = cov2(ut−k, yt )

σ 2(ut−k) · σ 2(yt )
. (4)

We define the critical memory capacity k∗ of the network
as the maximum delay k that fulfills MCk > 0.5. Similar
approximations to the short-termmemory capacity have been
made in other works (see, e.g., Boedecker et al. (2012)). In
order to measure MCk for each k, we generated 10 input–
output series (input: ut , output: ut−k) of 1000 steps each,
using 9 of them for the training phase of the ridge regression
and the remaining one to test its performance by measuring
the corresponding MCk , as given by Eq. 4.

Measuring chaos in reservoirs

To keep track of the transition from order to chaos, we have
used the maximum Lyapunov exponent (MLE), a hallmark
indicator of criticality. This indicator quantifies the expo-
nential divergence of two initially close trajectories of a
dynamical system in state space (Derrida and Pomeau 1986)
and has been already applied in the reservoir computing
framework (Legenstein and Maass 2007; Bertschinger and
Natschläger 2004; Boedecker et al. 2012). It is defined by

λ = lim
k→∞

1

k
ln

(
γk

γ0

)
, (5)

where γ0 is the initial distance between the two trajectories,
and γk is the distance at time k. Chaotic dynamics is typically
associatedwith a positiveMLE(λ > 0),while for sub-critical
systems (ordered phase) λ < 0. A transition thus occurs at
λ ≈ 0.We estimate theMLE following themethod described
in Ref. (Sprott 2003).

Maximal memory capacity at the edge of chaos

Using the approaches described in the previous sections, we
now compute the critical memory capacity of the E. coli’s
recurrent core and the MLE of its dynamics, for increasing
values of the spectral radius ρ. These results are displayed
in Fig. 1b. The figure shows that the system transitions from
a sub-critical (λ < 0) to a super-critical (λ > 0) state at a
spectral radius ρ ≈ 0.9. In turn, themaximal critical memory
capacity of the network is reached just above the onset of
chaos, whenρ ≈ 0.95. Thus, theGRNofE. coli hasmaximal
memory at the vicinity of the order-to-chaos transition.

The spectral radius ρ of the GRN could be tuned biolog-
ically by altering globally the gene expression potential of
cells (varying in a controlled manner the levels of resource
cellular components such as RNA polymerases, housekeep-
ing sigma factors, or ribosomes). The model thus makes an
experimental prediction: the memory capacity of E. coli’s
GRN should depend non-monotonically on its global expres-
sion strength, according to the results of Fig. 1b.

Activation/repression balance in GRNs

The Ecocyc dataset (Keseler et al. 2011) includes informa-
tion about the sign of all transcriptional interactions, namely
whether they are activations or repressions. The proportion
of repressing interactions in the entire E. coli GRN is 24%,
while in the recurrent core is 41%. We then ask whether this
activation/repression ratio has an effect on the performance
of the network. In other words, has evolution tuned the acti-
vation/repression ratio in natural reservoirs to operate near

123



Biophysical Reviews (2025) 17:259–269 263

optimal performance? Is the memory capacity of the net-
work affected if we modify this ratio? This idea has been
explored in the context of neuronal networks (Casal et al.
2020), but not in GRNs. In the neuronal case, the excita-
tory/inhibitory (E/I) balance, defined as the balance between
excitation and inhibition of synaptic activity in a neuronal
network, plays a crucial role in maintaining the regular func-
tionality of the brain (Deco et al. 2014). This equilibrium,
responsible for regulating normal spike rates, is disrupted in
numerous pathological conditions, resulting in either exces-
sive or diminished excitation relative to inhibition, termed
E/I imbalance (Ghatak et al. 2021; Kirischuk 2022).

To study the effect of the activation/repression balance
in gene regulatory networks, we randomized the signs of the
reservoir edges, whilemaintaining a proportion of inhibition.
The performance of the E. coli’s reservoir was studied for
increasing repression/activation ratios, using the 10th-order
nonlinear autoregressive moving average (NARMA) task, a
memory-demanding benchmark commonly used in the con-
text of neural networks (Jaeger 2002). The task consists in
training a network to reproduce the output of the 10th-order
NARMA system (Atiya and Parlos 2000), a discrete dynami-
cal systemwith input values st drawn from a random uniform
distribution U(0, 0.5), while the output yNRM(t) is defined
by

yNRM(t + 1) = 0.3yNRM(t) + 0.05yNRM(t)
9∑

i=0

y(t − i)

+1.5s(t − 9)s(t) + 0.1 (6)

To test if the dynamics of E. coli’s reservoir can represent
the temporally correlated NARMA input, the network was
simulated with a single input node feeding the s(t) series into
the system. A readout node was then trained to reproduce the
output yNRM(t) of the 10th-orderNARMAsystemusing only
the instantaneous state of the network. For each realization,
10 NARMA series of 1000 steps were generated, using 9 of
them for the training phase and the remaining one to test the
performance. Themain challenge of the 10th-order NARMA
task is that the output of the time series depends on the input
and output values of the last 10 time steps. This information
about the past must be encoded in the reservoir state for the
predicted output to be able to accurately model the input.

To quantify the network performance, we used the nor-
malized root mean squared error (NRMSE) between the
predicted and target output signals, defined as

N RMSE =
√√√√

〈
(y(t) − ytarget(t))2

〉
t〈

(ytarget(t) − 〈
ytarget(t)

〉
t )
2
〉
t

, (7)

where y(t) is the output predicted by the readout, ytarget(t)
is the target output (yNRM(t) in this case), and 〈·〉t indicates
the average over time.

We now challenge theE. coli’s reservoirwith theNARMA
task described above, for varying proportions of activa-
tion/repression. The results obtained are displayed in Fig. 1c.
The results show that the performance of the E. coli’s reser-
voir for the NARMA task varies non-monotonically with
respect to the repression ratio. This behavior also holds for
the critical memory capacity task, as defined in Section Crit-
ical memory capacity and shown in Fig. 1d. In particular, the
best performance is observed when the percentage of repres-
sion is within the range 40–60%, which encompasses the
value exhibited by the biological dataset (Keseler et al. 2011),
shown by the orange dot in Fig. 1c and d. In other words, the
biological reservoir operates near the activation/repression
ratio that yields optimal performance. In summary, an opti-
mal balance between activation and repression is needed in
the E. coli’s reservoir in order to endow it with temporal
information processing capabilities. A similar result has been
reported in the nervous system of the nematode C. elegans
(Casal et al. 2020).

Effect of local topology onmemory capacity

In the previous section,we analyzed the impact of the dynam-
ical regime of the E. coli’s reservoir on its memory capacity,
following previous studies on artificial recurrent networks
that showed improved performance at the edge of chaos
(Legenstein and Maass 2007). We now take a different per-
spective: does the local topologyof biological reservoirs have
an influence on their memory capacity?

Memorymotifs

The connectivity patterns of E. coli’s GRN are not random;
they have been actively shaped by natural selection (Alon
2019). To look for meaningful patterns, we can compare
the real network to an ensemble of randomized networks,
with the same number of nodes and edges as the real net-
work, but where the connections between nodes are made
at random. Patterns that occur in the real network signifi-
cantly more often than in randomized networks are called
network motifs (Milo et al. 2002; Shen-Orr et al. 2002). We
focus in what follows on three circuits: self-loops, mutual
regulation circuits, and feedforward loops (FFLs), where the
interactions can correspond to either activation or repression.
Self-loops and FFLs are network motifs of E. coli’s GRN
(Alon 2019). Mutual regulation circuits have been included,
since we hypothesize that some local recurrence is needed to
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have a network with memory. From now on, we will refer to
the these three circuits as memory motifs. We note that these
are the smallest circuits that contain feedback and feedfor-
ward interactions. While only one node is needed to have
a feedback loop, three nodes are needed for a feedforward
connection. Themutual regulation architecture, in turn, is the
second simplest topology that exhibits feedback. We choose
this type of circuit to go beyond the somewhat singular char-
acter of single-gene circuits.

Table 2 shows the number of copies of each memory
motif that are embedded in the whole gene regulatory net-
work and in the recurrent core of E. coli, compared with the
expected number of motifs in their correspondent random-
ized networks. As shown in the table, the normalized relative
abundance of FFL circuits relative to the randomized net-
works, as measured by the z-score, is reduced by a factor of
over 150 between the whole graph and the reservoir, indicat-
ing that the whole network is much more enriched with FFLs
than its recurrent core. This result makes sense considering
that the whole graph comprises both the reservoir and the
readout. The latter is a feedforward architecture with 98% of
the nodes, which is locally enriched with feedforward loops
(FFL). The z-scores of the self-loop and mutual regulation
circuits, on the other hand, are reduced only by a factor of
around 3 between thewhole graph and the reservoir, although
both circuits are significantly relevant motifs (i.e., the z-score
is significantly larger than 1) in both networks. Interestingly
(although expectedly), all 28 mutual regulation motifs of the
whole graph are part of the reservoir.

Memory capacity of thememorymotifs

To assess the relation of the three memory motifs introduced
above with the memory capacity of the recurrent core, we
sampled ≈ 2400 sub-reservoirs of different sizes from the
whole E. coli’s reservoir of 70 genes. To do it, we started
by removing nodes from the reservoir sequentially and at
random. We then pruned the resulting network to make sure

it is still a reservoir (Gabalda-Sagarra et al. 2018) and kept
only its giant connected component. We iterated this process
until we reached a reservoir of only 3 nodes (minimum size
considered). We repeated this process 100 times starting
from different nodes and ended up with a total of 2394 sub-
reservoirs. This procedure led to reservoirs with sizes from
3 to 69 nodes.

We then measured the critical memory capacity of the
sub-reservoirs generated as described above. The results are
shown in Fig. 2a–c, as a function of the number of memory
motifs, normalized by their expected number in randomized
networks. In these figures, each symbol represents a sub-
reservoir, with its color denoting the number of nodes of
each circuit. To normalize the motif number, for each sub-
reservoir, we simulated its correspondent random network
with the same quantity of nodes and edges. We counted the
number of self-loops, mutual regulation circuits, and FFLs
in the random network. We repeated the process 1000 times
and then computed the expected number as the mean of the
1000 realizations.

The results shown in Fig. 2a–c reveal an overall increase of
the memory capacity with the number of motifs for the three
circuits.However, the quantitative dependenceon thenumber
ofmotifs ismarkedly different in the three cases. Specifically,
the sub-reservoirs are more enriched with self-loops than
mutual regulation and FFLmotifs, as reflected in the fact that
the x-axis range is much larger in panel (a) than in (b) and
(c). This is consistent with the results presented in Table 2.
Another interesting feature of Fig. 2c is that FFLs do not
determine the reservoir’s memory, since even networks with
no FFLs whatsoever have reservoirs with memory capacity
in a broad range (from 0 to 8). Clearly, these networks have
other motifs that give them memory. It is worth noting that
this broad range of memory capacity levels in the absolute
absence of FFL motifs does not exist for self-loop or mutual
regulation motifs.

A comparison between Fig. 2a and b also reveals that
mutual regulation circuits are much more efficient than

Table 2 Number of motifs in
the entire GRN (top) and
recurrent core (bottom) of E.
coli compared to the expected
number in randomized networks
with the same number of nodes
and edges (mean ± s.d.
computed over 1000
realizations)

Whole graph Real network Randomized network z-score

Self-loop 126 3 ± 2 79

Mutual regulation 28 3 ± 2 14

FFL 4798 17 ± 4 1167

Reservoir Real network Randomized network z-score

Self-loop 55 5 ± 2 26

Mutual regulation 28 10 ± 3 5.8

FFL 147 73 ± 10 7.6

The z-score is computed as z-score= Nreal−〈N 〉rand
σrand
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Fig. 2 a–c Critical memory capacity vs number of memory motifs
normalized by expected number in randomized networks. The x-axis
in each case corresponds to the number of self-loops (a), number of
mutual regulation circuits (b), and number of FFLs (c). The critical
memory capacity for each reservoir was computed as the average over
50 realizations. The color coding represents the number of nodes in

each reservoir (from 3 to 69). The expected number of motifs in the
random networks was calculated for networks with the same number
of nodes and edges (mean over 1000 realizations). d, e Critical mem-
ory capacity distributions for reservoirs with less motifs than an given
threshold, for two threshold values. The critical memory capacity for
each sub-reservoir was computed as the average over 50 realizations

self-loops in enhancing memory. Specifically, panel (b)
shows that maximum memory capacity (∼ 15) can be
reached with a normalized number of mutual regulation cir-
cuits of around 3, whereas these numbers grow to around 10
for self-loops (panel a). This is also reflected in the memory
capacity distributions for the three memory motifs shown in
Fig. 2d, which is restricted to sub-reservoirs with less than
28 motifs. When this threshold is increased to 55 (panel e of
the figure), the difference between self-loops and FFLs also
becomes evident.

Smallermemorious GRNs

We now aim to identify the smallest sub-networks of the
E. coli’s reservoir that perform well in memory-demanding
tasks. To that end, we confronted the 2394 sub-reservoirs
introduced in the previous section with both the memory
capacity and the 10th-order NARMA tasks defined above
and also with a biologically inspired task, namely a delayed
AND integration. We then looked for networks with a good
size-performance trade-off across the three tasks. We first
describe the delayed AND task.

Delayed AND task

This task is inspired by the example of associativememory of
E. coli described in Section Biological computation via net-
works of dynamical elements, in which bacteria anticipate
a decrease in oxygen availability from an earlier increase in
temperature (Tagkopoulos et al. 2008). This behavior can be
interpreted as a delayed AND task, in which the reservoir
is stimulated by two signals separated in time, acting upon
two different input nodes. In our case, the input signal for
each node consists of a series of length 600 time step, with
randomly distributed pulses of unit height with a duration of
3 time steps, depicted in the top row of Fig. 3a.

The ground-truth output of the task is calculated as an
AND gate with inputs I1 at time step i − k (with k = 6
in our case) and I2 at time step i . In that way, if I2 = 1 at
time step i and I1 = 1 at time step i − k, the system’s target
output is ytarget = 1, as shown in the middle and bottom rows
in Fig. 3a. The bottom row, in particular, shows the output
predicted by thewholeE. coli’s reservoir (70 genes) in green.
To quantify the network performance, we first binarize the
output using a threshold 0.5, shown as a grey line in the
bottom row of the panel. Once binarized, the quality of the
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Fig. 3 a A delayed AND task. Top row: time series of the two input
signals (I1[i] and I2[i]). Middle row: the input I1 delayed 6 time steps
(I1[i-6]) in relation to input I2[i]. Bottom row: the target output (red)
at time step i is calculated as an AND gate between I1[i-6] and I2[i].
In green, the predicted output by the whole E. coli’s reservoir is shown.
b–d E. coli’s sub-reservoirs performance in terms of network size, for

the critical memory capacity (b), the 10th-order NARMA task (c), and
the delayed AND task (d). The performance for each sub-reservoir
was computed as the average over 50 realizations for each one of the
three tasks. In red, we show two selected networks with a good size-
performance compromise across the three tasks

performance is evaluated by calculating theNRMSEbetween
the binarized predicted and target output signals (outputbin

and ytarget), as been defined in Eq. 7.

Network size influence on computational
performance

The response of the sub-reservoirs introduced in Section
Memory capacity of the memory motifs to the three tasks
defined above is shown inFig. 3b–d,which considers only the
networks whose performance is within 1.25 standard devia-
tions from themean value across all sub-reservoirs. The plots
show, as expected, that the memory capacity grows, and the
error of the NARMAand delayedAND tasks decrease, as the
size of the sub-graphs increases. We then used those results

to identify two sub-reservoirs, shown as red symbols in
Fig. 3b–d, that have a good size-performance trade-off across
the three tasks considered. These recurrent networks, whose
size is≈ 40 nodes, have performances not much smaller than
the entire reservoir, with only 57% of its genes. Even smaller
networks can have good enough performance, although in
this case only for some of the tasks. It will be interesting to
investigate in the future what topological characteristics of
these small networks lead to their good performance in some
of the tasks, depending on the differential characteristics of
the successful task with respect to the others (e.g., the need
or more or less memory or the need to respond to nonlin-
ear behaviors). Such studies could be relevant of the design
of synthetic circuits with enhanced memory capacities (Siuti
et al. 2013; Inniss and Silver 2013).
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Discussion

Here, we have studied the temporal information processing
capabilities of the gene regulatory network of the bacterium
Escherichia coli within the reservoir computing framework.
We focused on E. coli due to the fact that the global archi-
tecture of this organism’s gene regulatory network has been
systematically studied (Gabalda-Sagarra et al. 2018) and to
the relative ease with which this bacterium can be monitored
and perturbed, both genetically and chemically. However, the
network architecture of other microorganisms and eukary-
otes has similar global structural properties (Gabalda-Sagarra
et al. 2018), and therefore, we expect the results presented
here to be generalizable to other living systems.

We concentrated on the dynamics of the recurrent core,
due to its relevance in temporal information processing. We
first explored whether the dynamical regime of the reser-
voir affects its memory capacity. This was inspired by work
done on artificial ESNs, where it has been seen that the
performance of reservoirs is optimal at the critical point of
an order-to-chaos transition (Legenstein and Maass 2007;
Morales andMuñoz 2021). Our results show that theE. coli’s
reservoir has maximum memory capacity just around the
onset of the transition to chaos.

We also explored whether the balance between transcrip-
tional activation and repression is relevant in order to obtain
a functional GRN under the RC framework. The repression
percentage in the reservoir is 41%. By varying this percent-
age artificially, we saw that the optimal performance for two
memory-demanding tasks (memory capacity and 10th-order
NARMA) is obtained for a repression percentage near 40%.
We thus conjecture that evolution might have tuned GRNs to
an optimal activation/repression ratio that maximizes mem-
ory capacity. It would be very interesting to validate this
result, although it is certainly challenging to do this validation
directly with the currently existing data. Two potential ways
to do this validation, provided robust data were available,
would be the following: First, one could compare different
cell types in a multicellular organism, to look for substantial
changes in the relative abundance of activators and repressors
among cell types. In those cases, one could then correlate the
activation/repression ratiowith thememory capacity (or need
thereof) of the corresponding cell types. As a second poten-
tial validation method, one could look at mutant libraries
designed to identify minimal genomes (in bacteria such as
Mycoplasma genitalium, for instance (Glass et al. 2006)).
Again, if the activator/repressor ratio changes systematically
across these libraries, one could correlate that ratio with the
memory capacity of the corresponding mutants.

We next asked whether the local topology of GRNs con-
tributes to their memory-encoding capabilities. To that end,
we constructed a sample of ≈2400 sub-reservoirs from the
full E. coli’s reservoir and aimed to find a relation between

the number of motifs in the sub-reservoirs and their memory
capabilities. Our results show that networkmotifs with recur-
rences (self-loops andmutual regulation) are more important
for the reservoir’s memory capacity than feedforward cir-
cuits, such as FFLs. This conclusion can be expected to hold
even when other factors such as metabolic constraints are
considered, as long as these factors affect gene expression
globally. In that case, we expect the relative importance of
the different local motifs on the resulting memory capacity
to be unchanged.

Finally, we looked for E. coli’s sub-reservoirs with a good
size-performance compromise. We identified two different
sub-networks that exhibit highperformance in threememory-
demanding tasks: memory capacity, 10th-order NARMA
task, and the more biologically plausible delayed AND task.
Taken together, our results indicate that a balanced global
activation/repression ratio and local recurrences, in the form
of self-loops and mutual regulation circuits, grant biologi-
cal networks (in particular the gene regulatory network of E.
coli) with temporal information processing capabilities.
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Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to
recurrent neural network training. Comput Sci Rev 3(3):127–149.
https://doi.org/10.1016/j.cosrev.2009.03.005

MaassW,Natschläger T,MarkramH (2002)Real-time computingwith-
out stable states: a new framework for neural computation based
on perturbations. Neural Comput 14(11):2531–2560. https://doi.
org/10.1162/089976602760407955

Martinez-Antonio A, Collado-Vides J (2003) Identifying global regu-
lators in transcriptional regulatory networks in bacteria. Current
Opinion inMicrobio 6(5):482–489. https://doi.org/10.1016/j.mib.
2003.09.002

McCulloch WS, Pitts W (1943) A logical calculus of the ideas imma-
nent in nervous activity. The Bulletin ofMath Biophys 5:115–133.
https://doi.org/10.1007/BF02478259

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon
U (2002) Network motifs: simple building blocks of complex
networks. Science 298(5594):824–827. https://doi.org/10.1126/
science.298.5594.824

Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of
development. J Theoret Biology 152(4):429–453. https://doi.org/
10.1016/S0022-5193(05)80391-1

Morales GB, MuñozMA (2021) Optimal input representation in neural
systems at the edge of chaos. Biology 10(8):702. https://doi.org/
10.3390/biology10080702

Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A
(2007) Genes induced late in infection increase fitness of Vibrio
cholerae after release into the environment. Cell Host & Microbe
2(4):264–277. https://doi.org/10.1016/j.chom.2007.09.004

Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in
the transcriptional regulation network of Escherichia coli. Nature
Genetics 31(1):64–68. https://doi.org/10.1038/ng881

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1201/9781420011432
https://doi.org/10.1109/72.846741
https://doi.org/10.1038/s41583-021-00448-6
https://doi.org/10.1038/s41583-021-00448-6
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1038/nrn1257
https://doi.org/10.1038/nrn2558
https://doi.org/10.1063/5.0009709
https://doi.org/10.1016/j.physa.2004.05.064
https://doi.org/10.1016/j.physa.2004.05.064
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1209/0295-5075/1/2/001
https://doi.org/10.1209/0295-5075/1/2/001
https://doi.org/10.1063/1.5039861
https://doi.org/10.1063/1.5039861
https://doi.org/10.1146/annurev-pharmtox-032320-015420
https://doi.org/10.1146/annurev-pharmtox-032320-015420
https://doi.org/10.1073/pnas.0510013103
https://doi.org/10.1109/JPROC.2022.3162791
https://doi.org/10.1016/j.cub.2013.06.047
https://doi.org/10.24406/publica-fhg-291107
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.1109/ALIFE.2007.367795
https://doi.org/10.1109/ALIFE.2007.367795
https://doi.org/10.1093/nar/gkq1143
https://doi.org/10.3390/ijms23105746
https://doi.org/10.1126/science.1075090
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.mib.2003.09.002
https://doi.org/10.1016/j.mib.2003.09.002
https://doi.org/10.1007/BF02478259
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1016/S0022-5193(05)80391-1
https://doi.org/10.1016/S0022-5193(05)80391-1
https://doi.org/10.3390/biology10080702
https://doi.org/10.3390/biology10080702
https://doi.org/10.1016/j.chom.2007.09.004
https://doi.org/10.1038/ng881


Biophysical Reviews (2025) 17:259–269 269

Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and
memory in living cells. Nature Biotechnol 31(5):448–452. https://
doi.org/10.1038/nbt.2510

Sprott JC (2003) Chaos and time-series analysis. Oxford University
Press, London, England . https://doi.org/10.5860/choice.41-3492

Sussillo D, Abbott LF (2009) Generating coherent patterns of activity
from chaotic neural networks. Neuron 63(4):544–557. https://doi.
org/10.1016/j.neuron.2009.07.018

Tagkopoulos I, Liu Y-C, Tavazoie S (2008) Predictive behavior within
microbial genetic networks. Sci 320(5881):1313–1317. https://
doi.org/10.1126/science.1154456

Van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal net-
works with balanced excitatory and inhibitory activity. Sci
274(5293):1724–1726. https://doi.org/10.1126/science.274.5293.
172

Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D (2007) An
experimental unification of reservoir computing methods. Neu-
ral Netw 20(3):391–403. https://doi.org/10.1016/j.neunet.2007.
04.003

Vidal-Saez MS, Vilarroya O, Garcia-Ojalvo J (2024) Biological com-
putation through recurrence. Biochem Biophys Res Commun
728:150301 https://doi.org/10.1016/j.bbrc.2024.150301

Vidiella B, Guillamon A, Sardanyés J, Maull V, Pla J, Conde
N, Solé R (2021) Engineering self-organized criticality in liv-
ing cells. Nature Commun 12(1):4415. https://doi.org/10.1038/
s41467-021-24695-4

Watson RA, Szathmáry E (2016) How can evolution learn? Trends in
Eco Evol 31(2):147–157. https://doi.org/10.1016/j.tree.2015.11.
009

Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin
AP (2008) Memory in microbes: quantifying history-dependent
behavior in a bacterium. PLOS ONE 3(2):1700. https://doi.org/
10.1371/journal.pone.0001700

Wyffels F, SchrauwenB, Stroobandt D (2008) Stable output feedback in
reservoir computing using ridge regression. In: KůrkováV,Neruda
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