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Cholestatic liver disease is caused by the obstruction of bile synthesis, transport, and
excretion in or outside the liver by a variety of reasons. Long-term persistent cholestasis in
the liver can trigger inflammation, necrosis, or apoptosis of hepatocytes. Bile acid nuclear
receptors have received the most attention for the treatment of cholestasis, while the drug
development for bile acid nuclear receptors has made considerable progress. However,
the targets regulated by bile acid receptor drugs are limited. Thus, as anticipated,
intervention in the expression of bile acid nuclear receptors alone will not yield
satisfactory clinical results. Therefore, this review comprehensively summarized the
literature related to cholestasis, analyzed the molecular mechanism that bile acid
damages cells, and status of drug development. It is hoped that this review will provide
some reference for the research and development of drugs for cholestasis treatment in
the future.

Keywords: cholestasis, bile acid, liver injury, mechanism, drug
INTRODUCTION

Bile acid is an important component of bile, accounting for about 85% of the solid composition of
bile, is the main metabolite of cholesterol metabolism, which can participate in the regulation of
physiological function, such as cholesterol, sugar, and lipid metabolism (Song et al., 2015). After
being synthesized in the liver, bile acid is secreted into the gallbladder through the bile duct, then
enters the small intestine to participate in food digestion, and finally re-absorbs into the liver again.
Another 5% of bile acids are excreted through feces (Martinot et al., 2017). Bile acids are mainly
conjugated bile acids in the hepato-intestinal circulation and cannot pass through the cell
membrane, so the metabolic process of bile acids requires the participation of a variety of
metabolic enzymes, nuclear receptors and transporters, as well as the bile acids transport
membrane system in the hepato-intestinal circulation (Trauner et al., 2017).

Cholestasis is an obstacle in the secretion and excretion of bile acid, which results in bile acid not
flowing into the small intestine but flowing into the blood reversely. The toxic bile acid accumulated
in the liver and systemic circulation for a long time can cause damage to the bile duct and liver cells,
and severe cases can cause liver fibrosis and cirrhosis (Yan et al., 2017). Clinically, it is common in
acute and chronic liver diseases such as primary sclerosing cholangitis (PSC), primary biliary
cirrhosis (PBC), viral hepatitis, and drug-induced liver injury (de Vries and Beuers, 2017), and the
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main clinical manifestations are jaundice, pruritus, liver
dysfunction, etc. (Wagner and Trauner, 2016).

Currently, numerous studies have investigated the pathogenesis
of cholestasis. The mechanism of bile acid homeostasis is currently
the hottest research hotspot. The key signaling pathways that
regulate bile acid metabolism, such as bile acid synthesis-related
targets farnesoid X receptor (FXR) (Farr et al., 2020), cholesterol 7-
alpha hydroxy-lase (CYP7A1) (Chambers et al., 2019), short
heterodimer partner (SHP) (Keitel et al., 2019), and oxysterol
12a-hydroxylase (CYP8B1) (Zhong et al., 2018), bile acid
absorption-related targets Na+/taurocholate cotransporter
(NTCP) (Li et al., 2019), bile acid transport targets bile salt export
pump (BSEP), multidrug resistance-associated protein 2 (MRP2)
(Wang et al., 2019), multidrug resistance-associated protein 3
(MRP3) (Song et al., 2019), and organic anion transporter family
member 3A1 (OATP3A1) (Pan et al., 2018), and the bile acid
detoxification-related targets pregnane X receptor (PXR) (Fan et al.,
2019) and constitutive androstane receptor (CAR) (Shin andWang,
2019), are the most concerned pathogenesis of cholestasis.

The discovery of the pathogenesis of cholestasis has pushed
the research of cholestatic liver disease. Some small-molecule
compound ligands are also found for the key targets regulating
bile acid metabolism, which provides a clear direction for the
discovery of cholestasis drugs and also provide better options for
the treatment of patients with cholestasis. FXR agonist
obeticholic acid (OCA) can significantly improve the
symptoms and liver function of patients with cholestasis who
do not respond to ursodeoxycholic acid (UDCA) (Bowlus et al.,
2019). This gives us new hope for cholestatic liver diseases.
However, some evidence has also found that OCA can also
aggravate the symptoms of itching (Mayer et al., 2020). This
leads us to rethink whether bile acid receptor drugs are the most
promising treatments for patients with cholestatic liver disease.
Besides, we also found that several studies have found that some
non-bile acid receptor signaling pathways also play an important
role in bile acid synthesis. However, the current research on non-
nuclear receptor-targeted drugs is rare. So whether non-bile acid
receptor ligands can be a new choice of drugs for cholestatic liver
disease is also a question worthy of consideration. Therefore, this
review focuses on the latest research progress about non-bile acid
nuclear receptor mechanisms that regulate bile acid synthesis,
hydrophobic bile acid toxicity mechanism, and current main
drugs targeting bile acid receptor, hoping to provide some
reference for the pathogenesis research and drug discovery
research of cholestatic liver disease.
SIGNALS OF HYDROPHOBIC BILE ACID-
INDUCED LIVER CELL DEATH

Bile acids are composed of two types of bile acids: hydrophilic
bile acids and hydrophobic bile acids. Hydrophobic bile acids,
including glycocholic acid (GCA), cholic acid (CA), lithocholic
acid (LCA), chenodeoxycholic acid (CDCA), and deoxycholic
acid (DCA) are a major factor in inducing liver cell death
(Thomas et al., 2008).
Frontiers in Pharmacology | www.frontiersin.org 2
“Hydrophobic Bile Acid-Death Ligand”
Signals
Some reported evidence suggest that cholestasis-related
hepatocyte apoptosis is related to death receptors (Sodeman
et al., 2000). Activation of the TNF-related apoptosis-inducing
ligand receptor (TRAILR) and Fas death receptor signaling
pathway is an important pathway for hepatocyte apoptosis
induced by bile acid. Bile acids activate Fas-related death
signals in a ligand-dependent and -dependent hepatocyte
apoptosis manner. Bile acid stimulates intracellular vesicles
associated with the Golgi complex and the trans-Golgi
network, and transfers Fas-containing vesicles to hepatocyte
membranes, initiating a ligand-dependent death signaling
pathway, while increasing Fas density on the surface of
hepatocytes to making it more sensitive to Fas agonists. Bile
acid-mediated apoptosis of hepatocytes not only activates ligand-
independent death receptor oligomerization, but also regulates
the sensitivity of death receptor-related signaling pathways.
Death receptor-mediated apoptosis of hepatocytes is regulated
by different apoptotic signals. On the death-inducing signaling
complex (DISC), bile acid stimulates the phosphorylation of
cFLIP to reduce the binding of two different isoforms of cFLIP
long (cFLIP-L) and cFLIP short (cFLIP-S) to Fas-associated
death domain (FADD) in DISC, and then reduce the
recruitment of cFLIP to DISC, promoting the activation of
caspases 8 and 10 (Higuchi et al., 2003; Higuchi and Gores,
2003). Activated caspases 8 and 10 cleave bid into tBid and enter
it mitochondria with Bax to induce mitochondrial dysfunction
and promote the release of cytochrome c. The released
cytochrome c binds to apoptosis-activating factor-1 (Apaf-1) to
promote the activation of Caspase9. And caspase9 further
activates Caspase3/6/7, which eventually leads to liver cell death.
Besides, bile acids can also directly cause Bax translocation into
mitochondria, which can also lead to the release of cytochrome c
and the downstream effectors of caspases signaling pathway. Bile
acids can also stimulate mitochondrial respiratory chain to
stimulate the production of reactive oxygen species (ROS) and
cause mitochondrial membrane permeability transition (MPT),
and release cytochrome c (Rodrigues et al., 1998; Higuchi et al.,
2002) (Figure 1).

“Intestinal Flora-Hydrophobic Bile Acid-
Inflammation” Signals
Bile acids are mainly secreted by the liver, and 95% of them are
reabsorbed into the ileum (Chavez-Talavera et al., 2019).
Intestinal flora can regulate the body’s metabolism (Feng et al.,
2019) and produce a large number of metabolites in vivo, which
are important signal regulators and energy substrates (Swann
et al., 2011). Intestinal flora modify bile acid molecules by
debinding water, epimerization, and dehydroxylation. Bile salt
hydrolase (BSH) in bacteria is the key enzyme for bile acid
degradation in the intestinal tract (Joyce et al., 2014). It was
found that Bacteroides, Lactobacillus, and Bifidobacterium can
release primary bile acid by BSH (Swann et al., 2011). The
primary bile acid is broken down into secondary bile acid (Sun
et al., 2019), and esterified to make them more hydrophobic
July 2020 | Volume 11 | Article 1084
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(Ridlon et al., 2016) by some other intestinal flora. Hydrophobic
bile acid (such as DCA) in the secondary bile acid is cytotoxic
and can cause liver cell damage (Xie et al., 2016) after
reabsorption by liver. Moreover, intestinal flora can also
modulate the synthesis of bile acids in an FXR dependent
manner (Ridlon et al., 2013) and by influencing CYP7A1,
Cyp8b1, CYP27A1 (Sayin et al., 2013).

Primary bile acids (DCA and CDCA) has been demonstrated
to increase intestinal permeability (Raimondi et al., 2008). The
intestinal LPS enters the blood circulation through the intestinal
barrier and combines with the Toll-like receptor 4 (TLR4)
receptor to further participate in the oxidative stress response
and increase the overproduction of intracellular ROS in liver,
reducing the activity of various antioxidant enzymes (Singh and
Li, 2012; Chassaing et al., 2014). LPS can also induce
macrophages to secrete IL-1, TNF-a to promote the release of
adhesion molecules, stimulate the inflammatory response, and
cause neutrophils to produce excess RO (Weber-Mzell et al.,
2006). Hydrophobic bile acid is also a factor that stimulates
inflammation, which can activate the production of
inflammatory mediators (Allen et al., 2010). For example,
CDCA and DCA up-regulate the expression of early growth
response gene-1 (Egr-1) by activating the epithelial growth factor
receptor (EGFR) to cause the production of vascular endothelial
cell adhesion molecule-1 (VCAM-1), IL-1b, and IL-10 in liver
cells (Yan et al., 2000). The pro-inflammatory factors produced
by hepatocytes further stimulate and activate a variety of
inflammatory cells, such as macrophages and neutrophils, to
Frontiers in Pharmacology | www.frontiersin.org 3
increase the degree of the inflammatory response in liver
(Wintermeyer et al., 2009).

“Nuclear Receptor-Apoptotic Protein”
Signals
FXR can also regulate the synthesis of bile acids in the process of
cholestasis through negative feedback regulation (Sinal et al.,
2000). Unlike cFLIP, FXR in the cytoplasm does not directly
inhibit the activation of caspase 8, but binds to caspase 8 to
prevent the activation and conduction of apoptotic signals in a
ligand-independent pathway. This is the fact that FXR agonists
do not effectively improve the death receptor-induced hepatocyte
death. Therefore, FXR in the liver cytoplasm can inhibit the over
activation of caspase 8 by cooperating with cFLIP (Mattisson
et al., 2017). However, in the process of liver injury, high levels of
TRAIL, TNFa, and FasL in the blood circulation rapidly reduced
the expression level of FXR before the activation of apoptosis
signal, indicating that the decrease of FXR in the hepatocyte is
the primary condition for the activation of apoptosis signal.
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) is a
member of the silent information regulatory protein family
and NAD-dependent deacetylase, which can affect many
biological processes, including inflammation, glycolipid
metabolism, and so on (Kulkarni et al., 2016). In the
pathological state of cholestasis, toxic bile acids such as
taurodeoxycholic acid (TDCA), taurocholic acid (TCA), and
DCA can reduce the expression level of SIRT1 in hepatocytes
(Zhao et al., 2019). SIRT is also the transcription regulator of
FIGURE 1 | Multiple signaling pathways of hepatocyte death induced by hydrophobic bile acids.
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FXR, and the FXR Lys217 is the main deacetylation binding site
of FXR regulated by SIRT1 (Kemper et al., 2009). It can regulate
the activity of FXR through deacetylation protein and histone
(Purushotham et al., 2012). In addition, in mammals, peroxisome
proliferator-activated receptor-g coactivator 1a (PGC-1a) can be
activated by SIRT1 through deacetylation and regulate the activity
of FXR (Purushotham et al., 2012) (Figure 1).

“Hydrophobic Bile Acid-Mitochondrial”
Signals
Hepatocytes are rich in mitochondria. While producing
adenosine triphosphate (ATP), mitochondria are also the main
source of ROS, so hepatocytes are also the main target of ROS
attack (Czaja, 2007). Under pathological conditions, excessive
bile acids interfere with the mitochondrial respiratory complex
and the electronic chain transmission process to decouple the
oxidative respiratory chain, resulting in the generation of a large
number of ROS. The ROS further stimulated mitochondrial
permeability transition pore (MPTP) to leads to an irreversible
open state, which in turn causes a large amount of high-molecular
substances in the cytoplasm to enter the mitochondria, triggers
mitochondrial hypertonicity and swells, and causes the
mitochondrial membrane damage, ATP hydrolysis, and the
release of Smac/DIABLO, cytochrome C, apoptosis-inducing
factor (AIF) is released, eventually leading to hepatocyte
apoptosis (Yerushalmi et al., 2001). Excess ROS can also increase
the synthesis of active oxygen clusters in mitochondria by
oxidation of antioxidants in mitochondria, further amplifying
oxidative stress response. Simultaneously, excessive ROS can
damage the dynamic balance of mitochondrial fusion and
division related proteins and induce apoptosis (Wasiak et al., 2007).

On the other hand, excessive ROS can cause mitochondrial
membrane depolarization, release cytochrome c to cytoplasm,
activate caspase cascade, and induce apoptosis through caspase-3
related signaling pathway (Paradies et al., 2009). After a
mitochondrial injury, glutamic oxalacetic transaminase (AST)
in mitochondria will be released to the cytoplasm, and into the
blood circulation (Perez et al., 2006).

“Hydrophobic Bile Acid-Endoplasmic
Reticulum” Signals
Hydrophobic bile acids can release calcium ions into the
cytoplasm by inducing endoplasmic reticulum stress (ERS).
The increased concentration of Ca2+ causes mitochondria to
generate and release a large number of ROS, while the high level
of ROS in the cytoplasm causes the increase of Ca2+ concentration.
Moreover, hydrophobic bile acids directly stimulate mitochondria
to release ROS and excessive ROS in the cytoplasm induces Ca2+ in
the endoplasmic reticulum to enter the cytoplasm, and further
stimulates mitochondria to produce excess ROS, causing a vicious
cycle of oxidative stress in liver cells. All ERS sensors, including
IRE1, are activated when there is an imbalance between the ER
unfolded protein and chaperone protein (Tabas and Ron, 2011).
ERS can activate JNK through IRE1 (Urano et al., 2000). JNK
combines with Sab on mitochondria to inhibit mitochondrial
respiration and ROS production (Win et al., 2014). C/EBP
Frontiers in Pharmacology | www.frontiersin.org 4
homologous protein (CHOP) is rarely expressed in the
physiological state, but is expressed in large amounts when ERS
occurs. ER oxidase 1a (ERO1a) is the direct target of ER-
dependent oxidative stress induced by CHOP (Marciniak et al.,
2004). ERO1a increases the level of Ca2+ in the cytoplasm by
activating the ER calcium release channel IP3R1 (Li et al., 2009).

The role of CaMKII in ERS-induced apoptosis may be a part
of the positive feedback amplification loop (Li et al., 2009). ROS
in the cytoplasm can lead to the activation of Ca2+-dependent
CaMKII (Biswas et al., 1999; Pizzo and Pozzan, 2007; Erickson
et al., 2008). More importantly, another important downstream
signal of chop CaMKII signaling pathway is the STAT1 signaling
pathway (Li et al., 2010). When ERS occurs, another important
mechanism of apoptosis induced by CHOP is the inhibition of
the survival-promoting protein Bcl-2 (McCullough et al., 2001;
Fu et al., 2010). Bcl-2 inhibits mitochondrial permeabilization
and apoptosis through BH3 only proteins (including Bax, Bad,
and Bim). Some studies have proved that Bim plays an important
role in the apoptosis induced by ERS mediated by CHOP, and
found that Bim knockout mice have a protective effect on
apoptosis, and ERS increased the expression level of Bim
(Puthalakath et al., 2007). Another study also found that there
was an increase in the expression of Bax, which was dependent
on CHOP, in ERS (Santos et al., 2009) (Figure 1).
MAIN BILE ACID RECEPTOR DRUGS

FXR Agonists
Farnesoid X receptor (FXR) is a bile acid nuclear receptor, which
is highly expressed in liver and intestinal tissues, and plays an
important role in the synthesis, absorption, metabolism,
transport, and excretion of bile acids. FXR target genes,
including SHP, BSEP, I-BABP, CYP3A4, SULT2A1, UGT2B4,
etc. negatively regulate the uptake and synthesis of bile acids, and
positively regulate genes responsible for bile acid excretion and
detoxification (Fiorucci and Baldelli, 2009). The unconjugated
bile acids produced in hepatocytes are mainly detoxified by the
liver detoxification enzyme, such as CYP3A4, UGT1A1, and
SULT2A1, to form bile acids with high water solubility, which
are eliminated by the kidneys (Guengerich, 2001; Fujiwara et al.,
2012). The main nuclear receptor of CYP3A4 is FXR. Therefore,
FXR can not only regulate the synthesis of bile acids by feedback,
but also accelerate the excretion of bile acids by increasing the
hydrophilicity of hydrophobic bile acids. The FXR agonist OCA
has been used clinically for the treatment of PBC. Studies have
shown that it significantly improves the levels of serum ALP,
ALT, AST of PBC patients. And, the long-term effect is good, but
there are certain side effects (Kowdley et al., 2018). GW4064 is a
non-steroidal FXR agonist. Animal experiments show that it can
induce SHP in a FXR-selectively dependent manner, thereby
reducing the expression of CYP8B1 and CYP7A1, and up-
regulating the expression of NTCP (Moscovitz et al., 2016).
WAY-362450 is also a highly selective FXR agonist, which can
increase the expression of FXR, reduce the expression of CYP8B1
and CYP7A1 proteins, and reduce liver damage (Wu et al., 2014).
July 2020 | Volume 11 | Article 1084
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In an ethanol-induced cholestatic liver injury study, it was found
that intestinal FXR agonist Fexaramine can activate FXR, up-
regulate the expression of SHP protein, reduce the expression of
CYP7A1, and then reduce serum ALT levels in mice (Hartmann
et al., 2018). As an FXR agonist, LJN 452 is more selective than
GW4060, has better safety and tolerability in healthy volunteers,
and is already undergoing phase II clinical trials in PBC patients
(Tully et al., 2017). Ly2562175 is also a highly selective FXR
agonist. Experiments have found that it has a significant effect on
regulating blood lipids. It can reduce TG and LDL levels, and
increase HDL levels. However, the indicators for regulating bile
acid have not been evaluated (Genin et al., 2015). As a synthetic
FXR agonist, GS-9674 mainly activates the expression of FGF19
by activating FXR on intestinal epithelial cells. FGF19 enters the
liver to exert an inhibitory effect on bile acid synthesis. GS-9674
is currently in a phase II clinical trial for the treatment of PSC
(Khanna and Jones, 2017).

Traditional Chinese medicine (TCM) and its active
ingredients also have significant advantages in the treatment of
cholestasis. It has been proved that geniposide, an effective
component of Gardenia jasminoides, can reduce the synthesis
of bile acid by activating FXR, SHP, and OST b and reducing the
expression of CYP7A1, Cyp8b1, and CYP27A1 (Wang et al.,
2017). Resveratrol, one of the effective components of Polygonum
cuspidatum, can regulate the bile acid homeostasis by inducing
the expression of FXR and up-regulating the expression of BSEP,
NTCP, and MRP2, thus reducing cholestasis (Ding et al., 2018).
Applying a mouse model of cholestasis, it was found that the
Frontiers in Pharmacology | www.frontiersin.org 5
effective ingredient of Alisma orientale B23-acetate (AB23A) can
activate bile acid synthesis negative feedback FXR signal, and
then promote bile acid efflux and regulate bile acid metabolism
(Meng et al., 2015). Corilagin, as one of the active ingredients of
Erodium stephaniahum, can significantly improve serum liver
function indexes of cholestasis rats, and regulate antioxidant and
anti-inflammatory mechanisms (Jin et al., 2013). It can also
activate FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2, and
SULT2A1 expression, down-regulate CYP7A1 and NTCP
protein expression to improve cholestasis (Yang et al., 2018).
Studies have shown that auraptene, the active ingredient in
Citrus reticulata, reduces bile acid synthesis by activating the
expression of FXR to reduce CYP7A1 and CYP8B1, and
increases bile acid transporters (such as BSEP and MRP2) to
increase bile acid transport (Gao et al., 2017). Emodin in Rheum
palmatum can up-regulate the gene and protein expression of
BSEP, FXR1, and FXR2 by activating the FXR/BSEP signaling
pathway to reduce liver injury (Xiong et al., 2019). In addition,
gentiopicrin, the main active ingredient in Gentiana
macrophylla, can improve cholestatic liver injury by up-
regulating the expression of FXR and MRP4 and reducing the
expression of CYP7A1 (Han et al., 2018) (Figure 2).

PXR Agonists
PXR is mainly responsible for regulating detoxification-related
metabolic enzymes in the liver and small intestine, promoting
the degradation of bile acids, and reducing the synthesis of bile
acids (Kliewer and Willson, 2002; Jurica et al., 2016). The target
FIGURE 2 | Compounds that target FXR to activate their target genes and related cholestatic liver diseases.
July 2020 | Volume 11 | Article 1084
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genes for PXR include Cyp3a11 (Yamasaki et al., 2018), CYP7A1,
CYP8B1, Cpy2b10, Oatp1a4, Oatp4 (Staudinger et al., 2001;
Pavek, 2016), CYP3A4, MDR1 (Geick et al., 2001), MRP2
(Kast et al., 2002), MRP3 (Teng et al., 2003), SULT2A1 (Fang
et al., 2007), UGT1A1/3/4 (Gardner-Stephen et al., 2004; van
Dijk et al., 2015). In addition to inducing the bile acid efflux
system, PXR can also activate the bile acid and bilirubin
detoxification system (Jung et al., 2006; Fiorucci and Baldelli,
2009). Studies have shown that the activation of PXR can
significantly reduce the bile acid synthesis by inhibiting the
expression of CYP7A1, and the activation of PXR by FXR
further enhances this effect (Staudinger et al., 2001).

Rifampin, an activator of PXR, promotes bilirubin excretion
by inducing expression of SULT2A1, UGT1A1, and MRP2, and
accelerates bile acid metabolism by increasing expression of
CYP3A4 (Marschall et al., 2005; Li et al., 2013). Moreover, it
can improve pruritus symptoms of patients with cholestasis
(European Association for the Study of the 2009) and liver
function biochemical indicators in PBC patients (Bachs et al.,
1989). Rifampin is safe for up to 2 weeks (Khurana and Singh,
2006). However, atorvastatin as a PXR agonist cannot improve
cholestasis in patients with PBC (Stojakovic et al., 2007).

There are also some ingredients in herbs that can reduce
cholestasis by activating the expression of PXR. Schisandrin B in
Schisandra chinensis can reduce the bile acid levels in lithocholic
acid-induced mice by activating PXR to induce the expression of
Ugt1a1, Cyp3a11, and Oatp2 (Zeng et al., 2017). Tanshinone IIA
is also a PXR agonist with significant liver protection. It is
capable of preventing ANIT-induced cholestatic liver injury by
improving the expression of CYP3A4, and simultaneously up-
Frontiers in Pharmacology | www.frontiersin.org 6
regulating the expression of Cyp3a11, Cyp3a13, and Mdr1
(Zhang X. et al., 2015). Schisandrins A, Schisandrins B, and
Schisandrol B from Schisandra chinensis have also been reported
to activate PXR expression in primary hepatocytes. Among
them, Schisandrins A is also the main active ingredient in
Wuzhi Tablets for the treatment of intrahepatic cholestasis
(Mu et al., 2006; Zeng et al., 2016). Interestingly, due to the
similarities in structural and functional between CAR and PXR,
some active ingredients in herbs can activate both the targets
simultaneously. Studies have reported that the praeruptorin A
and C in Peucedanum praeruptorum can simultaneously activate
the expression of PXR and CAR and the expression of CYP3A4
(Huang et al., 2013; Zhou et al., 2013) (Figure 3).

CAR Agonists
CAR is one of the members of the orphan nuclear receptor
superfamily. Its function and structure are very similar to PXR
and are mainly expressed in liver and intestine. Studies have
demonstrated that the activation of CAR can regulate UGT1A1,
organic anion transporter SLC21A6, and MRP2 to accelerate the
metabolism of bilirubin (Huang et al., 2003). More importantly,
The CAR knockout mice cannot induce UGT1A1 expression,
and also make mice more sensitive to toxic bile acids (Barbier
et al., 2003). CAR shares common target genes with PXR and
FXR, indicating that in addition to FXR agonists, CAR agonists
may also be a potential treatment for cholestasis. CAR can
activate CYP2B, CYP3A4, Sult2a1, UGT1A, MRP2 Mrp3, and
MRP4 to induce bile acid excretion (Fiorucci and Baldelli, 2009)
and resist hydrophobic bile acid-induced liver toxicity. At
present, CAR agonist research is relatively rare. In addition to
FIGURE 3 | The compounds that target PXR/CAR to activate their target genes and related cholestatic liver diseases. Red labeled drugs are compounds that
activate both PXR and CAR.
July 2020 | Volume 11 | Article 1084
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the praeruptorin A and C mentioned above, which can improve
cholestasis by activating CAR, studies have found some CAR
natural product agonists, such as berberine (Zhang et al., 2016),
Arecoline (Ling et al., 2014), artemisinin (Burk et al., 2005), and
6,7-dimethylesculetin(Huang et al., 2004), etc. (Figure 3), but
these CAR agonists have not been proven effective for cholestatic
liver disease.
FXR-PXR/CAR AND FXR-NON-BILE ACID
NUCLEAR RECEPTOR TARGETS
COACTIVATOR

From the above, FXR, as a key target for regulating bile acids, has
consistently been a promising target for the treatment of
cholestatic liver disease. However, OCA targeting FXR has not
shown satisfactory results in the clinical treatment of cholestatic
liver disease. This leads us to think differently about drug
development strategies that only intervention in bile acids and
FXRs. It is well known that PXR and CAR are similar in structure
and function, which can regulate the transcription and
translation of bile acid metabolism enzymes and transporters
related to bilirubin clearance, and play a detoxifying role in the
liver (Kakizaki et al., 2011). Therefore, we speculate that drugs
that can simultaneously regulate FXR and PXR/CAR may be
more promising for the treatment of cholestatic liver disease. In
addition, non-bile acid receptor also plays a key role in bile acid
synthesis and bile acid-induced liver cell damage. Therefore, we
also propose that drugs that can simultaneously regulate FXR
and non-bile acid receptors are also important directions for
drug development in the treatment of cholestatic liver disease. At
present, some related compounds have been found. For example,
Geniposide can simultaneously regulate the expression of FXR,
PXR, NF-kB, Bax, and Bcl-2, and has a great effect on various
liver diseases such as cholestasis and liver inflammation (Rong
et al., 2017; Wang et al., 2017; Hu et al., 2018). Swertiamarin has
been found to have a significant effect on improving cholestasis.
It can simultaneously regulate FXR, PXR, bile acid transporters
Mrp3, Mdr1, and Mrp4 and detoxification enzymes (Cyp3a,
Ugt2b, Sult2a1, and Gsta1), increase the water solubility of
hydrophobic bile acids, remove the combined bile acids (Feng
et al., 2015; Zhang L. et al., 2015). Formononetin can improve
cholestasis through Sirt1-FXR signal pathway and alleviate liver
inflammation through JNK inflammatory signal pathway (Yang
et al., 2019). In addition, formononetin can decrease
acetaminophen induced hepatotoxicity by increasing Nrf2
activity (Jin et al., 2017). Resveratrol has a therapeutic effect on
ANIT induced cholestasis by regulating the FXR pathway, and it
also has a very good improvement on non-FXR target genes,
such as liver inflammatory factors TNFa, IL-6, and IL-1b, as well
as oxidation factor COX-2 (Ding et al., 2018). In addition,
resveratrol can also regulate the PI3K-Akt signal pathway (Shu
et al., 2020). It can be concluded that there are few researches on
this kind of coactivators, and the only existing researches are still
in the stage of laboratory research, which also puts forward a
Frontiers in Pharmacology | www.frontiersin.org 7
longer-term requirement for future drug development of
cholestatic liver disease.
CONCLUSIONS

The pathogenesis of cholestasis has been studied relatively
clearly, which has provided strong support for the drug
development of cholestatic liver disease. However, at present,
very few drugs are used clinically for the treatment of cholestatic
liver disease. After decades of effort, UDCA has been clinically
preferred for the treatment of cholestatic liver disease (Wunsch
et al., 2014; Ma et al., 2016), but some patients do not respond.
With an in-depth understanding of the pathogenesis of
cholestasis, nuclear receptors have been discovered to play a
key role in bile acid metabolism. And bile acid receptor agonists
are recognized as the most promising drugs for the treatment of
cholestatic liver diseases, such as FXR agonist OCA, which can
significantly improve patients who do not respond to UDCA.
This gives us a temporary glimmer of hope. However, the side
effects aggravating the pruritus symptoms in patients with PBC
have led us to rethink the development of therapeutic drugs for
cholestatic liver disease. It is well known that, while regulating
the bile acid synthesis with FXR as the key target, PXR and CAR
regulate the bile acid metabolism enzymes and transporters
related to bilirubin clearance, and play a detoxifying role in the
liver. In addition, non-bile acid receptor targets also play a key
role in bile acid synthesis and bile acid-induced liver cell damage.
Therefore, we speculate that drugs that can simultaneously
regulate FXR and PXR/CAR or FXR and non-bile acid
receptor targets may be more promising for the treatment of
cholestatic liver disease. It is worth mentioning that due to the
strong hepatotoxicity of hydrophobic bile acids, the research and
development of drugs that directly target the activation of
hepatocyte detoxification enzymes (CYP3A4, UGT1A1, and
SULT2A1) to accelerate the metabolism of hydrophobic bile
acids to hydrophilic bile acids is also a very promising strategy
for the development of drugs for the treatment of cholestasis.
However, there are few studies on this research strategy, and the
existing researches are still in the laboratory research stage,
which puts forward longer-term requirements for the future
drug development of cholestatic liver disease.
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