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Abstract: A new series of mollugin-1,2,3-triazole derivatives were synthesized using a copper(I)-
catalyzed Huisgen 1,3-dipolar cycloaddition reaction of corresponding O-propargylated mollugin
with aryl azides. All the compounds were evaluated for their cytotoxicity on five human cancer cell
lines (HL-60, A549, SMMC-7721, SW480, and MCF-7) using MTS assays. Among the synthesized
series, most of them showed cytotoxicity and most of all, compounds 14 and 17 exhibited significant
cytotoxicity of all five cancer cell lines.

Keywords: mollugin; triazoles; antitumor activity; synthesis

1. Introduction

Mollugin, a methyl ester derivative of naphthoquinone extracted from the roots of
Rubia Cordifolia [1,2], has been known have to broad spectrum of biological activities,
including neuroprotective [3], anti-inflammatory [4,5], anti-bacterial [6], and antitumor
activities [7–11]. In particular, mollugin displays indirect antitumor activity in various
tumor models. For example:

(1) It can inhibit the secretion of hepatitis B surface antigen in human hepatocellular
carcinoma Hep3B cells with IC50 = 2.0 µg/mL [7].

(2) It can adjust the signal pathways of HER2/Akt/SREBP-1c to block the fatty acid
synthase (FAS) gene expression, thus inhibits the human epidermal growth factor
receptor 2 (HER2) gene expression of cancer cell proliferation and induces its apopto-
sis [8].

(3) It induces tumor cell apoptosis and autophagy through the PI3K/Akt/mTOR/p7-
0S6K and extracellular regulated protein kinases (ERK) signaling pathways [9].

(4) It also significantly inhibits the expression of the NF-κB reporter gene which is induced
by TNF-α in a dose-dependent manner to restrain tumor cell proliferation [10,11].

Although mollugin has promising anticancer activity, it has little effect on the viability
of cancer cells directly. Therefore, we tried to introduce new groups based on mollugin to
enhance direct cytotoxicity of mollugin on cancer cells in the further investigation. Through
literature research, we found that mollugin derivatives have been synthesized through
modification of the ester group (C-2) and substitution reactions (C-4, C-6, C-7, C-1’ and
C-2’) [12,13]. To our surprise, the hydroxyl group (C-1) of mollugin has not been modified
and we synthesized mollugin derivatives by modifying this group.

1,2,3-Triazoles are attractive connecting units, as they are stable with metabolic degra-
dation and capable of hydrogen bonding, which can be favorable in binding of biomolecular
targets and solubility [14,15]. Therefore, 1,2,3-Triazole is often used as a functional group
that needs to be considered in the process of drug design [16,17]. In addition, the click
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reaction of copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been widely used
to covalently link two molecular fragments between a terminal alkyne and an azide to
generate substituted 1,2,3-triazoles [18,19]. It is worth mentioning that the reaction was
generally regiospecific in forming only the 1,4-substituted 1,2,3-triazole, which facilitates
the further purification of the target product [20,21].

In this manuscript, the key intermediate was obtained by proparylation of the hy-
droxyl group (C-1) of mollugin (Figure 1). Then a series of mollugin derivatives were
synthesized through the click chemistry approach by introducing different substituted
aromatic azides [22–24]. Further the synthesized derivatives were screened for cytotox-
icity against five different human cancer cell lines (HL-60, A549, SMMC-7721, SW480,
and MCF-7).

Molecules 2021, 26, x FOR PEER REVIEW 2 of 14 
 

 

the click reaction of copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been 
widely used to covalently link two molecular fragments between a terminal alkyne and 
an azide to generate substituted 1,2,3-triazoles [18,19]. It is worth mentioning that the re-
action was generally regiospecific in forming only the 1,4-substituted 1,2,3-triazole, which 
facilitates the further purification of the target product [20,21]. 

In this manuscript, the key intermediate was obtained by proparylation of the hydroxyl 
group (C-1) of mollugin (Figure 1). Then a series of mollugin derivatives were synthesized 
through the click chemistry approach by introducing different substituted aromatic az-
ides[22–24]. Further the synthesized derivatives were screened for cytotoxicity against five 
different human cancer cell lines (HL-60, A549, SMMC-7721, SW480, and MCF-7). 

 
Figure 1. The structure of mollugin (1). 

2. Results and Discussion 
2.1. Chemistry 

The key intermediate (3) was obtained as shown in Scheme 1. In the presence of po-
tassium carbonate, treatment of mollugin (1) with 3-bromoprop-1-yne (2) in anhydrous 
DMF yielded the O-propargylated mollugin (3) in 85% yield [25,26].  

The 1-substituted 1,2,3-triazole-mollugin derivatives were synthesized using a cop-
per(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of the corresponding O-propar-
gylated mollugin (3) with different substituted aromatic azides (Scheme 2) [18,19]. In addi-
tion, all aromatic azides were prepared from corresponding boronic acid with sodium azide 
in the presence of CuSO4 in methanol (MeOH) without further purification [27,28]. 

As we can see from Scheme 2, 40 mollugin derivatives were obtained via the key click 
reaction. All the compounds present different substituents at the triazole moiety to eval-
uate their influence on the antitumor activity. Thus, mollugin derivatives with an aromatic 
ring with electron-donating groups or electron-withdrawing groups were prepared. All 
the synthesized triazolyl derivatives (5–44) were characterized by 1H NMR, 13C NMR, and 
HRMS spectroscopic study (see Supplementary Materials). 

 
Scheme 1. Preparation of O-propargylated mollugin (3). 

2.2. Evaluation of Biological Activity 
Compound 1 and its synthesized derivatives were screened against a group of five 

different human cancer cell lines (HL-60, A549, SMMC-7721, SW480, and MCF-7) to eval-
uate their cytotoxic potential using MTS assay [29,30]. Cisplatin (DDP) and Taxol (TAX) 

Figure 1. The structure of mollugin (1).

2. Results and Discussion
2.1. Chemistry

The key intermediate (3) was obtained as shown in Scheme 1. In the presence of
potassium carbonate, treatment of mollugin (1) with 3-bromoprop-1-yne (2) in anhydrous
DMF yielded the O-propargylated mollugin (3) in 85% yield [25,26].
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Scheme 1. Preparation of O-propargylated mollugin (3).

The 1-substituted 1,2,3-triazole-mollugin derivatives were synthesized using a copper(I)-
catalyzed Huisgen 1,3-dipolar cycloaddition reaction of the corresponding O-propargylated
mollugin (3) with different substituted aromatic azides (Scheme 2) [18,19]. In addition, all
aromatic azides were prepared from corresponding boronic acid with sodium azide in the
presence of CuSO4 in methanol (MeOH) without further purification [27,28].

As we can see from Scheme 2, 40 mollugin derivatives were obtained via the key click
reaction. All the compounds present different substituents at the triazole moiety to evaluate
their influence on the antitumor activity. Thus, mollugin derivatives with an aromatic ring
with electron-donating groups or electron-withdrawing groups were prepared. All the
synthesized triazolyl derivatives (5–44) were characterized by 1H NMR, 13C NMR, and
HRMS spectroscopic study (see Supplementary Materials).
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2.2. Evaluation of Biological Activity

Compound 1 and its synthesized derivatives were screened against a group of five
different human cancer cell lines (HL-60, A549, SMMC-7721, SW480, and MCF-7) to
evaluate their cytotoxic potential using MTS assay [29,30]. Cisplatin (DDP) and Taxol (TAX)
were taken as reference drugs and their IC50 data were present in Table 1. More than half
of the derivatives exhibited better cytotoxic activity than mollugin.



Molecules 2021, 26, 3249 4 of 14

Table 1. IC50 value in µM of mollugin and its derivatives on the panel of human cancer cell lines.

Tissue Leukemia Lung Liver Breast Colon

Cell Line HL-60 A549 SMMC-7721 MCF-7 SW480

No. Compound IC50

1 1 >40 >40 >40 >40 >40
2 5 28.70 ± 0.49 >40 19.28 ± 1.48 >40 >40
3 6 >40 >40 24.28 ± 1.47 >40 >40
4 7 >40 >40 33.96 ± 0.93 >40 >40
5 8 >40 >40 >40 >40 >40
6 9 >40 >40 11.19 ± 1.56 27.71 ± 1.06 >40
7 10 >40 >40 >40 >40 >40
8 11 19.17 ± 1.40 >40 12.97 ± 1.52 10.25 ± 1.28 >40
9 12 >40 >40 28.11 ± 0.79 >40 >40
10 13 >40 >40 30.13 ± 0.44 >40 >40
11 14 7.03 ± 0.19 5.12 ± 0.01 10.76 ± 0.10 13.91 ± 0.51 19.56 ± 0.38
12 15 >40 >40 18.25 ± 0.68 29.80 ± 0.84 >40
13 16 35.21 ± 2.66 16.90 ± 0.66 18.33 ± 0.18 19.69 ± 1.05 26.79 ± 0.89
14 17 16.38 ± 0.47 15.09 ± 1.00 12.61 ± 0.80 14.49 ± 0.49 17.40 ± 0.91
15 18 11.00 ± 0.12 29.62 ± 0.91 12.06 ± 0.59 22.25 ± 0.37 33.42 ± 0.64
16 19 10.50 ± 0.02 24.12 ± 0.34 12.98 ± 0.54 21.76 ± 0.77 33.77 ± 0.54
17 20 25.07 ± 0.49 29.01 ± 0.76 13.02 ± 0.84 15.58 ± 0.34 25.59 ± 1.70
18 21 21.76 ± 0.27 >40 12.80 ± 0.34 22.50 ± 1.14 >40
19 22 >40 >40 32.25 ± 0.83 >40 >40
20 23 >40 >40 >40 >40 >40
21 24 >40 >40 >40 >40 >40
22 25 >40 >40 27.84 ± 0.54 >40 >40
23 26 >40 >40 >40 >40 >40
24 27 >40 >40 >40 >40 >40
25 28 >40 >40 >40 21.74 ± 1.06 >40
26 29 >40 >40 17.89 ± 0.27 23.44 ± 1.31 >40
27 30 >40 >40 30.52 ± 0.46 >40 >40
28 31 >40 >40 30.01 ± 0.82 >40 >40
29 32 >40 >40 >40 >40 >40
30 33 >40 >40 31.56 ± 0.51 >40 >40
31 34 >40 >40 >40 >40 >40
32 35 >40 29.52 ± 0.29 >40 >40 >40
33 36 >40 4.82 ± 0.84 21.66 ± 0.89 >40 >40
34 37 >40 >40 >40 >40 >40
35 38 >40 >40 >40 >40 >40
36 39 >40 >40 >40 >40 >40
37 40 >40 >40 >40 >40 >40
38 41 >40 >40 >40 >40 >40
39 42 >40 >40 >40 >40 >40
40 43 >40 >40 >40 >40 >40
41 44 >40 >40 >40 >40 >40
42 DDP 1.312 ± 0.024 17.18 ± 1.36 19.97 ± 0.26 20.63 ± 0.64 15.50 ± 0.99
43 Taxol <0.008 <0.008 0.388 ± 0.042 <0.008 <0.008

Some of derivatives displayed good cytotoxicity (IC50 < 20 µM) and even more
potent than the control drug DDP, compounds 5, 9, 11, 14, 15, 16, 17, 18, 19, 20, 21 and 29
showed maximum inhibition effects against liver cancer cell line (SMMC-7721). Against the
breast cancer cell line (MCF-7), compounds 11, 14, 16, 17, and 20 demonstrate cytotoxicity.
Compounds 11, 14, 17, 218 and 19 displayed maximum inhibition effects against leukemia
cells (HL-60). Compounds 14, 16, 17 and 36 displayed maximum inhibition effects against
lung cancer cells (A549) whereas compounds 14 and 17 sensitized colon cancer cells
(SW480) the most. Overall, the cytotoxicity of the derivatives was generally stronger than
the parent molecule, the SMMC-7721 cell line was most sensitive to these compounds and
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compounds 14 and 17 exhibited significant inhibition effects against all the experimental
cancer cell lines.

These data have allowed us to carry out a structure and activity relationship (SAR)
study on the influence of the modifications of different group in the cytotoxicity. The main
results can be summarized as follows: derivatives containing electron-donating groups
such as hydroxyl, methoxy, and alcohol hydroxyl groups tend to have good cytotoxicity. By
comparing IC50 value of compounds 5, 11, 14, and 15, it could be concluded that cytotoxicity
increased with the growth of methoxy group number in those derivatives. According to
the experimental results, derivatives that contain electron-withdrawing groups do not
have cytotoxicity except for compound 36. Compound 36 possesses notable cytotoxicity
against A549 cancer cells with IC50 value of 4.82 ± 0.84 µM, which is triple and quadruple
improvement in cytotoxicity compared to the control drug DDP.

3. Materials and Methods
3.1. General Experimental Procedures

All the reagents and solvents used for purification and synthesis were purchased from
Meryer. All synthesized derivatives were purified by column chromatography (silica gel,
petroleum ether/ethyl acetate, 20:1 to 1:1 and petroleum ether/acetone, 20:1 to 1:1) and
their structures were elucidated by 1H NMR, 13C NMR, high-resolution mass spectrometry
(HR-ESIMS). Mass spectra were performed on UPLC-IT-TOF (Shimadzu, Kyoto, Japan)
spectrometer. NMR spectra were recorded on AVANCE III 400 MHz (Bruker, Bremerhaven,
Germany) and Avance III 600 MHz (Bruker, Bremerhaven, Germany) instruments using
CDCl3, CD3OD or acetone-d6 as the solvent with TMS as the internal standard. Chemical
shifts (δ) were reported in parts per million (ppm) and the coupling constants (J) were given
in Hertz. Column chromatography was performed on silica gel (200–300 and 300–400 mesh,
Qingdao Makall Group CO., Qingdao, China). All chemical reactions were monitored by
TLC on silica gel 60 F254 plates and the spots were visualized by UV light and sprayed
with 10% H3PO4·12MoO3 in EtOH, followed by heating. All compounds were named
using the ACD40 Name-Pro program, which is based on IUPAC rules. Azides (4) were
synthesized according to procedures previously described in the literature [27,28].

prop-1-yne-O-mollugin (3). To a solution of mollugin (1.00 g, 3.52 mmol, 1.0 eq) in DMF
(15 mL) was added K2CO3 (725 mg, 5.28 mmol, 1.5 eq) slowly. The reaction mixture was
stirred at rt for 15 min, and propargyl bromide (0.37 mL, 4.23 mmol, 1.2 eq) was added
dropwise at rt. The reaction mixture was stirred at rt for 8 h before it was quenched by
saturated NH4Cl aqueous solution (20 mL), and the mixture was extracted with ethyl
acetate (3 × 20 mL). The combined organic layer was washed with brine (2 × 40 mL),
and dried over Na2SO4, and filtered. After removal of the solvent under vacuum, the
residue was purified by flash column chromatography on silica gel (12:1 to 8:1 petroleum
ether/EtOAc) provided compound 3 (964 mg, 82% yield) as a yellow solid, Rf = 0.3
(petroleum ether/EtOAc = 10:1) [25].

3.2. General Procedures for the Preparation of 1-Substituted 1,2,3-Triazole-Mollugin Derivatives

To a solution of 0.2 mmol of the corresponding azide in 3 mL mixed solution
(t-BuOH/H2O = 1:1, v/v) was added O-propargylated mollugin (0.2 mmol), sodium ascor-
bate (0.02 mmol), CuSO4·5H2O (0.02 mmol). The reaction mixture was stirred for 48 h at
room temperature before it was quenched by saturated NH4Cl aqueous solution (4 mL),
and the mixture was extracted with ethyl acetate (3 × 6 mL). The combined organic layer
was washed with brine (2 × 15 mL), and dried over Na2SO4, and filtered [31,32]. After
removal of the solvent under vacuum, the residue was purified by flash column chromatog-
raphy on silica gel (10/1 to 2/1 petroleum ether/EtOAc) provided compound 5–44.

1-O-((1-(4-methoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (5). Yield: 89%, yellow
oil, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.3, 3.3 Hz), 8.17 (dd, 1H, J = 6.3, 3.3 Hz),
8.01 (s, 1H), 7.64 (d, 2H, J = 8.9 Hz), 7.52 (m, 2H), 7.02 (d, 2H, J = 8.9 Hz), 6.44 (d, 1H,
J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.32 (s, 2H), 3.94 (s, 3H), 3.86 (s, 3H), 1.52 (s, 6H); 13C
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NMR (CDCl3, 100 MHz) δ 167.6, 159.9, 145.9, 145.4, 144.7, 130.5, 130.3, 127.9, 127.2, 127.1,
126.8, 122.8, 122.5, 122.4, 76.6, 69.1, 55.7, 52.5, 27.7; ESIMS: m/z 494 [M+Na]+, HRESIMS:
calcd for C27H25N3O5Na [M+Na]+ 494.1688, found 494.1686.

1-O-((1-(4-methoxy-2-methylphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (6). Yield:
70%, yellow solid, MP: 157–159 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.4,
3.3 Hz), 8.15 (dd, 1H, J = 6.5, 3.2 Hz), 7.72 (s, 1H), 7.51 (m, 2H), 7.23 (d, 1H, J = 8.5 Hz),
6.84 (s, 1H), 6.82 (d, 1H, J = 8.5 Hz), 6.44 (d, 1H, J = 10.0 Hz), 5.85 (d, 1H, J = 10.0 Hz), 5.34
(s, 2H), 3.95 (s, 3H), 3.84 (s, 3H), 2.12 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ
167.6, 160.4, 145.7, 145.3, 143.6, 135.4, 130.3, 129.6, 128.1, 127.3, 127.1, 127.0, 126.7, 125.3,
122.9, 122.4, 121.2, 119.9, 116.3, 112.4, 111.8, 76.6, 68.9, 55.6, 52.5, 27.7, 18.0; ESIMS: m/z 508
[M+Na]+, HRESIMS: calcd for C28H27N3O5Na [M+Na]+ 508.1840, found 508.1843.

1-(3-chloro-4-methoxyphenyl)-4-ethyl-1H-1,2,3-triazole-O-mollugin (7). Yield: 72%, yellow
solid, MP: 125–127 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.4, 3.3 Hz), 8.14 (dd,
1H, J = 6.4, 3.3 Hz), 8.00 (s, 1H), 7.78 (d, 1H, J = 2.6 Hz), 7.60 (dd, 1H, J = 8.9, 2.6 Hz), 7.52
(m, 2H), 7.03 (d, 1H, J = 8.9 Hz), 6.44 (d, 1H, J = 10.0 Hz), 5.70 (d, 1H, J = 10.0 Hz), 5.31
(s, 2H), 3.96 (s, 3H), 3.94 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 155.4,
145.7, 145.4, 144.9, 130.5, 130.3, 127.9, 127.2, 127.1, 126.8, 123.6, 123.1, 122.7, 122.5, 121.7,
121.1, 119.8, 112.4, 76.6, 69.0, 56.5, 52.5, 27.7; ESIMS: m/z 528 [M+Na]+, HRESIMS: calcd for
C27H23N3O5ClNa [M+Na]+ 528.1296, found 528.1297.

1-O-((1-(3-fluoro-4-methoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (8). Yield: 78%,
yellow oil, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.5, 3.3 Hz), 8.14 (dd, 1H, J = 6.5,
3.2 Hz), 8.01 (s, 1H), 7.52 (m, 3H), 7.44 (m, 1H), 7.07 (t, 1H, J = 8.8 Hz), 6.44 (d, 1H,
J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.32 (s, 2H), 3.95 (s, 3H), 3.94 (s, 3H), 1.52 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.6, 153.6, 151.1, 148.2, 145.7, 145.5, 144.9, 130.3, 127.9, 127.2,
127.1, 126.8, 122.7, 122.5, 121.7, 121.1, 119.8, 116.6, 113.8, 112.4, 109.9, 76.6, 69.0, 56.5, 52.5,
27.7; ESIMS: m/z 512 [M+Na]+, HRESIMS: calcd for C27H24N3O5FNa [M+Na]+ 512.1594,
found 512.1592.

1-O-((1-(5-fluoro-2-methoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (9). Yield: 48%,
yellow oil, 1H NMR (CDCl3, 400 MHz) δ 8.26 (s, 1H), 8.22 (dd, 1H, J = 6.4, 3.3 Hz), 8.17 (dd,
1H, J = 6.4, 3.3 Hz), 7.65 (dd, 1H, J = 8.7, 3.1 Hz), 7.52 (m, 2H), 7.13 (m, 1H), 7.03 (m, 1H),
6.44 (d, 1H, J = 9.9 Hz), 5.69 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.95 (s, 3H), 3.88 (s, 3H), 1.52
(s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 157.8, 155.4, 147.1, 145.9, 145.4, 143.8, 130.3,
128.0, 127.1, 127.0, 126.8, 125.3, 122.9, 122.5, 121.1, 119.8, 116.2, 113.3, 112.7, 112.5, 76.6, 69.0,
56.6, 52.5, 27.7; ESIMS: m/z 512 [M+Na]+, HRESIMS: calcd for C27H24N3O5FNa [M+Na]+

512.1590, found 512.1592.
1-O-((1-(5-chloro-2-methoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (10). Yield:

92%, yellow solid, MP: 159–161 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.24–8.20 (m, 2H), 8.17
(dd, 1H, J = 6.3, 3.4 Hz), 7.86 (d, 1H, J = 2.6 Hz), 7.52 (m, 2H), 7.38 (dd, 1H, J = 8.9 Hz,
2.6 Hz), 7.01 (d, 1H, J = 8.9Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9Hz), 5.33 (s, 2H),
3.95 (s, 3H), 3.89 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 149.6, 145.9,
145.4, 143.8, 130.3, 129.7, 128.0, 127.1, 127.0, 126.9, 126.8, 126.3, 125.3, 122.9, 122.5, 121.1,
119.8, 113.4, 112.4, 76.6, 69.1, 56.4, 52.5, 27.7; ESIMS: m/z 528 [M+Na]+, HRESIMS: calcd for
C27H24N3O5ClNa [M+Na]+ 528.1296, found 528.1297.

1-O-((1-(3,5-dimethoxyphenyl) -1H-1,2,3-triazol)-4-yl)methyl)-mollugin (11). Yield: 84%,
yellow solid, MP: 51–53 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.4, 3.5 Hz),
8.16 (dd, 1H, J = 6.4, 3.5 Hz), 8.07 (s, 1H), 7.52 (m, 2H), 6.91 (d, 2H, J = 2.2 Hz), 6.51 (t, 1H,
J = 2.3 Hz), 6.44 (d, 1H, J = 9.9Hz), 5.69 (d, 1H, J = 9.9 Hz), 5.32 (s, 2H), 3.94 (s, 3H), 3.85
(s, 6H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 161.5, 145.8, 145.4, 144.8, 138.5,
130.3, 127.9, 127.2, 127.1, 126.8, 122.7, 122.5, 121.7, 121.1, 119.9, 112.4, 100.7, 99.1, 76.6, 69.1,
55.7, 52.5, 27.7; ESIMS: m/z 524 [M+Na]+, HRESIMS: calcd for C28H27N3O6Na [M+Na]+

524.1793, found 524.1792.
1-O-((1-(benzo[d][1,3]dioxol-5-yl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (12). Yield: 72%,

yellow solid, MP: 73–75 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.5, 3.3 Hz),
8.15 (dd, 1H, J = 6.5, 3.3 Hz), 7.98 (s, 1H), 7.52 (m, 2H), 7.24 (d, 1H, J = 2.2 Hz), 7.14 (dd,
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1H, J = 8.3, 2.2 Hz), 6.90 (d, 1H, J = 8.3 Hz), 6.44 (d, 1H, J = 9.9 Hz), 6.06 (s, 2H), 5.69 (d,
1H, J = 9.9 Hz), 5.31 (s, 2H), 3.94 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6,
148.6, 148.1, 145.8, 145.4, 144.7, 131.5, 130.3, 127.9, 127.1, 127.1, 126.8, 122.8, 122.5, 121.9,
121.1, 119.9, 114.5, 112.4, 108.5, 103.0, 102.1, 76.6, 69.0, 52.5, 27.7; ESIMS: m/z 508 [M+Na]+,
HRESIMS: calcd for C27H23N3O6Na [M+Na]+ 508.1474, found 508.1479.

1-O-((1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (13).
Yield: 82%, yellow solid, MP: 71–73 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.4,
3.3 Hz), 8.16 (dd, 1H, J = 6.4, 3.2 Hz), 7.98 (s, 1H), 7.52 (m, 2H), 7.27 (d, 1H, J = 2.6 Hz),
7.17 (dd, 1H, J = 8.7, 2.6 Hz), 6.96 (d, 1H, J = 8.7Hz) 6.42 (d, 1H, J = 9.9Hz), 5.68 (d, 1H,
J = 9.9 Hz), 4.29 (s, 4H), 3.92 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 145.8,
145.3, 144.6, 144.1, 130.9, 130.3, 127.9, 127.1, 127.0, 126.8, 122.8, 122.5, 121.7, 121.1, 119.9,
118.1, 114.0, 112.4, 110.5, 76.6, 69.1, 64.4, 52.5, 27.7; ESIMS: m/z 522 [M+Na]+, HRESIMS:
calcd for C28H25N3O6Na [M+Na]+ 522.1638, found 522.1636.

1-O-((1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (14). Yield: 76%,
yellow solid, MP: 55–57 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.5, 3.3 Hz),
8.14 (dd, 1H, J = 6.4, 3.2 Hz), 8.03 (s, 1H), 7.52 (m, 2H), 6.95 (s, 2H) 6.44 (d, 1H, J = 9.9Hz),
5.70 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.93 (s, 9H), 3.89 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3,
100 MHz) δ 167.6, 153.9, 145.7, 145.5, 144.8, 138.4, 132.9, 130.3, 127.9, 127.2, 127.1, 126.8,
122.7, 122.5, 121.8, 121.3, 119.8, 112.4, 98.7, 76.6, 69.1, 61.1, 56.5, 52.5, 27.7; ESIMS: m/z 554
[M+Na]+, HRESIMS: calcd for C29H29N3O7Na [M+Na]+ 554.1899, found 554.1898.

1-O-((1-(2,3,4-trimethoxyphenyl)-1H-1,2,3-triazol)-4-yl)methyl)-mollugin (15). Yield: 47%,
yellow solid, MP: 123–125 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.25–8.15 (m, 2H), 8.07 (s, 1H),
7.52 (m, 2H), 7.42 (d, 2H, 9.0 Hz), 6.79 (d, 1H, 9.0 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.69 (d, 1H,
J = 9.9 Hz), 5.33 (s, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.93 (s, 3H), 3.73 (s, 3H), 1.52 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.7, 154.4, 146.7, 145.9, 145.3, 143.7, 142.7, 130.2, 128.1, 127.1,
127.0, 126.8, 125.2, 124.5, 122.9, 122.4, 121.1, 120.1, 119.9, 112.4, 107.2, 76.5, 69.0, 61.6, 61.2,
56.2, 52.5, 27.7; ESIMS: m/z 554 [M+Na]+, HRESIMS: calcd for C29H29N3O7Na [M+Na]+

554.1898, found 554.1898.
1-O-((1-(2-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-O-mollugin (16). Yield: 67%,

white solid, MP: 183–185 ◦C, 1H NMR (CDCl3, 400 MHz) δ 9.59 (s, 1H), 8.24 (dd, 1H, J = 6.5,
3.1 Hz), 8.14 (m, 2H), 7.54 (m, 2H), 7.42 (dd, 1H, J = 8.1, 1.6 Hz), 7.32 (t, 1H, J = 7.1 Hz), 7.20
(dd, 1H, J = 8.3, 1.4 Hz), 6.42 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.35 (s, 2H), 3.93
(s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 149.5, 145.6, 145.5, 144.2, 130.4,
130.0, 127.7, 127.2, 127.1, 126.9, 123.0, 122.6, 122.5, 121.9, 121.2, 120.4, 120.4, 119.8, 119.4,
112.3, 76.6, 68.6, 52.7, 27.7; ESIMS: m/z 456 [M−H]−, HRESIMS: calcd for C26H23N3O5Na
[M−H]− 456.1569, found 456.1565.

1-O-((1-(3-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (17). Yield: 55%, white
solid, MP: 182–184 ◦C, 1H NMR (CDCl3, 400 MHz) δ 9.44 (s, 1H), 8.45 (s, 1H), 8.24–8.13
(m, 3H), 7.54 (m, 2H), 7.36 (t, 1H, J = 8.1 Hz), 7.07 (dd, 1H, J = 7.9, 2.0 Hz), 7.01 (dd, 1H,
J = 8.3, 2.4 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.35 (s, 2H), 3.95 (s, 3H), 1.53
(s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 158.6, 145.7, 145.5, 144.6, 137.5, 130.6, 130.3,
127.8, 127.3, 127.1, 126.8, 122.6, 122.6, 121.6, 121.1, 119.8, 116.9, 112.4, 110.0, 109.0, 76.6, 68.6,
52.6, 27.7; ESIMS: m/z 456 [M−H]−, HRESIMS: calcd for C26H23N3O5Na [M−H]− 456.1569,
found 456.1565.

1-O-((1-(4-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (18). Yield: 51%, yellow
solid, MP: 209–211 ◦C, 1H NMR ((CD3)2CO, 400 MHz) δ 8.90 (s, 1H), 8.53 (s, 1H), 8.27 (m,
1H), 8.21 (m, 1H), 7.73 (d, 2H, J = 8.8 Hz), 7.60 (m, 2H), 7.05 (d, 2H, J = 8.8 Hz), 6.46 (d,
1H, J = 9.9 Hz), 5.85 (d, 1H, J = 9.9 Hz), 5.27 (s, 2H), 3.97 (s, 3H), 1.53 (s, 6H); 13C NMR
((CD3)2CO, 100 MHz) δ 167.0, 157.8, 145.6, 144.9, 144.1, 130.7, 129.9, 128.0, 127.1, 127.0,
126.5, 122.9, 122.3, 122.3, 122.2, 121.8, 119.5, 116.1, 112.4, 76.6, 68.7, 51.9, 26.9; ESIMS: m/z
456 [M−H]−, HRESIMS: calcd for C26H23N3O5Na [M−H]− 456.1567, found 456.1565.

1-O-((1-(3-chloro-4-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (19). Yield: 42%,
white solid, MP: 196–198 ◦C, 1H NMR ((CD3)2CO, 400 MHz) δ 9.41(s,1H), 8.63 (s, 1H), 8.26
(m, 1H), 8.22 (m, 1H), 7.93 (d, 1H, J = 2.7 Hz), 7.75 (dd, 1H, J = 8.8, 2.7 Hz), 7.60 (m, 2H),
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7.24 (d, 1H, J = 8.8 Hz), 6.46 (d, 1H, J = 9.9 Hz), 5.86 (d, 1H, J = 9.9 Hz), 5.27 (s, 2H), 3.96 (s,
3H), 1.53 (s, 6H); 13C NMR ((CD3)2CO, 100 MHz) δ 167.0, 153.4, 145.5, 144.9, 144.3, 130.7,
130.3, 128.0, 127.1, 127.1, 126.5, 122.8, 122.5, 122.4, 122.2, 121.9, 120.9, 120.7, 119.5, 117.3,
112.4, 76.6, 68.6, 51.9, 26.9; ESIMS: m/z 490 [M−H]−, HRESIMS: calcd for C26H22N3O5ClNa
[M−H]− 490.1174, found 490.1175.

1-O-((1-(3-(hydroxymethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (20). Yield: 40%,
yellow solid, MP: 151–153 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.6, 3.1 Hz),
8.14 (dd, 1H, J = 6.5, 3.1 Hz), 8.10 (s, 1H), 7.76 (s, 1H)), 7.62 (dt, 1H, J = 8.0, 1.5 Hz), 7.51
(m, 2H), 7.46 (t, 1H, J = 7.8 Hz), 7.40 (d, 1H, J = 7.7 Hz), 6.43 (d, 1H, J = 9.9 Hz), 5.69 (d, 1H,
J = 9.9 Hz), 5.30 (s, 2H), 4.78 (s, 2H), 3.93 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz)
δ 167.7, 145.8, 145.4, 144.8, 143.4, 137.1, 130.3, 129.8, 127.9, 127.2, 127.1, 127.0, 126.8, 122.7,
122.5, 121.6, 121.1, 119.8, 119.6, 118.9, 112.4, 76.6, 69.0, 64.3, 52.5, 27.7; ESIMS: m/z 494
[M+Na]+, HRESIMS: calcd for C27H25N3O5Na [M+Na]+ 494.1686, found 494.1686.

1-O-((1-(4-(hydroxymethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (21). Yield: 40%,
yellow solid, MP: 194–196 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.2, 3.3 Hz),
8.15 (dd, 1H, J = 6.1, 3.3 Hz), 8.08 (s, 1H), 7.71 (d, 2H, J = 8.0 Hz), 7.52 (m, 4H), 6.43 (d, 1H,
J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.32 (s, 2H), 4.77 (s, 2H), 3.94 (s, 3H), 1.52 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.7, 145.8, 145.4, 144.9, 141.9, 136.2, 130.3, 128.1, 127.9, 127.2,
127.1, 126.8, 122.7, 122.5, 121.5, 121.1, 120.8, 119.8, 112.4, 76.6, 69.1, 64.4, 52.5, 27.7; ESIMS:
m/z 494 [M+Na]+, HRESIMS: calcd for C27H25N3O5Na [M+Na]+ 494.1684, found 494.1686.

1-O-((1-(2-ethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (22). Yield: 45%, yellow
solid, MP: 73–75 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.21 (dd, 1H, J = 6.5, 3.3 Hz), 8.17 (dd,
1H, J = 6.4, 3.2 Hz), 7.76 (s, 1H), 7.52 (m, 2H), 7.47 (td, 1H, J = 7.4, 1.6 Hz), 7.47 (d, 1H,
J = 7.4 Hz), 7.34 (td, 1H, J = 7.4, 1.6 Hz), 7.47 (dd, 1H, J = 8.0, 1.6 Hz), 6.44 (d, 1H, J = 9.9Hz),
5.70 (d, 1H, J = 9.9 Hz), 5.36 (s, 2H), 3.96 (s, 3H), 2.46 (q, 2H, J = 7.6 Hz), 1.52 (s, 6H), 1.12 (t,
3H, J = 7.5 Hz); 13C NMR (CDCl3, 100 MHz) δ 167.7, 145.7, 145.4, 143.7, 140.0, 135.9, 130.3,
130.2, 129.8, 128.1, 127.1, 127.0, 126.7, 126.4, 125.3, 122.4, 121.1, 119.9, 112.4, 76.6, 68.9, 52.5,
27.7, 24.1, 15.0; ESIMS: m/z 492 [M+Na]+, HRESIMS: calcd for C28H27N3O4Na [M+Na]+

492.1893, found 492.1894.
1-O-((1-(4-ethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (23). Yield: 65%, yellow

solid, MP: 70–71 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.4, 3.3 Hz), 8.17 (dd,
1H, J = 6.4, 3.3 Hz), 8.06 (s, 1H), 7.65 (d, 2H, J = 8.0 Hz), 7.53 (m, 2H), 7.35 (d, 2H, J = 8.0 Hz),
6.45 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.95 (s, 3H), 2.72 (q, 2H,
J = 7.6 Hz), 1.53 (s, 6H), 1.28 (t, 3H, J = 7.8 Hz); 13C NMR (CDCl3, 100 MHz) δ 167.7, 145.9,
145.4, 145.3, 144.7, 134.9, 130.3, 129.1, 127.9, 127.2, 127.1, 126.8, 122.8, 122.5, 121.6, 121.1,
120.8, 119.9, 112.4, 76.6, 69.1, 52.5, 28.5, 27.7, 15.5; ESIMS: m/z 492 [M+Na]+, HRESIMS:
calcd for C28H27N3O4Na [M+Na]+ 492.1896, found 492.1894.

1-O-((1-(4-vinylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (24). Yield: 45%, yellow
solid, MP: 67–69 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.3, 3.3 Hz), 8.17 (dd,
1H, J = 6.3, 3.3 Hz), 8.07 (s, 1H), 7.72 (d, 2H, 8.3 Hz), 7.56 (d, 2H, 8.6 Hz), 8.53 (m, 2H),
6.76 (dd, 1H, J = 17.6, 10.9 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.83 (d, 1H, J = 17.6 Hz), 5.70 (d,
1H, J = 9.9 Hz), 5.36 (d, 1H, J = 10.9 Hz), 5.34 (s, 2H), 3.95 (s, 3H), 1.53 (s, 6H); 13C NMR
(CDCl3, 100 MHz) δ 167.6, 145.8, 145.4, 145.0, 138.2, 136.3, 135.5, 130.3, 127.9, 127.5, 127.2,
127.1, 126.8, 122.8, 122.5, 121.4, 121.1, 120.7, 119.9, 115.6, 112.4, 76.6, 69.1, 52.5, 27.7; ESIMS:
m/z 490 [M+Na]+, HRESIMS: calcd for C28H25N3O4Na [M+Na]+ 490.1737, found 490.1737.

1-O-((1-(3-(methylthio)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (25). Yield: 82%,
yellow solid, MP: 87–89 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.2, 3.5 Hz), 8.16
(dd, 1H, J = 6.6, 3.1 Hz), 8.09 (s, 1H), 7.64 (t, 1H, J = 1.9 Hz), 7.53 (m, 2H), 7.44 (m, 1H), 7.40
(d, 1H, J = 7.9 Hz), 7.30 (d, 1H, J = 7.9 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz),
5.33 (s, 2H), 3.94(s, 3H), 2.55 (s, 3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6,
145.8, 145.4, 145.0, 141.4, 137.5, 130.3, 129.9, 127.9, 127.2, 127.1, 126.8, 126.4, 122.7, 122.5,
121.6, 121.1, 119.9, 118.0, 116.9, 112.4, 76.6, 69.0, 52.6, 27.7, 15.5; ESIMS: m/z 510 [M+Na]+,
HRESIMS: calcd for C27H25N3O4SNa [M+Na]+ 510.1454, found 510.1458.
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1-O-((1-(dibenzo[b,d]thiophen-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (26). Yield: 40%,
yellow solid, MP: 149–151 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (s, 1H), 8.26–8.20 (m, 4H),
7.95 (m, 1H), 7.71 (d, 1H, J = 7.7 Hz), 7.62 (d, 1H, J = 7.7 Hz), 7.57–7.50 (m, 4H), 6.46 (d, 1H,
J = 9.9 Hz), 5.71 (d, 1H, J = 9.9 Hz), 5.41 (s, 2H), 3.98 (s, 3H), 1.54 (s, 6H); 13C NMR (CDCl3,
100 MHz) δ 167.7, 145.8, 145.5, 144.8, 140.2, 138.4, 134.8, 132.4, 132.2, 130.3, 128.0, 127.7,
127.2, 127.1, 126.8, 125.2, 124.9, 122.8, 122.8, 122.5, 122.4, 121.9, 121.8, 121.2, 119.9, 119.5,
112.4, 76.6, 69.0, 52.6, 27.7; ESIMS: m/z 570 [M+Na]+, HRESIMS: calcd for C32H25N3O4SNa
[M+Na]+ 570.1457, found 570.1458.

1-O-((1-(4-isopropylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (27). Yield: 87%, yel-
low solid, MP: 97–99 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.3, 3.3 Hz), 8.17
(dd, 1H, J = 6.3, 3.4 Hz), 8.06 (s, 1H), 7.65 (d, 2H, J = 8.4 Hz), 7.53 (m, 2H), 7.38 (d, 2H,
J = 8.3 Hz), 6.44 (d, 1H, J = 9.9Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.94 (s, 3H), 2.99
(hept, 1H, J = 7.0 Hz), 1.53 (s, 6H), 1.30 (s, 3H), 1.29 (s, 3H); 13C NMR (CDCl3, 100 MHz)
δ 167.7, 149.9, 145.9, 145.4, 144.7, 135.0, 130.3, 127.7, 127.2, 127.1, 126.8, 122.8, 122.5, 121.6,
121.1, 120.8, 119.9, 112.4, 76.6, 69.1, 52.5, 33.9, 27.7, 23.9; ESIMS: m/z 506 [M+Na]+, HRESIMS:
calcd for C29H29N3O4Na [M+Na]+ 506.2052, found 506.2050.

1-O-((1-(3-isopropylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (28). Yield: 60%, yel-
low solid, MP: 55–57 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.3, 3.3 Hz), 8.17
(dd, 1H, J = 6.3, 3.3 Hz), 8.09 (s, 1H), 7.63 (s, 1H), 7.57–7.47 (m, 3H), 7.44 (t, 1H, J = 7.8 Hz),
7.32 (d, 1H, J = 7.7 Hz), 6.45 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.34 (s, 2H), 3.95
(s, 3H), 1.53 (s, 6H), 1.32 (s, 3H), 1.30 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 151.0,
145.9, 145.4, 144.8, 137.1, 130.3, 129.7, 128.0, 127.1, 127.1, 127.0, 126.8, 122.8, 122.5, 121.7,
121.1, 119.9, 119.1, 118.2, 112.4, 76.6, 69.2, 52.5, 34.2, 27.7, 23.9; ESIMS: m/z 506 [M+Na]+,
HRESIMS: calcd for C29H29N3O4Na [M+Na]+ 506.2050, found 506.2050.

1-O-((1-(3-(dimethylamino)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (29). Yield: 60%,
yellow solid, MP: 66–68 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.3, 3.3 Hz),
8.17 (dd, 1H, J = 6.3, 3.3 Hz), 8.07 (s, 1H), 7.53 (m, 2H), 7.34 (t, 1H, J = 8.1 Hz), 7.10 (t,
1H, J = 2.3 Hz), 6.95 (dd, 1H, J = 7.8, 2.0 Hz), 6.76 (dd, 1H, J = 8.5, 2.5 Hz), 6.45 (d, 1H,
J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.95 (s, 3H), 3.04 (s, 6H), 1.53 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.7, 151.4, 145.9, 145.4, 144.6, 138.1, 130.3, 130.1, 128.0, 127.1,
127.0, 126.8, 122.8, 122.5, 121.8, 121.1, 119.9, 112.5, 112.4, 108.1, 104.6, 76.6, 69.2, 52.5, 40.4,
27.7; ESIMS: m/z 507 [M+Na]+, HRESIMS: calcd for C28H28N4O4Na [M+Na]+ 507.2001,
found 507.2003.

1-O-((1-(2,3-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (30). Yield: 75%, yel-
low solid, MP: 64–66 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22–8.16 (m, 2H), 7.73 (s, 1H), 7.52
(m, 2H), 7.30 (d, 1H, J = 7.6 Hz), 7.21 (t, 1H, J = 7.7 Hz), 7.15 (d, 1H, J = 7.6 Hz), 6.45 (d, 1H,
J = 9.9 Hz), 5.69 (d, 1H, J = 9.9 Hz), 5.36 (s, 2H), 3.96 (s, 3H), 2.36 (s, 3H), 2.00 (s, 3H), 1.52 (s,
6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 145.7, 145.4, 143.7, 138.8, 136.6, 132.8, 131.4, 130.3,
128.1, 127.1, 127.0, 126.7, 126.1, 125.3, 124.0, 122.9, 122.4, 121.2, 119.9, 112.4, 76.6, 68.9, 52.5,
27.7, 20.4, 14.3; ESIMS: m/z 492 [M+Na]+, HRESIMS: calcd for C28H27N3O4Na [M+Na]+

492.1896, found 492.1894.
1-O-((1-(2,5-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (31). Yield: 58%, yel-

low solid, MP: 59–61 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.33 (dd, 1H, J = 6.5, 3.3 Hz), 8.28
(dd, 1H, J = 6.5, 3.3 Hz), 7.87 (s, 1H), 7.64 (m, 2H), 7.36 (m, 2H), 6.57 (d, 1H, J = 9.9Hz), 5.82
(d, 1H, J = 9.9 Hz), 5.47 (s, 2H), 4.08 (s, 3H), 2.50 (s, 3H), 2.26 (s, 3H), 1.64 (s, 6H); 13C NMR
(CDCl3, 100 MHz) δ 167.7, 145.7, 145.4, 143.7, 136.8, 136.2, 131.3, 130.6, 130.4, 130.3, 128.1,
127.1, 127.0, 126.7, 126.5, 124.9, 122.9, 122.4, 121.2, 119.9, 112.4, 76.6, 68.9, 52.5, 27.7, 20.7,
21.1; ESIMS: m/z 492 [M+Na]+, HRESIMS: calcd for C28H27N3O4Na [M+Na]+ 492.1896,
found 492.1894.

1-O-((1-(3,4-dimethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (32). Yield: 75%, yel-
low solid, MP: 76–78 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.4, 3.4 Hz), 8.17
(dd, 1H, J = 6.3, 3.3 Hz), 8.04 (s, 1H), 7.52 (m, 3H), 7.43 (dd, 1H, J = 8.0, 3.3 Hz), 7.26 (d, 1H,
J = 8.0 Hz), 6.45 (d, 1H, J = 10.0 Hz), 5.70 (d, 1H, J = 10.0 Hz), 5.33 (s, 2H), 3.95 (s, 3H), 2.35
(s, 3H), 2.32 (s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 145.9, 145.4, 144.7,
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138.4, 137.6, 135.0, 130.7, 130.3, 128.0, 127.1, 127.0, 126.8, 122.8, 122.5, 121.9, 121.5, 121.1,
119.9, 118.0, 112.4, 76.6, 69.2, 52.5, 27.7, 19.9, 19.5; ESIMS: m/z 492 [M+Na]+, HRESIMS:
calcd for C28H27N3O4Na [M+Na]+ 492.1896, found 492.1894.

1-O-((1-(5-fluoro-2-methylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (33). Yield: 65%,
white solid, MP: 61–63 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.21 (dd, 1H, J = 6.4, 3.3 Hz), 8.15
(dd, 1H, J = 6.4, 3.3 Hz), 7.76 (s, 1H), 7.52 (m, 2H), 7.32 (dd, 1H, J = 8.2, 5.9 Hz), 7.17–7.07
(m, 2H), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.35 (s, 2H), 3.95 (s, 3H), 2.16 (s,
3H), 1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 162.0, 159.6, 145.5, 143.9, 132.7, 136.9,
130.3, 129.3, 128.0, 127.1, 127.1, 126.8, 124.9, 122.8, 122.5, 121.2, 119.8, 116.9, 113.5, 112.4,
76.6, 68.7, 52.6, 27.7, 17.4; ESIMS: m/z 472 [M−H]−, HRESIMS: calcd for C27H24N3O4FNa
[M−H]− 472.1675, found 472.1678.

1-O-((1-(2-chloro-4-methylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (34). Yield: 92%,
yellow solid, MP: 55–57 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.22 (dd, 1H, J = 6.5, 3.4 Hz),
8.16 (dd, 1H, J = 6.5, 3.3 Hz), 8.00 (s, 1H), 7.51 (m, 3H), 7.38 (s, 1H), 7.23 (d, 1H, J = 8.0 Hz),
6.44 (d, 1H, J = 9.9Hz), 5.69 (d, 1H, J = 9.9 Hz), 5.35 (s, 2H), 3.96 (s, 3H), 2.42 (s, 3H), 1.52
(s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 145.8, 145.4, 143.8, 141.6, 132.4, 131.0, 130.3,
128.6, 128.3, 128.1, 127.5, 127.1, 127.0, 126.8, 125.5, 122.8, 122.4, 121.1, 119.9, 112.4, 76.6, 68.9,
52.6, 27.7, 21.1; ESIMS: m/z 512 [M+Na]+, HRESIMS: calcd for C27H24N3O4ClNa [M+Na]+

512.1343, found 512.1348.
1-O-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (35). Yield: 20%, white

solid, MP: 160–162 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.5, 3.3 Hz), 8.15
(dd, 1H, J = 6.5, 3.3 Hz), 8.07 (s, 1H), 7.71 (d, 2H, J = 8.7 Hz), 7.54–7.48 (m, 4H), 6.44 (d, 1H,
J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.33 (s, 2H), 3.94 (s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3,
100 MHz) δ 167.8, 145.9, 145.7, 145.4, 135.8, 134.9, 130.5, 130.2, 128.0, 127.4, 127.3, 127.0,
122.9, 122.8, 122.1, 121.7, 121.3, 120.0, 112.6, 76.8, 69.2, 52.7, 27.9; ESIMS: m/z 498 [M+Na]+,
HRESIMS: calcd for C26H22N3O4ClNa [M+Na]+ 498.1194, found 498.1191.

1-O-((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (36). Yield: 15%,
white solid, MP: 168–170 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.5, 3.3 Hz), 8.15
(m, 2H), 7.93 (d, 2H, J = 8.4 Hz), 7.83 (d, 2H, J = 8.3 Hz), 7.54 (m, 2H), 6.44 (d, 1H, J = 9.9 Hz),
5.71 (d, 1H, J = 9.9 Hz), 5.35 (s, 2H), 3.94 (s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3, 150 MHz)
δ 167.8, 145.9, 145.7, 145.4, 139.7, 131.2, 130.6, 130.2, 128.1, 127.4, 127.4, 127.3, 127.0, 122.8,
122.8, 122.1, 121.7, 121.6, 121.3, 120.9, 120.0, 112.6, 76.8, 69.1, 52.7, 27.9; ESIMS: m/z 532
[M+Na]+, HRESIMS: calcd for C27H22N3O4F3Na [M+Na]+ 532.1453, found 532.1455.

1-O-((1-(3-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (37). Yield:
15%, white solid, MP: 161–163 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.5, 3.3 Hz),
8.15 (dd, 1H, J = 6.4, 3.3 Hz), 8.10 (s, 1H), 7.75–7.66 (m, 2H), 7.59 (t, 1H, J = 8.1 Hz), 7.53 (m,
2H), 7.33 (d, 1H, J = 8.3 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.71 (d, 1H, J = 9.9 Hz), 5.34 (s, 2H), 3.95
(s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3, 150 MHz) δ 167.8, 150.2, 145.9, 145.7, 145.6, 138.3,
131.4, 130.5, 128.1, 127.4, 127.3, 127.0, 122.9, 122.8, 121.7, 121.3, 121.2, 120.0, 118.9, 113.9,
112.6, 76.8, 69.2, 52.7, 27.9; ESIMS: m/z 548 [M+Na]+, HRESIMS: calcd for C27H22N3O5F3Na
[M+Na]+ 548.1401, found 548.1404.

1-O-((1-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (38). Yield:
20%, white solid, MP: 157–159 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.4,
3.3 Hz), 8.15 (dd, 1H, J = 6.5, 3.3 Hz), 8.08 (s, 1H), 7.81 (d, 2H, J = 8.6 Hz), 7.53 (m, 2H),
7.40 (d, 2H, J = 8.4 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.34 (s, 2H), 3.94 (s,
3H), 1.53 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 149.1, 145.7, 145.5, 145.3, 135.4, 130.3,
127.9, 127.2, 127.1, 126.8, 122.7, 122.6, 122.3, 122.2, 121.6, 121.1, 119.8, 112.4, 76.6, 69.0, 52.5,
27.7; ESIMS: m/z 548 [M+Na]+, HRESIMS: calcd for C27H22N3O5F3Na [M+Na]+ 548.1408,
found 548.1404.

1-O-((1-(2,3-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (39). Yield: 70%, yel-
low solid, MP: 66–68 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.21 (dd, 1H, J = 6.4, 3.3 Hz), 8.15
(dd, 1H, J = 6.3, 3.3 Hz), 8.01 (s, 1H), 7.63 (dd, 1H, J = 8.1, 1.6 Hz), 7.56–7.47 (m, 3H), 7.38 (t,
1H, J = 8.1 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.69 (d, 1H, J = 9.9 Hz), 5.36 (s, 2H), 3.96 (s, 3H),
1.52 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 145.6, 145.4, 143.9, 136.4, 134.6, 131.7,
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130.3, 128.2, 128.0, 127.9, 127.1, 127.0, 126.8, 126.3, 125.5, 122.8, 122.5, 121.2, 119.8, 112.4, 76.6,
68.7, 52.5, 27.7; ESIMS: m/z 532 [M+Na]+, HRESIMS: calcd for C26H21N3O4Cl2Na [M+Na]+

532.0802, found 532.0801.
1-O-((1-(3-chloro-4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (40). Yield: 30%,

white solid, MP: 179–181 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.4, 3.4 Hz), 8.13
(dd, 1H, J = 6.4, 3.3 Hz), 8.03 (s, 1H), 7.86 (dd, 1H, J = 6.3, 2.7 Hz), 7.64 (m, 1H), 7.53 (m, 2H),
7.31 (t, 1H, J = 8.6 Hz), 6.44 (d, 1H, J = 9.9 Hz), 5.70 (d, 1H, J = 9.9Hz), 5.33 (s, 1H), 3.94 (s,
3H), 1.53 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 167.7, 156.8, 145.7, 145.5, 145.3, 133.6, 130.3,
127.8, 127.2, 127.1, 126.8, 123.3, 122.7, 122.6, 121.6, 121.1, 120.5, 119.8, 117.8, 117.6, 112.4, 76.6,
68.9, 52.5, 27.7; ESIMS: m/z 516 [M+Na]+, HRESIMS: calcd for C26H21N3O4FClNa [M+Na]+

516.1096, found 516.1097.
1-O-((1-(3-chloro-5-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (41).

Yield: 17%, white solid, MP: 171–173 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.24 (dd, 1H,
J = 6.5, 3.3 Hz), 8.16–8.08 (m, 2H), 8.02 (m, 1H), 7.94 (m, 1H), 7.71 (s, 1H), 7.54 (m, 2H),
6.44 (d, 1H, J = 9.9 Hz), 5.71 (d, 1H, J = 9.9Hz), 5.35 (s, 2H), 3.94 (s, 3H), 1.53 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.8, 145.9, 145.8, 138.4, 136.9, 134.1, 133.8, 130.6, 128.0, 127.4,
127.3, 127.1, 125.9, 124.1, 122.8, 122.7, 121.6, 121.4, 120.0, 115.9, 112.6, 76.8, 69.1, 52.8, 29.9,
27.9; ESIMS: m/z 566 [M+Na]+, HRESIMS: calcd for C27H21N3O4F3ClNa [M+Na]+ 566.1066,
found 566.1065.

1-O-((1-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (42). Yield:
20%, white solid, MP: 160–162 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.28–8.10 (m, 3H), 8.19 (s,
1H), 8.12 (dd, 1H, J = 6.5, 3.2 Hz), 7.97 (s, 1H), 7.54 (m, 2H), 6.44 (d, 1H, J = 9.9 Hz), 5.71
(d, 1H, J = 9.9 Hz), 5.36 (s, 2H), 3.94 (s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ
167.6, 145.9, 145.6, 145.5, 138.0, 134.2, 133.8, 133.5, 133.2, 130.4, 127.8, 127.2, 127.1, 126.9,
123.9, 122.6, 122.5, 122.3, 121.4, 121.2, 120.6, 119.8, 112.4, 76.6, 68.7, 52.5, 27.7; ESIMS: m/z
600 [M+Na]+, HRESIMS: calcd for C28H21N3O4F6Na [M+Na]+ 600.1327, found 600.1328.

1-O-((1-(4-cyanophenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (43). Yield: 47%, white
solid, MP: 167–169 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.4, 3.4 Hz), 8.17 (s,
1H), 8.12 (dd, 1H, J = 6.4, 3.3 Hz), 7.92 (d, 2H, J = 8.7 Hz), 7.84 (d, 2H, J = 8.7 Hz), 7.53 (m,
2H), 6.43 (d, 1H, J = 9.9Hz), 5.70 (d, 1H, J = 9.9 Hz), 5.34 (s, 2H), 3.93 (s, 3H), 1.53 (s, 6H); 13C
NMR (CDCl3, 100 MHz) δ 167.6, 145.7, 145.6, 145.5, 139.8, 134.0, 130.4, 127.8, 127.2, 127.1,
126.8, 122.6, 122.5, 121.2, 121.1, 120.7, 119.8, 117.8, 112.5, 112.4, 76.6, 68.8, 52.5, 27.7; ESIMS:
m/z 489 [M+Na]+, HRESIMS: calcd for C29H29N3O4Na [M+Na]+ 489.1536, found 489.1533.

1-O-((1-(3-cyanophenyl)-1H-1,2,3-triazol-4-yl)methyl)-mollugin (44). Yield: 35%, white
solid, MP: 187–189 ◦C, 1H NMR (CDCl3, 400 MHz) δ 8.23 (dd, 1H, J = 6.5, 3.3 Hz), 8.12–
8.20 (m, 4H), 7.74 (d, 1H, J = 7.7 Hz), 7.67 (t, 1H, J = 7.9 Hz), 7.53 (m, 2H), 6.43 (d, 1H,
J = 9.9 Hz), 5.71 (d, 1H, J = 9.9 Hz), 5.34 (s, 2H), 3.94 (s, 3H), 1.53 (s, 6H); 13C NMR (CDCl3,
100 MHz) δ 167.6, 145.6, 145.5, 137.6, 132.2, 130.9, 130.4, 127.8, 127.2, 127.1, 126.8, 124.6,
123.8, 122.6, 121.4, 121.1, 119.8, 117.4, 114.2, 112.4, 76.6, 68.8, 52.5, 27.7; ESIMS: m/z 489
[M+Na]+, HRESIMS: calcd for C27H22N4O4Na [M+Na]+ 489.1532, found 489.1533.

3.3. Biological Assays

The following human cancer cell lines were used: HL-60, A-549, SMMC-7721, MCF-7,
and SW-480. These cells were obtained from American type culture collection (ATCC) (Man-
assas, VA, USA). All the cells were cultured in RPMI-1640 or Dulbecco’s modified Eagle
medium (DMEM) medium (Biological Industries, Kibbutz Beit-Haemek, Israel), supple-
mented with 10% fetal bovine serum at 37 ◦C in a humidified atmosphere with 5% CO2. Cell
viability was assessed by conducting colorimetric measurements of the amount of insoluble
formazan formed in living cells based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) (Promega,
Madison, WI, USA). Briefly, cells were seeded into each well of a 96-well cell culture plate.
After 12 h of incubation at 37 ◦C, the test compound (40 µM) was added. After incubated
for 48 h, cells were subjected to the MTS assay. Compounds with a growth inhibition rate of
50% were further evaluated at concentrations of 0.064, 0.32, 1.6, 8, and 40 µM in triplicate,
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with cisplatin and paclitaxel (MeilunBio) as positive controls. After the incubation, MTS
(20 µL) was added to each well and the incubation continued for 4 h at 37 ◦C. After suffi-
cient reaction, the light absorption value of each well was read by Multiskan FC at 492 nm.
The IC50 value of each compound was calculated with Reed and Muench’s method.

4. Conclusions

In conclusion, 40 1-substituted 1,2,3-triazole-mollugin derivatives were synthesized
through Huisgen 1,3-dipolar cycloaddition reaction and evaluated for cytotoxicity against
a series of five different human cancer cell lines (HL-60, A549, SMMC-7721, SW480, and
MCF-7) along with the parent molecule. Most of the derivatives showed better cytotox-
icity than parent molecule. It is worth mentioning that our experiment results showed
that compound 14 and 17 exhibited cytotoxicity of all five cancer cell lines significantly
and compound 36 could enhance the cytotoxicity of lung cancer cells (A549) specifically.
Structure and activity relationship (SAR) analysis reveals that electron-donating groups
including hydroxyl, methoxy, and alcohol hydroxyl groups are essential for retaining the
cytotoxicity to derivatives. In addition, for derivatives containing methoxy groups that
the cytotoxicity may increase with the number of methoxy groups. Based on the SAR
studies, we believe that the enhancement of cytotoxicity of the derivatives may be caused
by the aromatic ring becoming electron-rich or the electron-donating atoms with lone pairs
provided by electron-donating groups available to serve as hydrogen bond acceptors with
the active site, which is worthy of further study.
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