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Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early

enough for any of the current treatment options to be completely successful. Early

diagnosis of this disease could increase the numbers of patients who are able to slow its

progression. There are now several diseases where membrane protein biomarkers are

used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a

rich source of potential biomarkers for OA but we need more knowledge of these before

they can be considered practical biomarkers. How are they best measured and are they

selective to OA or even certain types of OA? The first step in this process is to identify

membrane proteins that change in OA. Here, we summarize several ion channels and

receptors that change in OA models and/or OA patients, and may thus be considered

candidates as novel membrane biomarkers of OA.
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INTRODUCTION

Early diagnosis of osteoarthritis (OA) is difficult as significant joint damage generally occurs before
patients present with pain. MRI screening of risk groups for markers of joint degeneration, by
definition, requires that some degeneration has already taken place. Although, there is a clear
correlation between the presence of cartilage-denuded zones of subchondral bone in knee joints
and pain severity (Cotofana et al., 2013), the overall correlation between physical indicators of
joint degeneration and osteoarthritic pain is statistically significant, but weak (Hunter et al., 2013;
Eckstein et al., 2015) therefore alternative markers of early OA are urgently needed. Membrane
proteins are a potential source of novel biomarkers. A normal human cellular membrane contains
thousands of proteins, so this review will focus largely on ion channels and membrane proteins
involved with intercellular signaling. Here we mainly consider the cartilage-producing cells;
chondrocytes. There are many other cell types that are also likely to be important for development
of OA, such as those of bone, blood vessels, synovial tissue or nerves, but these are beyond the scope
of this review.

MEMBRANE PROTEINS AS BIOMARKERS OF OSTEOARTHRITIS

The term “biomarker” is often misappropriated to mean just soluble biomarkers useable for
diagnostics, but in fact the WHO organization defines the term much more broadly “almost
any measurement reflecting an interaction between a biological system and a potential hazard,
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which may be chemical, physical, or biological. The measured
response may be functional and physiological, biochemical at the
cellular level, or a molecular interaction.” (Strimbu and Tavel,
2010). Plasma membrane proteins could therefore constitute
useful biomarkers in a number of contexts. Firstly, recent
developments of adaptamer and nanotechnologies (Gao et al.,
2004; Hwang et al., 2010) have demonstrated that changes
in cellular membrane protein components or even those of
intracellular compartments can be detected in vivo. Whilst
this approach would be more challenging in the hypocellular
and avascular environment of cartilage, it may prove possible
especially in synovial tissue. As imaging technology becomes
more widely available, we need to have potential biomarkers
available for it to exploit. Secondly, there are a number of
conditions in which membrane proteins, or parts of membrane
proteins, are shed and become detectable as soluble biomarkers.
For example, in liver cirrhosis, the aquaporin channel (AQP2)
is increased both in expression and in urinary excretion
(Asahina et al., 1995; Ivarsen et al., 2003; Pedersen et al., 2003).
During progression of OA, fragments of the membrane protein
syndecans can be detected in synovial fluid (Pap and Bertrand,
2013). A third context in which an expanded knowledge of
membrane receptors will prove useful is in genetic screening.
It is unlikely that any ion channel or receptor will be found
that is unique to components of the joints; if a change in a
membrane receptor or channel is detected which is involved
with OA and arises from, for example, a genetic polymorphism,
it is logical that this could then be detected with a blood test.
Indeed the NaV1.7 ion channel has already been identified as a
potential biomarker of OA in genetic association studies (Thakur
et al., 2013). Whilst OA is a complex multi-organ condition,
many studies use so called in vitro models of OA however
these are largely unvalidated (Johnson et al., in press); a further,
potentially valuable use of membrane biomarkers will be to
more precisely characterize these models and compare their
differential membrane phenotype with that of tissue from native
OA cartilage.

DIFFERENTIALLY EXPRESSED CHANNELS
AND RECEPTORS IN OSTEOARTHRITIC
CARTILAGE

The vast majority of studies investigating changes in membrane
receptors and ion channels in OA have focussed on chondrocytes,
the resident cells of cartilage that detect activity of the joints and
respond with production and maintenance of further cartilage
(Urban, 1994). Sudden impact loading of joints can damage
chondrocytes and will decrease cartilage production (Quinn
et al., 2001; Milentijevic et al., 2003; Bush et al., 2005; Natoli et al.,
2008), but paradoxically, joint inactivity also leads to reductions
in cartilage production (Brandt, 2003). Thus, there appears to
be an optimal chondrocyte-loading regime. The frequency of
loading and amount of loading are unknown. Evidence suggests
that this is disturbed in OA (Millward-Sadler et al., 2000; Vincent,
2013) and so elements of the mechanotransduction system
are potentially key sources of novel membrane biomarkers.

Chondrocytemechanotransduction is poorly understood, but the
membrane proteins; integrins, connexins, TRP, piezo, ENaC, and
potassium channels have been strongly implicated (Millward-
Sadler et al., 2000; Mobasheri et al., 2002; Garcia and Knight,
2010; Guilak, 2011; Lewis et al., 2011b, 2013a; O’Conor et al.,
2013; Lee et al., 2014) in addition to the soluble mediator, FGF2
(Vincent et al., 2007).

Ion Channels
In a recent report, we discussed the differential expression
of ion channels in OA (Lewis et al., 2013b). We analyzed
transcript levels in the (Karlsson et al., 2010) dataset; the
acid sensing potassium channel (TASK-2), epithelial sodium
channel (ENaC) and Ca2+ activated chloride channel were all
decreased (anoctamin-1, TMEM16), whereas Ca2+ activated
potassium channels (KCa3.1, “SK” and KCa1.1, “BK”) and
aquaporin 1 (AQP1) were strongly up-regulated. The tight
clustering of differentially expressed channels to ontological
functions of mechanotransduction, cell volume regulation
and apoptosis suggests that these changes could be linked
to progression of OA. To further investigate this channel
data we analyzed protein expression of BK in osteoarthritic
cartilage by immunohistochemistry and aquaporin expression
using a functional (permeability) assay. Both aquaporin and
BK were significantly increased in expression in chondrocytes
from osteoarthritic cartilage (Lewis et al., 2013a,b). Increased
aquaporin channel expression in OA has also been reported
elsewhere (Geyer et al., 2009; Hagiwara et al., 2013; Musumeci
et al., 2013) and the AQP1 gene harbors hypomethylated regions
of DNA in OA patients indicative of over-expression (Rushton
et al., 2014). This striking observation raises the possibility of
there being changes in other detectable partners in the volume-
regulatory pathway, such as water content, potassium or any of
several other cellular markers (Hoffmann et al., 2009). Changes
in synovial fluid osmolarity during progression of osteoarthritis
could also influence progression of the disease due to the
effects on ion channel expression. The ClC7 chloride channel,
for example, is downregulated by hypo-osmotic stress, altering
membrane potential and leading to increased cell death (Kurita
et al., 2015). Another potassium channel, not identified as
differentially expressed in our transcriptomic analysis, but linked
to OA by more traditional methods, is the ATP sensitive K+

ion channel (KATP). KATP is a widely expressed ion channel,
existing in several isoforms and involved in many human
diseases. In our own work we identified KATP channels in
chondrocytes (Mobasheri et al., 2007) and a further recent
report showed this channel is linked to control of chondrocyte
metabolism in a scheme involving the glucose transporter family
GLUT-1 and GLUT-3 (Rufino et al., 2013). This function of
KATP channels is changed in OA and implicates changes in
chondrocyte metabolism in the complex process of cartilage
degeneration.

TRP cation channels are a widely distributed family of
channels in the musculoskeletal system that frequently detect
changes in the cellular microenvironment and transduce these
to electrochemical signals (Guilak et al., 2010). In our own
studies we reported that TRPV5 channels were present in healthy
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chondrocytes and facilitated the volume defense mechanism
of chondrocytes (Lewis et al., 2011a; Hdud et al., 2012).
Interestingly, another TRP ion channel, TRPV4, changes in
expression in a mouse model of OA (Lamandé et al., 2011) and
knockout of TRPV4 ion channels in mice results in osteoarthritic
changes in cartilage (Clark et al., 2010). This channel is therefore
a potential biomarker for OA. Indeed, the closely related TRPV1
was also associated to OA pain in the genetic study mentioned
above (Thakur et al., 2013). It remains to be seen whether
modulation of TRP channel expression or function could be the
basis of a plausible therapeutic approach for OA.

A further ion channel reportedly changed in activity in
OA is the N-methyl-D-aspartic acid (NMDA)-receptor. This
ion channel is better known as the most abundant excitatory
neurotransmitter receptor in the brain. It is activated by
glutamate and its presence in chondrocytes is indicative of the
complex signaling between chondrocytes and the extracellular
matrix (ECM). Several NMDA isoforms have been identified in
chondrocytes; NR1, NR2A, NR2B, NR2D, and NR3 (Ramage
et al., 2008; Lee et al., 2009; Piepoli et al., 2009) and
stimulation of this channel has a number of biological effects,
elevation of intracellular Ca2+, activation of nNOS, uncoupling
of PDZ, depolarization and cell proliferation (Ramage et al.,
2008; Piepoli et al., 2009). The depolarization can be reversed
by application of the classical voltage-gated sodium channel
blocker (tetrodotoxin). Following such treatment NMDA-
receptor activation results in a partially apamin sensitive (i.e., SK
mediated) hyperpolarization. The expression pattern of NMDA-
R isoforms changes with onset of OA: RT-PCR studies show
that chondrocytes from normal cartilage express mRNA for
NR1 and NR2A. In the lysate samples tested by Ramage et al.
OA chondrocytes showed decreased expression of NR2A, but
increased expression of NR2B during onset of OA. Normal
chondrocytes show very little proliferative potential, and it is
interesting that IL1β activates gene expression in an NMDA-
R manner. Therefore, NMDA-R may be involved in cartilage
degradation in OA. In terms of soluble biomarkers, changes in
membrane receptor expression could be predictive of changes
in soluble partner ligand. It is therefore notable that changes in
NMDA-R ligands (excitatory amino acids) are indeed altered in
OA cartilage (dialysates) (Jean et al., 2005, 2006, 2007).

Histamine Receptors
Other membrane receptors are also differentially expressed in
OA. These include histamine, bradykinin, and prostaglandin
receptors, all linked to inflammation and extravasation in tissues.
Histamine was probably the earliest pharmacological mediator to
be discovered that is strongly linked to inflammation. Typically
histamine is released at site of tissue injury and serves to initiate
a local inflammatory response. Histamine antagonists are one
of the most widely used off the shelf medicines; H1 antagonists
have sedative value if they cross the blood brain barrier, but
are useful anti-allergenics for hayfever etc., whereas H2 are
inhibitors of gastric acid secretion and used in many widely
available anti-ulcermedicines. The earliest discovery of histamine
receptors in cartilage was indeed of H1 and H2 (Tetlow and
Woolley, 2005). Expression of both, together with the histamine

producing enzyme histidine decarboxylase was seen to be
increased in expression, especially in the superficial zone of OA
cartilage (Tetlow and Woolley, 2005). Physiologically, histamine
increases intracellular calcium ion concentrations evoked by
the ORAI/STIM1 pathway and so hyperpolarizes chondrocytes
via BK channels (Funabashi et al., 2010; Inayama et al., 2015).
Other studies of histamine receptors in cartilage have focussed
on the less well-known H4 histamine receptor: Comparisons
between rheumatoid and OA tissue show OA to have greater
expression of this receptor (Yamaura et al., 2012b). This could
be a key differential marker between the systemic inflammation
seen in rheumatoid arthritis and the local inflammation of OA.
A further explanation, which goes someway to explain this
observation, is that histamine H4-R density is elevated in a
teratoma-derived pre-chondrocyte cell line, ATDC5, (Yamaura
et al., 2012a) providing more evidence of the apparent changes
in chondrocyte phenotype as cartilage degenerates, even without
inflammation.

Prostaglandin Receptors
In many ways, bradykinin and the prostaglandins are partners
to histamine. They are both central to the early response to
tissue injury and inflammation, and released in the tissues along
with histamine. Prostaglandins are a family of lipid mediators
derived from the cell membrane via the action of phospholipase
A2 (PLA2) and cyclooxygenase (principally COX-1 and COX-
2) enzymes. Inhibitors of these enzymes therefore profoundly
change the prostaglandin balance in the joint. PLA2 is inhibited
by steroid anti-inflammatory drugs and COX-1 and COX-2
are inhibited by typical NSAIDs. The prostaglandin membrane
interactions documented to date surround prostaglandin E2
(PGE2) and its receptors EP2 and EP4 (Attur et al., 2008; Otsuka
et al., 2009). This work has centered on a pharmacological,
rather than molecular or immunohistochemical approach. PGE2
is an enzyme typically associated with pro-inflammatory actions
(Martel-Pelletier et al., 2003), it binds preferentially to 4 receptors
termed EP1-4 and there are a number of relatively selective
agonists and antagonists available to distinguish between them
(Alexander et al., 2011). PGE2 membrane receptors have been
reported to have diverse actions on OA cartilage, for, whilst
the EP4 receptor stimulates activity of a number of catabolic
enzymes in OA cartilage (Attur et al., 2008), there are conflicting
reports of the actions of EP2-receptor activation. Activation
of PGE2 EP2 receptors was reported to decrease proteoglycan
secretion in 3D cultures of human articular chondrocytes (Li
et al., 2009), but be protective (Mitsui et al., 2011) and to
even enhance regeneration of articular cartilage in rabbit OA
models (Otsuka et al., 2009). The mechanism of action of each
of the PGE2 chondrocyte membrane receptors has not been well
studied, however, a role in intracellular Ca2+ handling has been
proposed (Xu et al., 2009). Chondrocyte activity is controlled
by a complex mechanotransduction mechanism, beginning with
the deformation of the cellular membrane and ending with
changes in biosynthetic activity. This pathway involves opening
of ion channels, change of membrane potential and elevation
of intracellular Ca2+. Xu et al. (2009) mimicked this biological
activity with direct electrical stimulation of cartilage and found
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the ECM synthesis output was dependent on COX activity
(i.e., indomethacin sensitive). Whilst it was inferred that PGE2
receptors were involved this was not tested for with a specific
EP-receptor antagonist. Again such involvement of membrane
receptors such as the EP2 and EP4 in pathogenesis of OA
presents not just the receptor itself as a potential biomarker (and
treatment target), but suggests changes in the associated ligand
(PGE2) may also be detectable. Indeed this proves to be the case,
since COX-2 and PGE2 are both found to be increased in cartilage
from OA donors (Amin et al., 1997).

Bradykinin (Kinin) Receptors
Bradykinin involvement with OA progression was first
postulated by the group of Maggi (Meini and Maggi, 2008).
Bradykinin contributes to the hyperexcitability of sensory nerves
associated with inflammation and also activates the synoviocytes
and chondrocytes critical for the homeostasis of synovial fluid
and cartilage, respectively. Two bradykinin GPCRs have been
identified; B1 and B2 and both signal through Gq/11. Typically
bradykinin itself acts on B2 receptors. A polymorphism in the
gene encoding this receptor is associated with OA, and could
potentially be a biomarker for OA (Chen et al., 2012). Receptor
antagonists toward B2 receptors have been proposed to be
potential treatments for OA (Meini et al., 2011) since they can be
protective to cartilage in in vitromodels. A role of B2 membrane

receptors in pathogensis implies a likely change in bradykinin
levels too. This was observed many years ago, however, the
change is seen in rheumatoid arthritis too and is not limited
to OA (Melmon et al., 1967; Eisen, 1970). The contribution of
B2-receptors to the pain and hyperalgesia of osteoarthritis is
likely to be mediated by the same mechanisms of other chronic
pain conditions, namely the sensitization of primary afferent
neurons (Cesare and McNaughton, 1996; Huang et al., 2006), for
example by increasing the neuronal expression of TRPV1 like
channels via a protein kinase C (PKC) dependent pathway. The
mechanisms by which B2-R facilitates cartilage breakdown are
less well known, however, stimulation of prostaglandin synthesis
and activation of EP2 receptors seems likely (Averbeck et al.,
2004).

Purinergic Receptors
There are four members of the purinergic “P1” subfamily; A1 and
A3 are Gi/o coupled receptors, but A2A and A2B are coupled to
Gs. The P2 family are activated by extracellular ATP or ADP and
further classified into 2 subfamilies P2X and P2Y. P2X are ligand-
gated ion channel receptors (P2X1−7) with P2X7 being genetically
linked to OA pain (Thakur et al., 2013). P2Y are G-protein
coupled receptors. There are 14 known members of the P2Y class
of membrane receptor and they couple to a variety of different
G-proteins, including both Gs and Gi. Several members of this

FIGURE 1 | Key membrane receptors and channels differentially transcribed. Expressed or implicated in OA. This figure shows those ion channels and

membrane receptors most clearly linked to OA and discussed in the text, classified in accordance with the IUPHAR Guide to Pharmacology database (Pawson et al.,

2014). Genes/proteins in red are up regulated in OA, and those in green are down regulated. Those remaining in black are linked to OA, but not specifically increased

or decreased (a polymorphism for example). Genes/proteins are given in the following format; common names/alternative names (human gene or equivalent).
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superfamily have been identified in chondrocytes, including; P1
receptor A2A and P2 receptors P2X2, P2X3 P2X4, P2X7, and
P2Y1 and P2Y2 (Varani et al., 2008; Knight et al., 2009; Campo
et al., 2012b). Most of these receptors are identified throughout
cartilage with the notable exception of P2Y2 which was located
to the superficial layers (Knight et al., 2009). Knight found there
to be no obvious difference in transcription, but observes that
since ATP/P2 receptor signaling is altered in OA elevated levels of
ATP could be inducing desensitization of purinergic membrane
receptors. In terms of function, there are clear indicators that the

P2 receptor is involved with mechanotransduction coupling, in
complex cascades including connexins and integrins (Millward-
Sadler et al., 2004; Pingguan-Murphy et al., 2006; Knight et al.,
2009), whereas an anti-inflammatory role has been proposed
for the P1 (adenosine) receptors (Campo et al., 2012a). An
important study by Rosenthal et al. (2010) indicates that P1 and
P2 purinergic receptors interact to modulate the extracellular
inorganic pyrophosphate balance and it seems likely that this too
will be in response to mechanical activity, but this has not yet
been shown.

TABLE 1 | Other membrane receptors associated or implicated with osteoarthritis, but with less well characterized roles in joint function.

Receptor Long name or descriptor Context

LRP-1 Low-density lipoprotein receptor-related protein (aka

apolipoprotein E receptor, CD91), reviewed by May et al.

(2007)

Drives rapid endocytosis of ADAMTS-5; LRP-1 is down-regulated in human articular

cartilage from OA patients. Transcript abundance increased in damaged vs. intact

cartilage (Geyer et al., 2009)

InsR/IGF-R Insulin Receptors and Insulin like Growth factor receptors Both InsR/ILGF-R are decreased in chondrocytes from patients with OA (Rosa et al.,

2011) and the IGF-I peptide itself increases expression of COL2A1 in articular

chondrocytes (Renard et al., 2012)

TLR Toll-like receptor proteins (members of the interleukin receptor

family), with many ligands such as heat shock proteins and

hyaluronic acid oligomers. Includes TLR1−11 (Akira and

Takeda, 2004)

Are more commonly found on inflammatory cells and serve to initiate inflammatory

responses/innate immunity. TLR1−9 identified in cartilage and are differentially

expressed in OA cartilage (Kuroki et al., 2010; Barreto et al., 2013; Yang et al., 2013).

Polymorphism of the TLR3 and TLR9 promoted associate with severe OA (Su et al.,

2012; Yang et al., 2013) and “alarmins” accelerate catabolism in OA cartilage in a

TLR4 dependent mechanism (Schelbergen et al., 2012)

TGFβ-RII Transforming growth factor β receptor 2 TGFβ-RII expression decreases with age and potentially predisposes older people to

OA (Bauge et al., 2013) and its genetic deletion increases OA in mice (Zhen et al.,

2013)

PPARγ-R Peroxisome Proliferator-Activated Receptor-γ, a nuclear

receptor

PPARγ-R is down-regulated in both human OA (Afif et al., 2007) and in several OA

models (Fahmi et al., 2011) including the spontaneous Guinea-pig model (Nebbaki

et al., 2013). In some cases this is secondary to Erg-1 mediated IL-1 (Nebbaki et al.,

2012) and/or TLR4 activation (Chen et al., 2013)

MC-R Melanocortin peptide receptors, for example MC1-R and

MC2-R. Endogenous pharmacological activators include

α-melanocyte-stimulating hormone (α-MSH),

pro-opiomelanocortin (POMC) and adrenocorticotrophin

(ACTH)

MC1, MC2, MC5, and ligand POMC transcribed in cartilage, induces expression of

several ECM components and pro-inflammatory cytokines (Grässel et al., 2009), but

can also mediate chondro- and cartilage- protective effects of neuropeptides such as

α-MSH, POMC in both in vitro and rat in vivo models of OA (Shen et al., 2011;

Kaneva et al., 2012)

CD36 A pattern recognizing receptor (Silverstein and Febbraio,

2009). Aka “thrombospondin receptor”

CD36 is well known to increase in OA (Pfander et al., 2000), however, recent data

show it is also able to suppress catabolic activity and serves as a marker of

hypertrophy (Cecil et al., 2009)

PTH1-R Parathyroid receptor-1 PTH1-R expression is decreased in rabbits with ACL section induced OA (Becher

et al., 2010)

Ob-R Leptin receptor With onset of OA there is a switch from adipokine synthesis to receptor synthesis

(Francin et al., 2011). Leptin itself enhances production of catabolic MMP enzymes in

OA cartilage (Iliopoulos et al., 2007; Koskinen et al., 2011). It is believed that leptin

may mediate the pro-OA effects of obesity rather than simply the increased load

observed in weight baring joints

CD44 Hyaluronan receptor (aka HA-R) Activation inhibits expression of ADAMTS4 (aggrakinase-1) and MMP-13 in

[osteoarthritic] chondrocytes (Yatabe et al., 2009; Julovi et al., 2011), although some

hyaluronan effects could be mediated through the TLRs (see below)

FGF-R Fibroblast growth factor (FGF) receptors, family includes

FGFR1, 2, 3, and 4. Sensitive to the 22 member FGF family

FGFR-3 in has been shown to mediate chondroprotective of FGF18 (Ellman et al.,

2013). Please see Vincent (2012) for discussion of the role of FGF in OA.
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Estrogen Receptors
There are two fundamentally different types of estrogen
membrane receptor; one is a seven transmembrane (7TM) G-
protein coupled “GPE” receptor. The GPE-receptor couples to
both Gs and Gi/o and is thought to mediate rapid, so called non-
genomic actions of estrogen. These may be localized in either
plasma or intracellular membranes. The second are the steroid
intracellular receptors known as ERα and ERβ. Both ERs have
been identified in joint tissue including chondrocytes (Ushiyama
et al., 1999; Martin-Millán and Castañeda, 2013). There have
been conflicting reports of association between estrogen receptor
gene polymorphisms and human OA. Association between ERα

and ERβ was detected in a study of knee and hip OA (Riancho
et al., 2010), whereas polymorphisms of ERβ were reported to
be only marginally associated with OA in a study of hand and
hip OA (Kerkhof et al., 2010). A large transgenic study showed
that mice with double knock-out of both ERα and ERβ were
strongly predisposed toward osteophyte formation, however,
interestingly this was not the case if only ERα or ERβ were
genetically deleted (Sniekers et al., 2009). Note that the estrogen-
related receptor is also dysregulated in OA (Bonnelye et al.,
2011). The decrease of estrogen levels decrease in older women
could therefore contribute to OA, however estrogen replacement
provides only modest, and variable improvements to patients
(Roman-Blas et al., 2009). Exactly, how estrogen receptors
affect joint pathology is not known, but they induce changes
in many ECM proteins aggrecan-1, MMP1, MMP2, MMP13,
MMP14, and TIMP2 (Claassen et al., 2010; Sniekers et al.,
2010) together with some anti-inflammatory action (Martin-
Millán and Castañeda, 2013). Both the selective estrogen receptor
modulator raloxifene and 17β-estradiol reduce chondrocyte

apoptosis induced by TNFα (Hattori et al., 2012) or doxorubicin.
The mechanism of action here has been investigated in some
detail with ERK1/2 signaling and inhibition of volume sensitive
chloride channels both implicated. The molecular identity of the
volume sensitive chloride channel has not yet been confirmed.

CONCLUSION

Chondrocytes respond to mechanical signals by changing the
production of cartilage components. However, the mechanisms
of this process are understood only in outline. Membrane
receptors and ion channels are well placed to transduce these
signals and their differential expression, or post-translational
dysfunction could contribute to the progression of OA and
other degenerative joint conditions. This review has highlighted
a number of such potential biomarkers, the most well established
data are summarized in Figure 1 and further examples of
membrane proteins, with less established but distinct associations
with OA are given in Table 1. Many membrane receptors and
ion channels altered in either expression and/or function in OA
tissue and these may form the basis for biomarker discovery as
well as providing deep insight into the mechanisms of cartilage
production and provide the basis for development of future
biologics for the treatment of degenerative joint conditions.
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