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Abstract
Purpose: Accurate positioning of multileaf collimator (MLC) leaves during vol-
umetric modulated arc therapy (VMAT) is essential for accurate treatment
delivery. We developed a linear regression, support vector machine, random for-
est,extreme gradient boosting (XGBoost),and an artificial neural network (ANN)
for predicting the delivered leaf positions for VMAT plans.
Methods: For this study, 160 MLC log files from 80 VMAT plans were obtained
from a single institution treated on 3 Elekta Versa HD linear accelerators. The
gravity vector, X1 and X2 jaw positions, leaf gap, leaf position, leaf velocity,
and leaf acceleration were extracted and used as model inputs. The models
were trained using 70% of the log files and tested on the remaining 30%. Mean
absolute error (MAE), root mean square error (RMSE), the coefficient of deter-
mination R2,and fitted line plots showing the relationship between delivered and
predicted leaf positions were used to evaluate model performance.
Results: The models achieved the following errors: linear regression (MAE =

0.158 mm, RMSE = 0.225 mm), support vector machine (MAE = 0.141 mm,
RMSE = 0.199 mm), random forest (MAE = 0.161 mm, RMSE = 0.229 mm),
XGBoost (MAE = 0.185 mm, RMSE = 0.273 mm), and ANN (MAE = 0.361 mm,
RMSE = 0.521 mm). A significant correlation between a plan’s gamma pass-
ing rate (GPR) and the prediction errors of linear regression, support vector
machine, and random forest is seen (p < 0.045).
Conclusions: We examined various models to predict the delivered MLC posi-
tions for VMAT plans treated with Elekta linacs.Linear regression,support vector
machine, random forest, and XGBoost achieved lower errors than ANN. Mod-
els that can accurately predict the individual leaf positions during treatment
can help identify leaves that are deviating from the planned position, which can
improve a plan’s GPR.
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1 INTRODUCTION

Over the past few decades, radiation treatment delivery
techniques have been improving. The introductions of
intensity-modulated radiation therapy (IMRT) and volu-
metric modulated arc therapy (VMAT) have provided a
more conformal dose coverage to the target volumes
while sparing the normal tissue and nearby organs at
risk (OARs).1,2 VMAT provides a conformal dose to
the targets and OARs through the modulation of the
beam. Beam modulation combined with the modula-
tion of the multileaf collimator (MLC) positions, dose
rate, and gantry rotation speed allows for a faster treat-
ment delivery.As VMAT is a highly modulated technique,
and due to the complexity of VMAT planning and deliv-
ery, there is a higher chance for potential discrepancies
between the planned and delivered dose distributions.3

Nithiyanantham et al.4 reported that an MLC positional
error beyond ±0.3 mm can lead to significant differ-
ences in dose distribution and an MLC error of ±0.5 mm
resulted in a dose deviation of more than 3% for VMAT
plans delivered using an Elekta linear accelerator (linac).
Therefore, this calls for performing patient-specific plan
quality assurance (QA) and dosimetric verification prior
to the delivery of VMAT to ensure a safe and accurate
treatment.5

During VMAT, the MLC leaves are in motion through-
out the treatment when the beam is on. Therefore, MLC
positional accuracy is crucial to prevent radiation tox-
icities to normal tissues and an underdosage to the
tumor. A couple of factors that can lead to MLC posi-
tional deviations are the gantry angle and leaf velocity.
Gantry angle can cause deviations in leaf positions due
to the effect of gravity. A study by Ju et al.6 observed
a maximum error in leaf position at 90◦ as the gantry
rotated clockwise. As the gantry angle reached 180◦,
these errors decreased. A similar trend in the error
was observed when the gantry was rotated anticlock-
wise. Another factor that can affect MLC leaf positions
is the leaf velocity. VMAT plans often require the MLC
leaves to move at a higher velocity so that the leaves
can reach their next planned position in time. However,
interleaf friction can affect leaf velocity,7 causing the
leaves to move slower than their intended velocity and
not reaching their next planned position fast enough.
Wijesooriya et al.8 and Ling et al.9 reported higher
MLC leaf positional errors in leaves moving at a faster
velocity.

VMAT and IMRT are complex treatment delivery
techniques that can introduce potential errors during
treatment delivery, so pretreatment patient-specific QA
is performed prior to treatment delivery to identify
discrepancies between the planned and delivered treat-
ment. In highly modulated plans, the accuracy of the
MLC leaf positioning is crucial.10 Therefore, ML mod-
els that can accurately predict the MLC leaf positions

can be used to identify IMRT and VMAT plans that will
potentially fail QA due to inaccurate MLC leaf posi-
tioning. As a result, the treatment planner can reduce
the plan complexity ahead of time, thereby reducing
chances for QA failures by predicting the delivered leaf
positions.

Many studies have explored the application of con-
ventional machine learning (ML) algorithms and ML-
based neural networks to successfully predict Varian
MLC leaf positional errors. According to literature, con-
ventional ML algorithms are outperformed by ML-based
neural networks.11 Carlson et al.12 were the first to
develop ML models to predict the MLC positional devi-
ations by using DynaLog files. They developed a linear
regression, random forest, and cubist ML algorithms to
predict the MLC positional deviations during VMAT deliv-
ery using DynaLog files and to examine the impact
of these deviations on QA and dosimetry. The results
from the study showed that the cubist model outper-
formed the other models in accurately predicting the
MLC positional errors. Osman et al.5 developed an ML
method based on a feedforward artificial neural network
(ANN) to predict the individual MLC leaf positional devi-
ations during the dynamic IMRT delivery priori using
data from Varian DynaLog files. The results from this
study showed that the ANN model outperformed the
accuracy of previous ML models in literature, and the
model could be applied to dose calculations and opti-
mization to improve the gamma passing rate (GPR) for
patient-specific IMRT QA. The ANN model developed
by Osman et al.5 outperforms the models developed
by Carlson et al.12 in predicting MLC positional errors.
Chuang et al.13 developed several regression models,
such as simple/multiple linear regression, decision tree,
bagged tree, and boosted tree models to predict MLC
discrepancies during IMRT and VMAT based on MLC
motion parameters from trajectory log files from Varian
linac.

The use of log files for pretreatment patient-specific
QA has increased in the recent years. An advan-
tage of the log file–based QA over the traditional
measurement-based QA is that log files contain the
delivered machine parameters and MLC leaf positions.
Incorporating the machine parameters into the treat-
ment planning system to recompute the dose can show
the deviations between the planned and delivered dose.
Because MLC leaf positioning is the largest source
of error during treatment delivery,10 ML models can
be incorporated into the pretreatment patient-specific
QA workflow for predicting the delivered MLC leaf
positions at the time of treatment planning. These pre-
dictions can be used to compute the delivered dose,
which can be compared to the planned dose for plan
verification.

Although several studies have examined conventional
ML algorithms and neural networks to predict Varian
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MLC positional deviations, this study is the first appli-
cation of ML techniques to predict the delivered Elekta
MLC leaf positions. There are differences between the
motion control system of an Elekta MLC and a Varian
MLC. In Varian, the MLC is placed as a tertiary sys-
tem below the upper and lower jaws. This design places
the MLC closer to the patient than in an Elekta linac.14

Having the MLC below the jaws adds extra bulk to the
system, because beam divergence requires a larger
system to cover the same field size. Furthermore, plac-
ing the MLC farther from the X-ray source requires an
increase in the leaf length and the distance traveled by
the leaves from one side of the field to the other.15 As an
effort to reduce the distance the leaves travel across the
field, the leaves travel on a carriage. Varian MLC leaves
have a higher transmission but lower interleaf leakage
than Elekta.16 In Elekta, the MLC replaces the upper jaw,
and the leaves move only in the y-direction.14 The closer
placement of the MLC to the X-ray source reduces
the distance the leaves must travel, thus allowing for
a shorter leaf length and an overall reduction in the
size of the system.14 The disadvantage of this design
is the smaller leaf width, which calls for a tighter toler-
ance on leaf positioning and leaf travel.14 Compared to
Varian, Elekta MLC has lower transmission but higher
interleaf leakage.16 This study focuses on examining dif-
ferent conventional ML models and an ML-based neural
network to predict the delivered positions of individual
MLC leaves for VMAT treatment plans delivered using
an Elekta linac.

2 MATERIALS AND METHODS

2.1 Elekta MLC log files

The Elekta Agility MLC system consists of 160 individual
leaves (80 leaves in the X1 bank and 80 leaves in the X2
bank). Unlike the Varian system that uses potentiome-
ters and encoders for the MLC position verification,2,17

the Elekta system uses optical technology.2 The
Elekta Agility uses a Rubicon optical positioning sys-
tem, which allows for accurate positioning of MLC
leaves.2

During the treatment, the Elekta system records
the mechanical information and delivery parameters
of the linac every 40 ms. The Elekta log files con-
tain information about the control points, linac state,
dose rate, delivered dose, wedge information, gantry
angle, collimator angle, X1 jaw position, X2 jaw posi-
tion, individual leaf positions, table positions, and the
errors associated with each of these parameters.2 The
retrieved Elekta log files are in a binary format with
a .trf (treatment record file) extension and needed
to be converted to a readable ASCII format. To do
this, an in-house MATLAB algorithm was previously
written.2

TABLE 1 Planned input parameters to predict the delivered
multileaf collimator (MLC) leaf positions

Planning parameter Formula

Gravity vector cos(collimator angle) × sin(gantry angle)

X1 jaw position –

X2 jaw position –

Leaf position –

Leaf gap abs(leaf(bank X1) − leaf(bank X2))

Leaf velocity pt− pt−1

time (0.040 s)

Leaf acceleration vt− vt−1

time (0.040 s)

Note: The current leaf position is represented by pt, and the leaf position at the
previous timepoint is represented by pt−1.The current leaf velocity is represented
by vt, and the leaf velocity at the previous timepoint is represented by vt−1.

2.2 Predictive planning parameters

For this study, 160 MLC log files from 80 VMAT plans
were retrospectively acquired from a single institution
treated on 3 Elekta Versa HD linacs. All the plans
were generated in the Pinnacle treatment planning sys-
tem. The treatment sites of the VMAT plans included
are head-and-neck, pelvis, prostate, brain, lung, and
abdomen. All plans were treated with two arcs using
beam energy of either 6 or 10 MV. For the three
linacs,we found limited differences in treatment delivery
parameters during commissioning and QA; therefore, a
generalized model was built to predict the behavior of
the three linacs.

The planned parameters considered to be predictive
in determining the delivered MLC leaf positions were
extracted or calculated from the log files.Based on what
has been reported in literature, the following parameters
(Table 1) were extracted from the log files:gantry angle,6

collimator angle,18 X1 jaw position,19 X2 jaw position,19

and leaf position.5,12 Gravity vector,13 leaf gap,3,5 leaf
velocity,3,5,8,9,12,20 and leaf acceleration3,9 were calcu-
lated from the extracted parameters according to the
formulas shown in the second column of Table 1. The
seven planned parameters shown in Table 1 are used
as inputs to the multiple linear regression, support vec-
tor machine, random forest, extreme gradient boosting
(XGBoost), and ANN, which are discussed separately in
the following section.

2.3 Multiple linear regression

Linear regression is a statistical method that quan-
tifies the relationship between the independent and
dependent variables.21 Multiple linear regression esti-
mates the linear effect that one independent variable
has on the dependent variable after adjusting for the
effects of confounders, which are variables that influ-
ence both the dependent and independent variables.22

This effect is described by the regression coefficient.23
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The regression coefficient denotes the change in the
dependent variable per unit change in the independent
variable24 and is estimated by least squares. A multi-
ple linear regression model was developed to evaluate
the relationship between the planned parameters and
the delivered MLC leaf positions, as linear regression
coefficients, discussed in Section 3, are more intuitively
understandable.The features were scaled for this model.

2.4 Support vector machine

Support vector machine uses a kernel, such as lin-
ear, polynomial, Gaussian, radial basis function (RBF),
or sigmoid, to transform the input data for processing.
The kernel finds a hyperplane containing the maximum
number of data points. An ԑ-insensitive tube surrounds
the hyperplane, where ԑ specifies the margin for error
tolerance. The symmetric loss function penalizes data
points outside the ԑ-insensitive tube, whereas the data
points inside the tube are not.Essentially, this model tries
to find the narrowest tube that minimizes the predic-
tion errors.25 The regularization parameter C specifies
the amount of misclassification to be avoided. Support
vector machine was selected due to its ability to not over-
fit, handle nonlinear data, not rely on any distributional
assumptions, and stability, because a small change in
the data does not produce significant changes to the
hyperplane. However, a disadvantage is that it cannot
handle unbalanced data well.

Hyperparameter tuning was done using sixfold cross-
validation, and the metrics used to validate the model
performance were the mean absolute error (MAE), root
mean square error (RMSE),and the coefficient of deter-
mination R2. During grid search, the hyperparameter
values examined were the following:kernel: [linear,RBF],
C: [0.40,0.60,0.80],and ԑ: [0.01,0.05,0.10].The final val-
ues selected for the model were kernel= linear,C= 0.40,
and ԑ = 0.01. The features were scaled for this model.

2.5 Random forest

Random forest is an ensemble learning algorithm,where
results from multiple predictions are averaged to obtain
the final prediction that is more accurate and stable.
When building the random forest, each decision tree
is trained parallelly, so there is no interaction between
them,26–28 and bagging is used to construct each tree,
where a randomly chosen subset of features and train-
ing data are used. This nonparametric model was
selected because it does not rely on any distributional
assumptions, handles large numbers of input variables
and imbalanced data well, reduces overfitting by bag-
ging, and reduces correlation between different trees by
the random sampling of coefficients at each node. Ran-
dom forest’s feature importance, discussed in Section

3, provides information on how important each of the
features is in making the predictions.

Random forest’s hyperparameters control the struc-
ture of each decision tree, the forest, and its level of
randomness.29 Maximum depth is the number of nodes
that is allowed from the root to the farthest leaf in the
tree, maximum features are the maximum number of
features considered for splitting a node, minimum sam-
ple of splits is the minimum number of data points
allowed in a node before splitting the node, and mini-
mum samples of leaf are the minimum number of data
points allowed in a leaf node. Hyperparameter tuning
was done with sixfold cross-validation, and the hyper-
parameter values examined were the following: number
of trees: [50, 100, 150, 200], maximum depth: [15, 20, 25,
30], maximum features: [none, auto], minimum sample
of splits: [4, 6, 8, 10], and minimum samples of leaf: [4,
6, 8, 10]. The final values selected were the number of
trees = 200,maximum depth = 30,maximum features =
none, minimum sample of splits = 8, and minimum
samples of leaf = 4.

2.6 XGBoost

XGBoost is a gradient-boosted regression tree algo-
rithm that applies the principles of gradient descent and
gradient boosting. Gradient descent is an optimization
algorithm that is used to minimize the cost function,
which measures how close the predictions are to the
true values. Gradient descent runs the model with initial
weights, and then updates the weights through sev-
eral iterations, thus minimizing the cost function. The
model’s weights affect how close the predictions are
to the true values. The trees are built sequentially, so
each tree learns from and reduces the errors made by
the previous trees. XGBoost was selected because this
algorithm is an ensemble of weak learners combined to
produce a single strong learner,30 which is an advantage
of XGBoost.XGBoost’s feature importance,discussed in
Section 3, provides information on how important each
of the features is in making the predictions.

The learning rate controls the rate at which the model
learns from the patterns in the data.After a tree is added
to the model, the learning rate shrinks the weights to
make the model more robust and conservative. Shrink-
age reduces the influence of the individual tree and
allows for future trees to improve the model. Although
controlling for the learning rate can improve the accu-
racy of the prediction, it can also increase the time for
training the model.The minimum child weight is the min-
imum weight that is required before creating a new node
in the tree.Hyperparameter tuning was done with sixfold
cross-validation, and the hyperparameter values exam-
ined were the following: learning rate: [0.10, 0.15, 0.20,
0.25, 0.30], maximum depth: [10, 15, 20, 25, 30], and
minimum child weight: [2, 4, 6, 8, 10]. The final values
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F IGURE 1 Methodology for developing the machine learning models

were learning rate = 0.20, maximum depth = 20, and
minimum child weight = 10.

2.7 Artificial neural network

ANN imitates the biological neural network of the brain
and processes information the way the brain does. The
neuron is the basic structure of the ANN, and the inputs
to a neuron are weighted by first multiplying the input
value by individual weight. These weighted inputs and
biases are summed and passed through an activation
function, which processes this information and passes it
via the output.ANN consists of input,hidden,and output
layers. Between the input and output layers, are sev-
eral hidden layers. The neurons in the hidden layers are
interconnected and receive information from all the neu-
rons in the layer above them.31 The number of hidden
layers, the number of neurons in each layer, and the
activation function for each layer are modified to tune
the ANN model. Several studies have studied neural
networks for predicting MLC errors5 and for detecting
errors in patient-specific QA for VMAT32 and IMRT.33

The accuracy of the ANN developed by Osman et al.5 for
predicting MLC positional errors for IMRT delivered on
Varian linac has led us to study the accuracy of ANN in
predicting the positional deviations for VMAT delivered
on Elekta linac.

The activation function of each layer impacts the per-
formance of the neural network by determining how
the sum of the weighted inputs is transformed into an
output of a node in a layer. While building the model, dif-
ferent combinations of activation function, the number
of hidden layers, and the number of neurons in each
layer were tested. Sixfold cross-validation was done to
tune the model. The ANN was trained with 100 epochs
and the Adam optimizer. During training, several differ-
ent epoch values (50, 75, 100, 125, 150) were examined
and the model performance was evaluated using MAE.
For more than 100 epochs, the MAE on the validation
set began increasing. As the model began converging
at 100 epochs, the ANN model was trained with 100

epochs. The input layer consists of seven neurons and
the ReLU activation function. All 4 hidden layers consist
of 28 neurons, but the first 3 layers have the ReLU acti-
vation function, and the last layer has a linear activation
function. The output layer consists of one neuron and
the linear activation function. The features were scaled
for this model.

2.8 Model training, validation, and
testing

The models were developed in Python version 3.8.8.The
scikit-learn was used to build the linear regression, sup-
port vector machine, random forest, and XGBoost, and
the TensorFlow was used to build the ANN. Figure 1
shows the methodology for building the models. For
each of the algorithms in this study, an individual model
for each leaf was built to predict the delivered posi-
tions for that leaf. For training, log files from 56 VMAT
plans were used.The planned parameters and the deliv-
ered leaf positions were extracted from the log files,and
the planned parameters were used as the model input
and the delivered leaf position was the model target.
To validate and tune the model’s hyperparameters, six-
fold cross-validation was performed, where the training
data is split into six different sets. Five of the sets are
used to train the model, and the remaining set is used
to validate the model’s performance using MAE, RMSE,
and the coefficient of determination R2. This process is
repeated six times so that the model is validated on each
set. The MAE, RMSE, and R2 achieved on the six vali-
dation sets were averaged to obtain a final result. The
hyperparameters that gave the best results on the vali-
dation set were used as the final model.The remaining
log files from the 24 VMAT plans were used to test the
final model. The performances of the models on all the
MLC leaves were evaluated using the Kruskal–Wallis
test and the post hoc Dunn test. Essentially, the trained
models can predict what the delivered MLC positions
will be in VMAT plans before the treatment delivery by
inputting the planned parameters.
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F IGURE 2 Multileaf collimator (MLC) deviations between the delivered and (a) planned positions and deviations between the delivered and
predicted positions of the (b) linear regression, (c) support vector, (d) random forest, (e) extreme gradient boosting (XGBoost), and (f) artificial
neural network (ANN) models

3 RESULTS

3.1 MLC leaf positional deviations

The positional deviations of 16 MLC leaves from X1
bank from one test plan are shown in the boxplots
in Figure 2. These leaves were chosen to show how
the positional deviations vary throughout all the leaves
in the X1 bank. From Figure 2a, the positional errors

(delivered–planned) are higher for the middle leaves,
as the leaves in the middle of the field undergo more
motion, where they might be required to travel larger
distances at a faster speed during treatment than the
leaves in the field edge. The leaves in the field edge
are usually stationary or undergo less motion than the
leaves in the field center. Therefore, more deviations in
the leaf positions are seen for the leaves in the field
center.



SIVABHASKAR ET AL. 7 of 12

TABLE 2 Model performance in predicting delivered leaf position on the training, validation, and testing datasets

Training Validation Testing

Model
MAE
(mm)

RMSE
(mm) R2

MAE
(mm)

RMSE
(mm) R2

MAE
(mm)

SD
(mm)

RMSE
(mm)

SD
(mm) R2 SD

Linear regression 0.188 0.307 0.999 0.192 0.310 0.995 0.158 0.054 0.225 0.068 0.916 0.096

Support vector 0.214 0.337 0.999 0.222 0.376 0.995 0.141 0.048 0.199 0.065 0.928 0.097

Random forest 0.111 0.204 0.999 0.250 0.716 0.992 0.161 0.050 0.229 0.069 0.926 0.096

XGBoost 0.072 0.117 0.999 0.272 0.761 0.989 0.185 0.062 0.273 0.107 0.906 0.126

ANN 0.224 0.351 0.999 0.241 0.459 0.996 0.361 0.240 0.521 0.351 0.914 0.096

Note: For the testing dataset, the average mean absolute error (MAE), root mean square error (RMSE), R2, achieved by the models across all plans in the testing
dataset, along with the standard deviation (SD) are reported.
Abbreviations: ANN, artificial neural network; MAE, mean absolute error; RMSE, root mean square error; SD, standard deviation; XGBoost, extreme gradient boosting.

TABLE 3 Results of post hoc Dunn test for the mean absolute error (MAE) and root mean square error (RMSE)

Comparison MAE RMSE
Model 1 Model 2 Z-Test statistic p-Value Z-Test statistic p-Value

ANN Linear regression 3.126 0.016* 3.025 0.022*

ANN Support vector 4.121 3.765 × 10−4*** 4.152 3.290 × 10−4***

ANN Random forest 3.029 0.020* 2.914 0.029*

ANN XGBoost 1.884 0.358 1.716 0.517

Linear regression Random forest −0.097 0.922 −0.111 0.912

Linear regression Support vector 0.995 0.639 1.128 0.519

Linear regression XGBoost −1.243 1.000 −1.309 0.953

Random forest Support vector 1.092 0.824 1.238 0.863

Random forest XGBoost −1.145 1.000 −1.198 0.692

Support vector XGBoost −2.238 0.177 −2.437 0.104

Abbreviations: ANN, artificial neural network; MAE, mean absolute error; RMSE, root mean square error; XGBoost, extreme gradient boosting.
*p < 0.05; **p < 0.01; ***p < 0.001.

The boxplots in Figure 2b–f show the errors
(delivered–predicted) of the linear regression, support
vector machine, random forest, XGBoost, and ANN,
respectively. Linear regression’s (Figure 2b) and sup-
port vector machine’s (Figure 2c) magnitude of errors
are much lower for the central leaves when compared
to the magnitude of errors from Figure 2a. The errors
from the models are either comparable or slightly higher
for the outer leaves.Random forest (Figure 2d),XGBoost
(Figure 2e), and ANN (Figure 2f) also show a lower
magnitude of errors than the errors from Figure 2a for
the central leaves, but these errors are relatively higher
than the errors from linear regression and support
vector machine. However, the errors from the models
are either comparable or slightly higher for the outer
leaves.

3.2 Model performance

The MAE, RMSE, and R2 values for the training, val-
idation, and testing datasets along with the standard
deviations in the errors achieved by the five models on
the VMAT plans from the testing dataset are shown

in Table 2. To see if there are statistically significant
differences in the MAE and RMSE achieved by the
models, the nonparametric Kruskal–Wallis test was per-
formed. The Kruskal–Wallis test was chosen instead
of the ANOVA, because the errors were non-normal.
Results from the Kruskal–Wallis test indicate that there
is a significant difference in the MAE (p = 5.428 × 10−4)
and the RMSE (p = 5.243 × 10−4) achieved by the mod-
els. This shows that at least one of the model’s MAE
and RMSE are statistically different from the others. To
see which model is statistically different from the others,
the post hoc nonparametric pairwise comparison of the
models using the Dunn test was performed. The result
of the post hoc Dunn test on the MAE and RMSE is
shown in Table 3.A pairwise comparison of ANN’s MAE
and RMSE shows statistically significant difference in
the MAEs and RMSEs achieved by linear regression
(p = 0.016, p = 0.022), support vector (p = 3.765 ×

10−4, p = 3.290 × 10−4), and random forest (p = 0.020,
p = 0.029). ANN’s MAE and RMSE are not significantly
different from XGBoost’s MAE (p = 0.358) and RMSE
(p = 0.517). The remaining pairwise comparisons of
the MAE achieved by the models show nonsignificant
differences.
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F IGURE 3 Fitted-line plots showing the relationship between the delivered and predicted positions for a single volumetric modulated arc
therapy (VMAT) plan from the testing data set for (a) linear regression, (b) support vector, (c) random forest, (d) extreme gradient boosting
(XGBoost), and (e) artificial neural network (ANN)

3.3 Fitted line plots

The fitted line plots in Figure 3a–e show the rela-
tionship between the predicted and delivered leaf
positions during testing of the linear regression, sup-
port vector machine, random forest, XGBoost, and
ANN, respectively. The dashed line denotes a per-
fect agreement between the predicted and delivered
positions. Ideally, the points should be close to the

dashed line. All five models show a good fit between
the delivered and predicted MLC leaf positions during
testing.

3.4 Linear regression coefficients

The regression coefficients represent the mean change
in the dependent variable when the independent
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TABLE 4 Linear regression coefficients and p-values for each
feature

Feature Regression coefficient p-Value

Gravity vector −2.49 × 10−3 0.393

X1 jaw position −3.57 × 10−4 0.009**

X2 jaw position 6.817 × 10−4 0.002**

Leaf gap −7.246 × 10−6 0.029*

Leaf position 0.998 <2.00 × 10−16***

Leaf velocity −2.417 × 10−4 5.510 × 10−5***

Leaf acceleration 1.891 × 10−4
<2.00 × 10−16***

*p < 0.05; **p < 0.01; ***p < 0.001.

variable is given a one-unit shift. The magnitude of
the coefficient indicates the size of impact the inde-
pendent variable has on the independent variable,
and the significance of the variable is determined
by the p-value. The significance of the indepen-
dent variable was evaluated with a significance level
of 0.05.

The regression coefficients and the p-values for each
feature are shown in Table 4. The significant features
are the leaf position (p < 2.00 × 10−16), leaf veloc-
ity (p = 5.510 × 10−5), leaf acceleration (p < 2.00 ×

10−16), X1 jaw position (p = 0.009), X2 jaw positions
(p = 0.002), and leaf gap (p = 0.029). This implies
that any changes in these features are associated with
changes in the delivered positions. The gravity vector
has the least significance (p = 0.393), meaning any
change in this feature is not associated with changes
in the delivered leaf positions.

To ensure that the results from the linear regres-
sion analysis are reliable, multicollinearity must not
exist in the data. Multicollinearity is when the inde-
pendent variables are correlated to each other. As
regression coefficients denote the mean change in
the dependent variable for each unit change in the
independent variable, although the other independent
variables are held constant, if two variables are corre-
lated, a change in one variable leads to a change in
the other variable. Therefore, this can be problematic
when fitting the model and interpreting the regression
coefficients. Multicollinearity was checked by computing
the correlation matrix and the variance inflation factor
(VIF).

VIF estimates of how much the regression coef-
ficient’s variance is inflated due to the presence of
multicollinearity in the regression model. A VIF of 1
means there is no correlation, a VIF between 1 and 5
means there is moderate correlation, and a VIF greater
than 5 means there is high correlation.The VIFs of each
feature were below the threshold value of 5, so there
is no multicollinearity. The strongest correlation is seen
between X1 jaw position and leaf gap, with a coefficient
of 0.41, which is below the threshold of 0.70 for multi-

F IGURE 4 Feature importance of (a) random forest and (b)
extreme gradient boosting (XGBoost) models

collinearity. Therefore, multicollinearity does not exist in
the data.

3.5 Random forest and XGBoost
feature importance

Shown in Figure 4 are the log-transformed feature
importance of the random forest (Figure 4a) and
XGBoost (Figure 4b). Permutation feature importance
is the decrease in the model score when a single
feature is randomly shuffled.25 In permutation fea-
ture importance, the relationship between a particular
feature and the target variable is broken. There-
fore, a decrease in the model score indicates the
extent to which the model depends on that feature.
The feature importance provides information on which
features should be selected as model inputs to reduce
overfitting. Random forest and XGBoost ranked leaf
position as the most important feature, which matches
the linear regression’s results. Leaf gap was the sec-
ond most important feature in the random forest and
XGBoost models. Both models ranked gravity vector
as the least important feature. The results from linear
regression indicate that gravity vector has less sig-
nificance in predicting the delivered positions, which
matches the feature importance of random forest and
XGBoost.
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3.6 Positional deviations and gamma
passing rates

For the 24 plans from the testing dataset, QA was per-
formed with gamma criteria of 3%/2 mm. The GPRs
ranged from 90.7% to 99.7%. To evaluate the impact
of the leaf positional errors on the GPRs, the cor-
relation between positional errors (planned–delivered)
and GPR was evaluated for the plans. As the average
errors increased, the GPR of the plan decreased. The
result from a Pearson correlation test between the errors
(r = −0.456, p = 0.024) shows a significant correlation
between the errors and GPR at a significance level of
0.05.

To examine the impact of the model prediction errors
on the GPRs, a Pearson correlation test between
prediction errors (planned–predicted) and GPR was per-
formed. Linear regression (r = −0.425, p = 0.039),
support vector (r = −0.415, p = 0.043), and random
forest (r = −0.481,p = 0.020) show a significant correla-
tion between the errors and GPR.As the deviations from
the planned and predicted positions increase, the GPR
decreases. However, XGBoost (r = −0.290, p = 0.228)
and ANN (r = −0.325, p = 0.107) do not show a signifi-
cant correlation between the errors and GPR.Therefore,
the deviations between the planned and predicted posi-
tions by linear regression, support vector, and random
forest seem to be a good indicator of the GPR of a plan.

4 DISCUSSION

Deviations between planned and delivered MLC leaf
positions can lead to significant errors in dose distribu-
tion during IMRT and VMAT. Therefore, accurate MLC
leaf positioning is crucial during these treatments. In this
study, we developed ML-based linear regression, sup-
port vector machine, random forest, XGBoost, and ANN
models for predicting the delivered positions of individ-
ual MLC leaves for VMAT treatments using MLC log files
data from a single institution.Various studies in literature
have reported the impact of MLC positional devia-
tions on the delivered dose distribution. Nithiyanantham
et al.4 reported an MLC positional error of more than
±0.3 mm can have a significant impact on VMAT dose
distribution and an error of ±0.5 mm can cause 3% dose
error.Oliver et al.34 examined MLC errors in VMAT plans
and recommended the errors to be within ±0.6 mm to
keep the target dose accuracy to within ±2%.

The results from this study are compared with the
studies by Carlson et al.12 and Osman et al.,5 which
examined machine and deep learning models for pre-
dicting MLC positional errors on a Varian linac. Carlson
et al.12 reported MAE for the random forest from the
three institutions are 0.124, 0.089, and 0.165 mm, and
their reported RMSE are 0.244, 0.200, and 0.323 mm.
The MAE and RMSE achieved by our random for-

est are comparable to the errors reported by Carlson
et al.12 Their reported MAEs for the linear regres-
sion from the three institutions are 0.134, 0.086, and
0.162 mm, and their reported RMSEs are 0.253, 0.193,
and 0.323 mm from the three institutions. The MAE and
RMSE achieved by our linear regression are compara-
ble to their reported errors. Similarly, our support vector
machine’s and XGBoost’s MAE and RMSE are also
comparable.Osman et al.5 reported MAE and RMSE for
the ANN are 0.006 and 0.0097 mm,respectively,which is
much lower than the errors achieved by our ANN.A pos-
sible reason for our ANN achieving higher errors than
the ANN built by Osman et al.5 is the limited number of
input features used in this study. Osman et al.5 included
more input features and leaf motion parameters that
were not included for training the models in this study,
namely, the leaf ’s current, previous, and next position
and whether the leaf was starting, resting, or acceler-
ating. Another possible reason is the hyperparameters
used for tuning and validating the models. Although our
ANN achieved higher errors than the errors reported by
Osman et al.,5 this is the first study to investigate ML
models for predicting leaf positions of an Elekta MLC
system.

Although our linear regression, support vector
machine, random forest, and XGBoost achieved lower
errors than ANN, when evaluating the models’ predic-
tion errors with the GPR, a significant correlation is
seen between the prediction errors of linear regression,
support vector machine, and random forest with the
GPR. The correlation between the GPR and the pre-
diction errors of ANN and XGBoost is nonsignificant.
This shows that the deviations between the planned
and predicted leaf position by linear regression, support
vector, and random forest seem to be a good indication
of a plan’s GPR. The feature importance of random
forest and XGBoost are in agreement with linear regres-
sion results. Random forest and XGBoost ranked leaf
position and leaf gap as the top two important features
and the gravity vector with relatively less importance.
This matches the results from linear regression, which
indicates that the significant features are the leaf posi-
tion, leaf velocity, leaf acceleration, jaw positions, and
leaf gap, whereas the gravity vector had no significance
in predicting the delivered leaf positions.

Due to the complexity of VMAT techniques, many
factors can lead to the introduction of errors during
treatment, thus reducing the accuracy in VMAT deliv-
ery. Several studies have investigated the dosimetric
effects of systematic shifts in MLC leaf positions and
leaf gap on the dose distribution for IMRT35–37 and
VMAT.33,38 Furthermore, a study by Park et al.3 reported
a decrease in VMAT delivery accuracy as the leaf
speed and acceleration increased. To ensure a safe
and accurate delivery of VMAT, patient-specific QA
and dosimetric verification is performed prior to treat-
ment delivery, which is often a time-consuming process.
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Models that can predict what the delivered position of
each individual leaf will be during treatment are advan-
tageous, as they aid in identifying specific leaves that
are deviating from the planned position, and thus lead-
ing to differences in the planned and delivered dose
distribution. With the models from this study, one can
identify individual leaves that are deviating by a large
amount from the planned positions, either due to an
increased leaf travel or other planned parameters that
keep the leaf from reaching the planned position on
time.Knowing this information during the treatment plan-
ning process allows one to correct this by reducing the
complexity of the VMAT plan to improve the plan’s QA
outcome.

The use of MLC log files to evaluate the perfor-
mance of the MLC and to detect positional errors
has increased. However, when performing log file–
based patient-specific QA, it might be necessary to use
an electronic portal imaging device to verify that the
recorded MLC positions in the log files are the actual
delivered MLC positions. This was not a part of this
study, and further investigation is needed to verify this
for the Elekta Agility collimator. A few other limitations
of this study are that only the Elekta Agility MLC sys-
tem was considered, and the log files data used to
build the ML models were obtained retrospectively from
a single institution. Therefore, using data from other
treatment planning systems or different types of MLC
systems, such as Varian, might lead to discrepancies in
the predicted MLC leaf positions.This is mainly because
the MLC control system of each linac differs from one
another based on its design and placement. Another
thing to consider when applying these models for a new
patient is the different sampling times of the DICOM-
RT and the log files. The log files used in this study
have a sampling time of 40 ms, which may not be the
sampling time of the DICOM-RT. Therefore, these differ-
ences in sampling times must be taken into account by
synchronization.12

5 CONCLUSIONS

In this study, we developed ML-based linear regression,
support vector machine, random forest, XGBoost, and
ANN models to predict the delivered positions of indi-
vidual MLC leaves for VMAT treatment delivery using
an Elekta linac. Based on the MAE, RMSE, and fitted
line plots, linear regression and support vector machine
show higher accuracy than random forest,XGBoost,and
ANN models developed in this study. Having an accu-
rate model for predicting the MLC positional deviations
will be a useful tool. It allows the treatment planner to
identify IMRT or VMAT plans that are most likely to fail
QA ahead of time based on the predicted MLC posi-
tional errors, and thus reduce the number of plans that
fail patient-specific QA.
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