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1  | INTRODUCTION

Endometriosis is a common benign gynecological disease charac‐
terized by the presence of functional endometrium‐like tissues at 
extra‐uterine sites. It affects approximately 6%‐10% of females of 
reproductive age.1 It is associated with various clinical symptoms in‐
cluding chronic pelvic pain, dysmenorrhea, and infertility, seriously 
affecting women's health and quality of life.2 Our understanding 
of the etiology of endometriosis includes some established hy‐
potheses, and several regulatory factors are known to support the 

development or maintenance of the disease. However, its exact eti‐
ology remains poorly understood.

It is well accepted that endometriosis is foremost an estrogen‐
dependent disease.3 It is characterized by estrogen‐dependent 
growth and maintenance of ectopic endometrium and by increased 
local estrogen production. Indeed, endometriosis symptoms and 
endometriotic lesions are relieved after menopause in many cases. 
Additionally, the lesions usually contract in a low‐estrogen environ‐
ment such as after treatment with GnRH agonist.4 Accumulating 
evidence has shown that estrogen concentration is elevated in 
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Abstract
Background: It has been well established that endometriosis is an estrogen‐depend‐
ent disease. Although the exact pathogenesis of the disease is still unclear, it is known 
to be characterized by estrogen‐dependent growth and maintenance of the ectopic 
endometrium and increased local estrogen production.
Methods: The authors reviewed studies on local estrogen production and estrogen 
activities mediated by estrogen receptors in endometriotic tissues.
Main findings: Aberrant expression of several enzymes in local endometriotic lesions 
contributed to the production and metabolism of estrogens. Aromatase was one of 
the key therapeutic targets for the regulation of local estrogen formation. Our find‐
ings suggest that PGC‐1a, a transcriptional coactivator‐modulating steroid hormone, 
regulates aromatase expression and activity. Estrogen activities mediated by differ‐
ent types of estrogen receptors abnormally elevated in local tissues could also be 
involved in the development of endometriosis. The authors demonstrated that the 
isoflavone aglycone, a partial agonist of the estrogen receptor, suppressed the forma‐
tion of endometriotic lesions.
Conclusions: Local estrogen production and estrogen activity mediated by estrogen 
receptors are important potential therapeutic targets for endometriosis.
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endometriotic lesions, although serum estrogen levels are not ele‐
vated in women with endometriosis.5‐8 Notably, the biological ef‐
fects of estrogens are mediated by the estrogen receptors (ERs). 
Estrogen responsiveness depends on the balance of ER expression, 
distribution, and ER protein function, which are different between 
endometriotic tissues and normal endometrium, contributing to the 
pathological characteristics of endometriosis.9 Thus, previous stud‐
ies suggest the existence of a proliferative signaling mechanism in 
endometriotic tissues mediated by the estrogen‐estrogen receptors 
axis.10 Here, we provide current insight into the biological process of 
estrogen‐mediated signaling in endometriosis and into the develop‐
ment of therapeutic strategies targeting local estrogen formation.

2  | EXPRESSION OF ENZYMES INVOLVED 
IN LOCAL ESTROGEN FORMATION IN 
ENDOMETRIOSIS

Recently, in situ estrogen synthesis and metabolism have been con‐
sidered to play an important role in the development and progres‐
sion of the estrogen‐dependent disease.11,12 Estrogen is one of the 
steroid hormones synthesized from cholesterol (Figure 1). Two of 
the most important enzymes involved in the process of estrogen 
biosynthesis	are	steroidogenic	acute	regulatory	protein	 (StAR)	and	
aromatase.	StAR	is	expressed	in	adrenal	glands	and	gonads.	Its	ex‐
pression	is	stimulated	initially	by	follicle‐stimulating	hormone	(FSH)	
and luteinizing hormone (LH) secreted from the pituitary. The func‐
tion	of	StAR	in	the	regulation	of	steroidogenesis	involves	introducing	
the entry of cholesterol for estrogen production.13 Previous studies 

showed	 that	StAR	 is	highly	expressed	at	 the	 levels	of	protein	and	
mRNA in peritoneal endometriosis and endometriotic stromal cells, 
compared with normal endometrium.14,15 Treatment with prosta‐
glandin E2 (PGE2)	significantly	increased	StAR	expression	in	human	
endometriotic stromal cells. This response could be mediated via 
phosphorylation	of	cAMP	response	element	binding	protein	(CREB)	
and	binding	of	CCAAT/enhancer‐binding	protein	(C/EBP)	to	a	cis‐el‐
ement	of	the	StAR	promoter.16,17	Thus,	aberrant	expression	of	StAR	
in endometriotic stromal cells plays a critical role in the development 
of endometriosis.

Aromatase is the enzyme converting testosterone and an‐
drostenedione to estradiol (E2) and estrone (E1), respectively. 
Aromatase is expressed in a number of human tissues and cells, such 
as ovarian granulosa cells, adipose tissue, skin fibroblasts, placental 
trophoblasts, osteoblasts, and brain. In women of reproductive age, 
aromatase is most potently and periodically secreted by the ovary. 
Ovarian granulosa cells express high levels of aromatase under the 
influence	of	FSH.18 In contrast, in postmenopausal women, estrogen 
formation takes place in extra‐glandular sites such as adipose tissue 
and skin.19 The main substrate of aromatase in adipose and skin tis‐
sues is androstenedione secreted from adrenal tissues.

Interestingly, previous evidence demonstrates that aromatase 
is highly expressed in endometriosis.5‐8,20 Aromatase was detected 
in endometriotic implants in much larger amounts than in eutopic 
endometrium, although it was not detected in normal endometrium 
from disease‐free women. Our group showed that local estrogen 
production by aberrantly elevated aromatase takes place in endo‐
metriosis and adenomyosis, but not in normal endometrium using 
immunohistochemical analysis.5 Conversely, some studies have 
shown an absence of aromatase activity in endometriotic samples. 
This discrepancy may be caused by a difference in specificity of 
antibodies used or differences between biopsy specimens inves‐
tigated. Recently, Huhtinen et al showed that intratissue estrogen 
concentrations in ovarian endometriotic lesions were much higher 
than those in normal endometrium, peritoneal, and deep endome‐
triosis.8 The group also showed that the mRNA level of aromatase 
was significantly more abundant in the proliferative/secretory men‐
strual phase of ovarian endometrioma and in the proliferative phase 
of deep endometriosis.8 These findings suggest that aromatase plays 
a critical role in local estrogen production, especially in ovarian en‐
dometriosis, and indicate the existence of autocrine and paracrine 
sources of estrogens in local lesions.

A prominent influence on these processes is the 17β‐hydrox‐
ysteroid	dehydrogenase	(HSD17β) enzyme family. These enzymes 
are involved in the formation of biologically active steroid hor‐
mones, including testosterone, estrone (E1), and estradiol (E2). 
They function by catalyzing the reversible interconversion of E1 
and	E2.	Specifically,	HSD17β	type	1	(HSD17β1) catalyzes the 17β‐
reduction	of	biologically	 inactive	E1	 to	E2,	while	HSD17β2 pref‐
erentially catalyzes the oxidation of E2 to E1. In endometriotic 
tissues,	 HSD17β1 expression and enzyme activity are increased 
compared with those in normal endometrium without endo‐
metriosis.21,22	Our	 recent	 study	 showed	 that	HSD17β1 is highly F I G U R E  1  Biosynthesis	and	metabolism	of	estrogens
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expressed at mRNA and protein levels in endometriotic tissues, 
including deep infiltrating endometriosis (DIE) lesions, than in 
normal	endometrium.	We	also	showed	that	progesterone	therapy	
significantly	 suppressed	 the	 catalytic	 activity	 of	HSD17β1 ovar‐
ian endometrial stromal cells.23 In contrast, evidence regarding 
the	expression	and	enzyme	activity	of	HSD17β2 in endometriotic 
tissues	is	inconsistent.	Some	studies	demonstrated	that	HSD17β2 
expression is decreased in endometriotic tissues including eutopic 
and ectopic endometrium, resulting in the inactivation of E2. In 
contrast, our group reported that the expression in secretary 
endometrium was increased with endometriosis.24 Other inves‐
tigators also showed that there were no observable differences 
in	the	expression	of	HSD17β2 between normal endometrium and 
endometriosis.25

The major source of estrogens is estrone sulfate, an inactivate 
conjugate form abundant in the peripheral tissues such as circulating 
serum. Estrogen sulfate is de‐sulfated to estrone, an active form, by 
steroid	sulfatase	(STS),	and	estrone	is	inactivated	by	estrogen	sulfo‐
transferase	(EST).22,26	STS	is	highly	expressed	in	the	endometriotic	
tissues and has been shown to correlate with disease severity.27	EST	
is highly expressed in ovarian endometrioma, though its expression 
is not detectable in normal and eutopic endometrium. Thus, these 
findings indicate how the aberrant expression of these enzymes in 
endometriosis contributes to local production and metabolism of 
estrogens.

3  | AROMATASE REGULATION IN 
ENDOMETRIOSIS

The human aromatase gene is tissue‐specifically regulated through 
the alternative use of multiple untranslated isoforms of its exon I (I.1, 
I.2, I.3, I.4, I.5, I.6, I.7, and PII). Various exon I‐containing mRNAs are 
present at different levels in different aromatase‐expressing tissues. 
For example, exon I.I transcripts, located most distally upstream 
from the coding region, were found to be elevated in placental tis‐
sue.28 The major exons in breast cancer specimens are I.3 and PII.29 
In contrast, normal breast adipose tissues show very low levels of 
exons/promoters I.3 and II, and a low level of exon/promoter I.4.30 
These findings suggest different aromatase expression regulatory 
mechanisms between normal breast adipose and cancer tissues.

In endometriotic tissues, our group and other investigators 
demonstrated that the promoters corresponding to exons I.3 and PII 
are the gene's main promoters.31,32 Prostaglandin E2 (PGE2) stimu‐
lates aromatase expression in endometriotic stromal cells.33 PGE2 
formation is then caused by the enzyme activity of cyclooxygenase 
type 2 (COX‐2) in endometriotic stromal cells.34 Notably, estrogen‐
mediated induction of various cytokines in cells has been directly 
linked to the hormone and the promotion of inflammation.35 The 
inflammatory cytokines, including interleukin (IL)‐6 and IL‐8, acti‐
vate pro‐survival signaling pathways.36 PGE2 also enhances the ex‐
pression	of	StAR	in	endometriotic	stromal	cells	as	described	above.	
These findings suggest the existence of a feed‐forward mechanism 

among estrogen production, PGE2, and cytokines promoting the 
persistence of endometriotic lesions37 (Figure 2).

A	 previous	 report	 showed	 that	 steroidogenic	 factor‐1	 (SF‐1)	
binds to the nuclear receptor half‐site upstream of the aromatase 
promoter II to regulate aromatase expression.32 Conversely, chicken 
ovalbumin upstream promoter‐transcription factor (COUP‐TF) inhib‐
its	aromatase	expression	(Figure	3).	SF‐1	is	expressed	in	endometri‐
osis but not in normal eutopic endometrial cells, while COUP‐TF is 
expressed in both normal and eutopic endometrium. In aromatase 
promoter	 II,	SF‐1	competes	for	the	same	binding	site	as	COUP‐TF.	
Additionally, evidence has shown that various types of transcrip‐
tional	 factors,	 including	 CCAAT/enhancer‐binding	 protein	 (C/EBP)
α	C/EBPβ	Wilms’	tumor‐1	(WT‐1),	DAX‐1,	and	liver	receptor	homo‐
log‐1 (LRH‐1),6 could be involved in the regulatory expression of aro‐
matase.	WT‐1	acts	as	a	corepressor	of	SF‐1	at	the	nuclear	half‐site	
of	aromatase	promoters	I.3	and	II.	C/EBP	α	and	C/EBPβ bind to the 
cAMP	 response	 element	 between	 aromatase	 PI.3	 and	 II.	 C/EBPα 
functions	as	an	enhancer,	and	in	contrast,	C/EBPβ inhibits aromatase 
expression.6	C/EBPβ is expressed at a lower level in endometriosis 

F I G U R E  2   The feedback mechanism of local estrogen 
production during endometriosis through estrogen receptors

F I G U R E  3   A schematic diagram of positive and negative 
transcriptional regulation of aromatase expression in endometriotic 
tissue
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but	not	in	eutopic	endometrium.	DAX‐1	regulates	SF‐1	transcription	
in	a	dominant‐negative	manner	and	inhibits	SF‐1‐dependent	expres‐
sion of aromatase in endometriosis.38,39 Thus, these findings suggest 
that transcription factors play important roles in the regulatory ex‐
pression of aromatase in endometriotic tissues and eutopic/normal 
endometrium.

Another important factor is PGC‐1α, a multifunctional coactiva‐
tor that interacts with various nuclear receptors to regulate genes 
in multiple biological responses including oxidative metabolism, mi‐
tochondrial biogenesis, adaptive thermogenesis, and steroidogene‐
sis.40,41 For example, in brown adipose tissue, PGC‐1α cooperates 
with peroxisome proliferator‐activated receptor gamma (PPARγ) 
to stimulate adipocyte differentiation.42 In addition, PGC‐1α pro‐
motes progesterone production in ovarian granulosa cells as a co‐
activator	of	SF‐1	and	LRH‐1.41 It has also been shown that PGC‐1α 
downregulates the expression of insulin‐sensitive glucose trans‐
porter type 4, and is involved in glucose uptake, in skeletal mus‐
cle cells.43 Thus, PGC‐1α is differentially expressed in different 
tissues and functions as a coactivator interacting with tissue‐spe‐
cific transcription factors. Our group previously showed that ab‐
errantly elevated expression of PGC‐1α in ovarian endometrioma 
was correlated with the localization of aromatase in the endome‐
triotic tissues. PGC‐1α elevated aromatase expression at the mRNA 
level	 in	 ovarian	 endometriotic	 stromal	 cells	 (OESCs)	 through	 the	
usage of aromatase promoter I.3/II.31 Endogenous PGC‐1α bound 
to	the	nuclear	receptor	half‐site	5′‐AGGTCA‐3′	was	recruited	by	a	
chromatin immunoprecipitation assay. It is also notable that TNF‐α 
produced by peritoneal macrophage and endometriotic tissue can 
stimulate PGC‐1α	in	OESCs.	It	is	clear	that	a	full	understanding	of	
the regulation of aromatase in endometriosis will require further 
investigation.

4  | ESTROGEN RECEPTORS IN 
ENDOMETRIOSIS

Estrogens promote physiological activities after binding to the ster‐
oid receptor estrogen receptor (ER) subtypes, ERα and Erβ. These 
receptors exhibit tissue‐specific expression. ERα is highly expressed 
in bone, kidney, liver, mammary glands, and reproductive organs, 
whereas ERβ is expressed in the prostate, ovary, bladder, uterus, 
and central nervous system.44 The estrogen response occurs after 
binding of ERs to estrogen‐responsive elements (EREs) followed by 
the nuclear activation complex for the transcription of each target 
gene. Estrogen can also exert its effects through nongenomic signal‐
ing via cell membrane ERs. GPER (a seven‐pass transmembrane G 
protein‐coupled estrogen receptor) has been identified as a novel 
receptor with binding ability to E2 in cell membranes and endo‐
plasmic reticulum.45 The response is regulated by downstream mol‐
ecules	including	the	phosphatidylinositol	3‐kinase	(PI3K)	and	MEK/
ERK	mitogen‐activated	protein	kinase	(MAPK)	pathways.46 Here, we 
review the expression and significance of each estrogen receptor in 
endometriosis.

4.1 | Estrogen receptors (ERα and ERβ) in 
endometriosis

In the normal endometrium, expression of ERα is significantly higher 
than that of ERβ. The main activity of ERα is thought to be to pro‐
mote cell proliferation.47 On the other hand, in endometriosis, ex‐
pression of ERα is attenuated compared with normal endometrium, 
and in contrast, ERβ is upregulated.25,48,49 Although the detailed 
mechanisms of the attenuation of ERα and the increase in ERβ re‐
main unclear, previous studies showed hypomethylation of the ERβ 
promoter could be associated with upregulation of protein level in 
endometriotic tissues.49	Maekawa	et	al	reported	the	aberrant	DNA	
methylation of tissue‐dependent and differentially methylated re‐
gion	 (T‐DMR)	 in	ERα contributes to its impaired expression in the 
ovarian endometrioma.50,51 On the other hand, in contrast to a 
previous report, they concluded DNA methylation is not involved 
in the upregulation of ERβ in endometriosis.50 Interestingly, other 
investigators showed that ERβ downregulates ERα expression in the 
stromal cells from ovarian endometrioma.52 Importantly, a loss‐of‐
function experiment using siRNA showed that ERβ inhibited prolif‐
eration of endometrial stromal cells. This indicates that, in addition 
to ERα ERβ plays a critical role in the development of endometrio‐
sis. Furthermore, a recent study demonstrated that ectopic prolif‐
eration, survival, and inflammatory activity of endometriotic tissues 
were mediated by ERβ.53 The potential of ERβ as a therapeutic target 
in endometriosis has been recognized. One study showed that a se‐
lective ERβ agonist achieved lesion size regression in a mouse model 
of endometriosis.54

Isoflavones, a subgroup of the phytoestrogens found in soy‐
beans, exert estrogen‐like activity. They have similarities in struc‐
ture with E2, but exert anti‐estrogenic effects in reproductive‐age 
women with high estrogen levels.55 There have been a few studies 
to investigate the effect of isoflavones on endometriosis. Treatment 
by two flavonoids, puerarin and parthenolide, inhibited prolifera‐
tion of human endometriotic stromal cells.56,57 Other investigators 
showed that genistein caused regression of an endometriotic im‐
plant in a rat model.58 Our group recently demonstrated that daid‐
zein‐rich isoflavone aglycones (DRIAs) inhibited the proliferation of 
OESCs	at	clinically	feasible	concentrations59 (Figure 4). Additionally, 
DRIAs suppressed the formation of endometriosis‐like lesions in a 
mouse model.59 Clinical trials will be carried out to clarify the effect 
of DRIAs in patients with endometriosis.

We	noticed	 that	 isoflavone	 is	 a	partial	 agonist	of	 the	estrogen	
receptor, and DRIA supplement suppresses inflammatory cyto‐
kines and aromatase expression/enzyme activity in endometriosis. 
Furthermore, when an endometriosis model mouse was given DRIA, 
cyst formation decreased.59

4.2 | GPER

GPER mediates the balance between nongenomic rapid cell signal‐
ing mechanisms and genomic slow transcriptional activity in the 
response to estrogens. GPER is expressed in most tissues, for 
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example, heart, brain, placenta, and liver. GPER is also located not 
only in the cell membrane but also in the surface membrane of 
intracellular organelles including endoplasmic reticulum and the 
Golgi apparatus. It stimulates the phosphatidylinositol 3‐kinase 
(PI3K)	 and	 MEK/ERK	 mitogen‐activated	 protein	 kinase	 (MAPK)	
pathways. Although there have been few previous studies on 
GPER in endometriosis, evidence has shown that it is expressed 
relatively highly in endometriotic tissues compared with normal 
endometrium 60 and in the endometrium of patients with endo‐
metriosis compared with healthy women.61 Furthermore, the 
aberrant expression of GPER in estrogen‐dependent diseases sug‐
gests its potential involvement in the pathogenesis of endometrio‐
sis.62‐64 To further understand the mechanism of GPER activity in 
endometriosis, we conducted experiments using the GPER agonist 
G‐1.	We	found	that	G‐1	inhibited	proliferation	in	a	dose‐depend‐
ent	 manner	 and	 caused	 G2/M	 cell	 cycle	 arrest	 of	 endometrial	
stromal cells, leading to induction of caspase‐3–dependent apop‐
tosis.65 Interestingly, these inhibitory effects might unexpectedly 
be caused independently of GPER.65 Although our findings imply 
that G‐1 might be applicable as a therapeutic drug for endome‐
triosis, further careful investigation to understand the functional 
mechanism of GPER will be needed.

5  | CONCLUSIONS

Although the pathogenesis of endometriosis remains unclear, it is 
apparent from previous basic studies and clinical evidence that it 
is an estrogen‐dependent disease. However, the disease cannot be 
explained by simple proliferative activity mediated by the classical 
estrogen receptor. In addition to the expression of several estro‐
gen receptors, the activities mediated by numerous regulatory fac‐
tors could play important roles in disease development by forming 
a complicated network. Nonetheless, it still appears that the most 
important target factors for treatment and future research are local 

estrogen production in endometriotic tissues and estrogen activities 
via the estrogen receptors. Further investigation of these is required.
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