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In the present work, we investigated the accuracy of the electron pencil-beam re-

definition algorithm (PBRA) in calculating central-axis percent depth dose in water

for rectangular fields. The PBRA energy correction factor C(E) was determined so

that PBRA-calculated percent depth dose best matched the percent depth dose

measured in water. The hypothesis tested was that a method can be implemented

into the PBRA that will enable the algorithm to calculate central-axis percent depth

dose in water at a 100-cm source-to-surface distance (SSD) with an accuracy of

2% or 1-mm distance to agreement for rectangular field sizes ≥2×2 cm. Prelimi-

nary investigations showed that C(E), determined using a single percent depth

dose for a large field (that is, having side-scatter equilibrium), was insufficient for

the PBRA to accurately calculate percent depth dose for all square fields ≥2×2 cm.

Therefore, two alternative methods for determining C(E) were investigated. In

Method 1, C(E), modeled as a polynomial in energy, was determined by fitting the

PBRA calculations to individual rectangular-field percent depth doses. In Method

2, C(E) for square fields, described by a polynomial in both energy and side of

square W [that is, C = C(E,W)], was determined by fitting the PBRA calculations

to measured percent depth dose for a small number of square fields. Using the

function C(E,W), C(E) for other square fields was determined, and C(E) for rect-

angular field sizes was determined using the geometric mean of C(E) for the two

measured square fields of the dimension of the rectangle (square root method).

Using both methods, PBRA calculations were evaluated by comparison with mea-

sured square-field and derived rectangular-field percent depth doses at 100-cm

SSD for the Siemens Primus radiotherapy accelerator equipped with a 25×25-cm

applicator at 10 MeV and 15 MeV. To improve the fit of C(E) and C(E,W) to the

electron component of percent depth dose, it was necessary to modify the PBRA’s

photon depth dose model to include dose buildup. Results showed that, using both

methods, the PBRA was able to predict percent depth dose within criteria for all

square and rectangular fields. Results showed that second- or third-order polyno-

mials in energy (Methods 1 and 2) and in field size (Method 2) were typically

required. Although the time for dose calculation using Method 1 is approximately

twice that using Method 2, we recommend that Method 1 be used for clinical

implementation of the PBRA because it is more accurate (most measured depth

doses predicted within approximately 1%) and simpler to implement.
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I. INTRODUCTION

One of the practical goals for an electron-beam dose algorithm is that the algorithm be able to

calculate dose delivered to the patient with an accuracy of 4% in low dose gradient regions or

2 mm distance to agreement (DTA) in high dose gradient regions.(1) Boyd et al.(2) showed that,

with the inclusion of an incident energy spectrum, the pencil-beam redefinition algorithm

(PBRA) of Shiu and Hogstrom(3) could meet this standard in water at a 100-cm source-to-

surface distance (SSD) on a Varian Clinac 2100C (Varian Medical Systems, Palo Alto, CA).

Boyd et al.(4) also showed that the addition of a dual-source model to account for collimation-

scattered electrons allowed the PBRA to meet this standard in water at 100-cm and 110-cm

SSDs for selected energy-applicator combinations on a Varian Clinac 1800. Furthermore, Boyd

et al.(5) and Boyd(6) showed that, in heterogeneous phantoms and in patients, dose differences

exceeded these criteria only over very small volumes. However, radiation oncologists at MD

Anderson Cancer Center believe that the dose inaccuracies encountered should not affect treat-

ment-planning decisions or patient outcomes.

To date, all investigations into the accuracy of the PBRA have been performed using

open-applicator electron beams. Before any electron-dose algorithm—in this case the PBRA—

can be judged acceptable for clinical implementation, the accuracy of calculated dose to

water for all applicator, insert, and SSD combinations should be demonstrated for each beam

energy commissioned.

The PBRA expresses calculated dose as a percentage of the central-axis dose maximum in

water for the beam of interest (specified by energy, SSD, and reference rectangular field size).

The PBRA dose is calculated assuming perfect collimation—that is, all electrons stop in the

insert (no scatter off the aperture edges), and the bremsstrahlung dose is not altered. In the

patient, the PBRA does not model large-angle scattering of primary electrons nor large energy-

loss processes (delta-ray production and bremsstrahlung). The PBRA compensates for these

and other processes that are not modeled first by fitting the incident energy distribution to the

distal falloff of the percent depth dose for the open-applicator or large-field (one having side-

scatter equilibrium) depth dose.(2) Then, the energy-dependent correction factor C(E) is used to

force the PBRA-calculated central-axis percent depth dose to closely match the percent depth

dose measured in water.

However, using the C(E) determined for the central-axis percent depth dose of the open

applicator, the foregoing formalism is insufficient for the PBRA to accurately predict cen-

tral-axis percent depth dose in water for insert-shaped fields. Figs. 1 and 2 show comparisons

of PBRA-calculated depth doses and measured depth doses for 2×2-cm, 4×4-cm, and 25×25-cm

square fields for the 25×25-cm applicator-equipped Siemens Primus (Siemens Medical

Solutions U.S.A., Malvern, PA) 15-MeV and 10-MeV electron beams respectively. The

measured percent depth doses for the open 25×25-cm and 4×4-cm fields are predicted

within 2% at both energies. However, the 2×2-cm measured percent depth dose is under-

predicted by PBRA calculations for the 15-MeV beam in the falloff region by an average

of 3% between the depths of 2 cm and 7.5 cm, with the greatest difference being 6% (or

3.5 mm) at a depth of 5 cm. In a similar fashion, the measured 2×2-cm percent depth dose

for the 10-MeV beam is systematically under-predicted by the PBRA at all depths less

than 5 cm, with the greatest difference of 9% (or 2.5 mm) at a depth of 3.5 cm. These

differences exceed the 4% dose and 2-mm DTA criteria, independent of errors resulting

from patient heterogeneity or other factors.
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This problem is analogous to that of the conventional pencil-beam algorithm (PBA) of

Hogstrom et al.(7)—that is, using only a single, large-field depth dose, neither the PBA nor the

PBRA can predict dose with sufficient accuracy for small-field depth dose. The PBA incorpo-

rated a formalism whereby rectangular-field percent depth dose was required as input into the

algorithm.(7,8) Rectangular-field percent depth dose was determined using the square root method

from depth doses for two square fields, which were interpolated from a family of measured

percent depth dose curves.

Thus, the goals of the present study were to implement methods into the PBRA that would

enable the algorithm to calculate central-axis percent depth dose in water at a 100-cm SSD and

to test whether each method has an accuracy of 2% dose or 1-mm DTA for rectangular field

sizes of 2×2 cm or greater. The two methods investigated modified the manner in which the

PBRA calculates and utilizes C(E). Method 1 determines the C(E) that best fits the PBRA-

calculated percent depth dose to the measured one for a specific rectangular field size. In other

words, C(E) is determined for each individual field, requiring that “measured” percent depth

dose data be utilized, analogous to the PBA. Method 2 determines C(E,W) as a function of both

energy and side of square-field size W, by fitting a set of PBRA-calculated percent depth doses

to a small but comprehensive set of measured square-field percent depth dose curves. Subse-

quently, the PBRA dose, calculated as percent of the central-axis dose maximum in water, can

FIG. 1. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 15-MeV beam, 25×25-cm applicator, for various field-size inserts in the 25×25-cm applicator. All PBRA
calculations used the energy correction factor C(E) for the 25×25-cm field.

FIG. 2. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 10-MeV beam, 25×25-cm applicator. All PBRA calculations used the energy correction factor C(E) for the
25×25-cm field.
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be converted to absolute dose [cGy per monitor unit (MU)] by multiplying by dose output in

water, which is energy-, SSD-, applicator-, and rectangular field insert (>2×2 cm)–dependent

and can be stored in a lookup table.

II. METHODS AND MATERIALS

A. PBRA methodology
Shiu(9) originally presented the formalization of the PBRA on which the present work is based.(3)

Dose delivered to a water mini-phantom in the patient by an electron beam is divided into two

components, that is,

        , (1)

where D
e- is the electron dose component, Dγ is the photon dose component, and D(x,y,z) is

the dose calculated at point (x,y,z) in the patient. The calculated electron dose component is

determined by summing the dose components of finite bin width (∆E) of the energy distribu-

tion, that is,

     ,  (2)

where φ
m

(x,y,z) is the electron fluence of the mth energy bin at the point (x,y,z),                is

the mass collisional stopping power of water evaluated at the mean energy E
−

m
(x,y,z) of the

electrons in the mth energy bin at (x,y,z), NE is the total number of energy bins, and C(E
−

m
) is the

energy-dependent correction factor. The normalization factor β
f
 is a function of field size and

is incorporated only for convenience [that is, so that the PBRA generates values of C(E) near

unity]. To do so, the maximum of the uncorrected [C(E) = 1], PBRA-calculated, central-axis

depth dose is normalized to 100%, that is,

 (3)

            .

The C(E) is determined by fitting the PBRA-calculated electron component of central-axis

dose D
e-
calc(0,0,z) given by equation 2, to the electron component of the measured dose D

e-
meas(0,0,z)

determined using equation 1—that is, subtracting the photon-dose component from the mea-

sured central-axis percent depth dose.

Heretofore, the PBRA model did not model electron buildup of the photon-dose component

within the first few millimeters of medium. That approach incorrectly placed the corresponding

electron buildup in the electron-dose component, which resulted in values of C(E) that were

unrealistic, because C(E) tries to correct for any physics not modeled. A similar issue occurred

for electron buildup from electron–electron scatter (delta-ray production). It was determined

that the buildup of secondary electrons resulting from bremsstrahlung radiation and delta-ray

production cannot be ignored; therefore, electron buildup was incorporated into the PBRA

photon model by
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(4)

where δ, the rapid buildup in dose, is equal to

  , (5)

where Dγ(z) is the photon-dose component at depth z, Dmeas(z) is the measured percent depth

dose at depth z, R
p
 is the practical range in centimeters,(10) and the source-to-axial distance

(SAD) is set to 100 cm. In the present study, z
1
 is 0.0 cm, z

2
 is 0.5 cm, and z

3
 is 1.0 cm.

B. PBRA beam commissioning
Commissioning of the PBRA beam requires determination of several parameters and their

validation. These parameters include

• the initial overall angular spread about the mean projected electron direction, σθΒΒ
.

• the drift space, L
0
, which is the effective distance between isocenter and the final plane

of the collimator (where the planar source is defined).

• SAD
vir

, the virtual source distance from isocenter.

• the energy spectrum of the incident electron beam.

The first three parameters are identical to those of the PBA and are determined using con-

ventional methods.(7,8,11) The initial energy spectrum is unique to the PBRA and was calculated

using the methods of Boyd et al.(2)

To validate that the initial energy spectra were appropriate, uncorrected [C(E) = 1] PBRA-calculated

percent depth dose data were compared to measured percent depth dose data. Measured and calculated

depth dose curves were both normalized to 100% at dose maximum. The most probable energies of the

nominal 15 MeV and 10 MeV electron initial spectra are 14.2 MeV and 9.6 MeV respectively. As

previously reported by Boyd et al.,(2) the proper energy spectrum provided good agreement between

PBRA-calculated and measured data on the descending portion of the depth dose curve.(12)

The geometric parameters (SAD
vir

, L
0
, and σθΒΒ

) were validated by comparisons of mea-

sured and PBRA-calculated off-axis ratio (OAR) profiles at 100-cm SSD (isocenter) and at an

extended SSD of 110 cm.(12) Off-axis beam profiles were measured at 1-cm and 2-cm depths

for energies less than 10 MeV and greater than 10 MeV respectively. Agreement of the loca-

tions of the 50% OARs (that is, full-width half-maximum) at both SSDs validated SAD
vir

.

Agreement of penumbra shape (80% – 20%) at both SSDs validated L
0
 and σθΒΒ 

.

C. Determining the correction factors C(E) and C(E,W)

C.1 Method 1: determining C(E) by fitting rectangular field size–specific percent
depth dose
For Method 1, the energy-dependent correction factor C(E) was determined by first fitting the

PBRA-calculated electron percent depth dose to the measured electron percent depth dose
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according to Boyd et al.(2) To do so, C(E) was modeled as a polynomial of order ε, linear in

parameters aκ, that is,

        . (6)

The parameters aκ of equation 6 are determined using a least-squares fit to the measured

percent depth dose(2) with field-size dimensions of the specified rectangle. The fit minimizes

the objective function

      , (7)

where D
e-
meas is the measured electron-dose component of equation 1 at (x = 0, y = 0, z = z

i
)

for the rectangular field, ND is the number of data points in the fit, and v = ND – ε is the number

of degrees of freedom for the fit. This procedure must be repeated to calculate a unique C(E)

for each field size.

C.2 Method 2: determining C(E,W) by fitting a set of square field size–dependent
depth doses
For each beam energy, a set of PBRA-calculated percent depth dose curves for multiple field

sizes was fit to a corresponding set of measured percent depth dose curves. The field sizes

ranged from a 2×2-cm field to a square field of a dimension just large enough for the measured

data to have side-scatter equilibrium (percent depth dose remains constant within 1%). Field-

size dependence is incorporated into the calculation of C(E)_that is, C = C(E,W), where W is

the side of a square field in centimeters. This incorporation assumed that the coefficients of the

polynomial that previously determined C(E) as a function of energy had a field-size depen-

dence, that is,

  , (8)

where ε and ζ are the degrees of the polynomials describing, respectively, the energy and

field-size dependence. The fitting coefficients {aλ,κ} of the energy and field-size dependence

were indexed by κ and λ, respectively; W was the side of the square field (in centimeters); and

E was the energy (in MeV) for which C(E,W) was calculated.

The coefficients {aλ,κ} were determined by minimizing the least squares:

   , (9)

where NF is the number of field sizes for which measured, central-axis percent depth

doses are used in the fit; ND is the number of depths for which depth dose data are available;

    . D
e-
calc,f(0,0,z

i
), calculated from equation 2, is the PBRA-calculated elec-

tron dose component for the fth field size at depth z
i
; and D

e-
meas,f(0,0,z

i
) , calculated from

equation 1, is the electron component of the measured percent depth dose for the fth field size

at depth z
i
. All minimizations were performed using a Gauss–Jordan elimination-based linear

least-squares fitting, determining optimal values for aκ and aλ,κ.
(13)

The objective behind this method was that, by fitting the correction factor for a finite set of

field sizes, the correction factor for other field sizes can be calculated by the model without the

need for further fitting.
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This approach raises a question: Which field sizes are to be included in the fitting?

Because percent depth dose varies significantly with field size for the smallest fields,

percent depth dose for the smallest field is included, and field sizes are more closely spaced

for the smaller field sizes. The largest field size included in the fit is the smallest field size

for which side-scatter equilibrium exists. Because the depth dose remains constant, the in-

clusion of larger field sizes would compromise all fits because of the polynomial dependence

of C(E,W) on field size. Therefore, C(E,W) for field sizes greater than the maximum field

size used in the fit were not determined using the related field size, but rather the maximum

field size used in the fit.

To select the order of field size and energy dependence of the polynomial used to model

C(E,W), both the value of the fit and the number of calculated points adhering to the specified

criteria were considered. The value of LS
v
 was calculated for varying combinations of ε and ζ.

Because higher-order polynomials can result in nonrealistic or even negative values for C(E,W),

ε was limited to 5. In Method 2, ζ was limited to the number of field sizes whose depth doses

were used in the fit.

From these fits, the set of polynomials having LS
v
 < 1.5 was selected—a selection that

should have resulted in most calculated data points being within 2% of measured values. Within

this subset, the polynomials with the least number of calculated depth dose points exceeding

criteria were selected. Of these polynomials, the one consisting of the least number of terms

was chosen to model C(E,W).

C.3 Determining the correction factors C(E) and C(E,W) for rectangular fields
To test each method’s ability to predict rectangular-field percent depth doses, PBRA calcula-

tions were compared with rectangular-field depth doses. Rectangular-field depth doses were

derived by the square-root method(7,14) and measured square-field percent depth dose curves.

For Method 1, each rectangular-field percent depth dose was calculated using a unique

C(E), which was generated by fitting the calculated to the derived rectangular-field percent

depth dose.

For Method 2, the photon and electron components of the percent depth dose were deter-

mined using square-field results. For the electron percent depth dose component, the PBRA

first calculated the uncorrected depth dose of the rectangular field for each energy bin. Using

equation 2, the result was corrected using the correction factor generated by applying the square-

root method to the energy-dependent correction factors of two square fields whose sides

correspond to the dimensions of the rectangular-field depth dose, that is,

 , (10)

where L and W are the length and width of the rectangular field. The photon component

of the rectangular-field percent depth dose was interpolated from a set of square-field

photon-dose components. The side of the equivalent square used for interpolation was

determined using the method of Sterling et al.,(15) L
eq

 = 2LW / (L + W). For rectangular

fields, β
f
 is estimated by interpolating a value for the equivalent square field from β

f
 val-

ues for square fields.

D. Measured data set
The measured data set was taken using a Siemens Primus linear accelerator at nominal electron

beam energies of 15 MeV and 10 MeV. The set consisted of

• central-axis percent depth doses measured at 100 cm SSD for multiple square-field sizes

(2×2-cm to 25×25-cm), and

• selected off-axis beam profiles measured at a 2-cm depth.
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The set of measured percent depth doses were used to evaluate the effectiveness of the pro-

posed methodologies for predicting field-size-dependent depth dose. Off-axis beam profiles and

selected depth dose data were used to commission the PBRA for use in the present study.

All relative percent depth-dose and off-axis profile measurements were performed in accor-

dance with American Association of Physicists in Medicine TG-25(10) using two silicon-diode

electron field detectors (EFD3G: Scanditronix–Wellhöfer, Schwarzenbruck, Germany) in con-

junction with a water phantom and scanner (WP-700: Wellhöfer Dosimetry, Schwarzenbruck,

Germany). After initial detector setup, to ensure that the setup and characteristics of the elec-

tron beam remained constant, a 10-MeV 25×25-cm open-field depth dose was scanned at the

beginning of each measurement session. That scan was also repeated at the end of each mea-

surement session. Differences between session readings at R
100

 and R
50

 that were no greater

than 0.3% were deemed acceptable.

Off-axis beam profiles were taken in a cross-plane orientation, perpendicular to plane of elec-

tron bending. The width of each scan was at least 8 cm wider than the measured field size. For

example, a 15×15-cm off-axis profile would be measured by scanning a total length of 24 cm.

Percent depth dose was measured along the central axis. The depth to which measurements

were taken was 3 – 4 cm deeper than the practical range. For all diode measurements, the

continuous data collection mode was employed. Data were collected continuously for the en-

tire length of the scan, recording a maximum of 20 data points per second. The detector scanning

speed was 1.75 mm•s–1, which implies that the spatial resolution of the data sampling was less

than 0.1 mm.

Percent depth-dose and off-axis profile data were both smoothed post-measurement using a

31-point-window moving-average method. In addition, off-axis profiles were corrected for

small asymmetries by translating (<1 mm) the central axis to lie midway between the 50% off-

axis dose points. Percent depth dose curves were then normalized to 100% at dose maximum.

Off-axis profiles were normalized by averaging the data ±1 cm about the central axis and

scaling that value to 100%.

Random error was assessed in both the low and high dose gradients of the depth dose curve.

The low dose gradient was defined by the measured data values lying between R
95

 and R
98

. The

high dose gradient was defined by the data between R
55

 and R
45

. The precision of the smoothed

data was estimated by comparing its value with that of the unsmoothed data and assuming a

normal distribution of error.(12) Results showed that the precision of the smoothed measured

data in the regions of low and high dose gradient is 0.1% or less, which is very good and

sufficient for the comparisons in the present study.

III. RESULTS

A. Using Method 1 to determine C(E) at 15 MeV
Using Method 1, the polynomial chosen to model C(E) has no field-size relationship, because

C(E) is calculated for each field-size-dependent depth dose. A comparison of PBRA-calcu-

lated and measured percent depth dose curves is plotted in Fig. 3(a) for the 2×2-, 4×4-, and

25×25-cm field sizes, and the corresponding curves for C(E) used by the PBRA are plotted in

Fig. 3(b). The 25×25-cm depth dose is fit using a constant C(E) of 0.97. Only at the surface and

in small segments of the falloff region are differences between measured and calculated points

greater than 1% found. Therefore, all calculated points are within our accuracy criteria of 2%

or 1 mm DTA. The 4×4-cm depth dose is fit using a constant C(E) of 0.98. All calculated points

are within criteria. In fact, excluding a small segment within the falloff region, they are all

within 1% of the measured values. The 2×2-cm depth dose is fit by modeling C(E) using a

second-order polynomial. All points are within criteria; however, a systematic under-predic-

tion (1% – 2%) of dose occurs from 0.5 cm to 2.0 cm.
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A unique C(E) was calculated for each individual rectangular field size–dependent depth

dose. The C(E) was modeled using a second-order polynomial for the 2×10-cm field depth

dose and as a constant for the 3×12-, 3×8-, and 4×15-cm fields. Fig. 4 shows the results for the

2×10-cm and 3×12-cm fields. All PBRA-predicted dose points for all fields are within criteria

(less than 1% difference between calculated and measured points at all depths).

FIG. 3. (a) Comparison of beam percent depth doses measured and calculated by pencil-beam redefinition algorithm
(PBRA) in water for a 15-MeV beam, 25×25-cm applicator, for various field-size inserts in the 25×25-cm applicator. The
PBRA calculations used an energy correction factor C(E) calculated for each field size independently (Method 1, see text).
(b) Energy correction factor C(E) versus energy for PBRA calculations for each field size.

(a) (b)

B. Using Method 1 to determine C(E) at 10 MeV
A comparison of PBRA-calculated and measured percent depth dose curves is plotted

in Fig. 5(a) for the 2×2-, 4×4-, and 25×25-cm field sizes, and the corresponding curves

for C(E) used by the PBRA are plotted in Fig. 5(b). The 25×25-cm depth dose is fit

using a C(E) modeled by a second-order polynomial in energy. All calculated points

are within criteria.

FIG. 4. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 15-MeV beam for (a) a 2×10-cm field and (b) a 3×12-cm field. The energy correction factor C(E) was deter-
mined using Method 1 (see text). The error bars correspond to the acceptability criteria (horizontal bars, ±1 mm; vertical
bars, ±2%).

The greatest difference between measured and PBRA-calculated depth dose occurs at a 2.5-cm

depth in the low dose gradient region (1.2%) and at a 4-cm depth in the high dose gradient
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(1.3%). The 4×4-cm depth dose is fit using a C(E) modeled by a first-order polynomial in

energy. All PBRA-calculated depth dose points are within 1% of measured values, excluding

R
100

 and a depth of 1.5 cm, where a difference of 1.5% is observed. The 2×2-cm depth

dose is fit using a C(E) modeled by a second-order polynomial. All points are within crite-

ria, with 1% underestimation in depth dose at the surface and 1.2% underestimation near

the end of the falloff region. In Fig. 5(b), C(E) is observed to vary the most for the 2×2-cm

field, in this case decreasing rapidly at low energies and increasing rapidly for energies

greater than 8 MeV.

A unique C(E) was calculated for each individual rectangular field size–dependent depth

dose. The C(E) values associated with 2×10-cm and 4×15-cm fields were both modeled by a

second-order polynomial, and the C(E) for the 3×12-cm and 3×8-cm fields were modeled by a

first-order polynomial. Fig. 6 shows the results for the 2×10-cm and 3×12-cm fields. All PBRA-

calculated dose points for all fields are within criteria (less than 1% difference between calculated

and measured points at all depths).

FIG. 5. (a) Comparison of beam percent depth doses measured and calculated by pencil-beam redefinition algo-
rithm (PBRA) in water for a 10-MeV beam, 25×25-cm applicator, for various field-size inserts in the 25×25-cm
applicator. The PBRA calculations used an energy correction factor C(E) calculated for each field size inde-
pendently (Method 1, see text). (b) The energy correction factor C(E) versus energy for PBRA calculations for
each field size.

FIG. 6. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 10-MeV beam for (a) a 2×10-cm field and (b) a 3×12-cm field. Each energy correction factor C(E) was
determined using Method 1 (see text). The error bars correspond to the acceptability criteria (horizontal bars, ±1 mm;
vertical bars, ±2%).

(a) (b)
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C. Using Method 2 to determine C(E,W) at 15 MeV
At 15 MeV, the function used to model C(E,W) was a second-order polynomial in both en-

ergy and field-size dependence. This was the lowest-order polynomial determined using

Method 2 for which all data points fell within criteria. The reduced least-squares value equals

1.04. The resulting comparison of PBRA-calculated with measured percent depth dose curves

is plotted in Fig. 7(a) for the 2×2-, 4×4-, and 25×25-cm square fields, and the corresponding

curves for C(E,W) are plotted in Fig. 7(b). The value of C(E,W) varies most for the smallest

field size (particularly at the lower energies), which is similar to the results obtained using

Method 1.

Method 2 predicts all points within criteria for the 25×25-cm depth dose. A slight

over-prediction of depth dose (<0.6%) occurs at the surface and throughout the

buildup region, and a small under-prediction of depth dose (<1.8%) occurs in the

falloff region, particularly at depths near R
90

. All 4×4-cm calculated depth dose points

fall within criteria; however, conversely to the 25×25-cm comparison, calculation

under-predicts depth dose (<0.7%) in the buildup region and over-predicts depth

dose (<1.4%) in the region near R
90

. Although all predicted points are within criteria,

a systematic under-prediction of depth dose (<1.1%) occurs in the buildup region of

the 2×2-cm depth dose curve.

The 2×10-, 3×12-, 3×8-, and 4×15-cm rectangular-field percent depth dose curves

calculated by the PBRA are all predicted within criteria by the square-root method and

the nine-term C(E,W) polynomial for the square fields. Fig. 8 shows the comparisons for

these rectangular-field percent depth dose curves. In the region near R
100

, PBRA calculations

differ from measurements by more than 1% for each rectangular-field depth dose. A 1.4%

under-prediction occurs at 3.5 cm for the 2×10-cm field, a 1.5% over-prediction occurs from

3 cm to 3.5 cm for the 3×12-cm field, a 1.4% over-prediction occurs from 3 cm to 3.5 cm for

the 3×8-cm field, and a 1.1% over-prediction occurs at 3.5 cm for the 4×15-cm field [compare

Fig. 8(a,b,c,d) respectively].

Method 2 differs from Method 1 in that, once C(E,W) is determined, it is subsequently used

by the PBRA in predicting intermediate field sizes. Fig. 9 shows PBRA-calculated percent

depth doses at field sizes intermediate (3×3 cm, 5×5 cm, and 6×6 cm) to those included in the

15 MeV fit (2×2 cm, 4×4 cm, 25×25 cm). These results, which appear quantitatively appropri-

ate, were verified by comparison with measured field sizes, and the two agreed at all depths

within our criteria of acceptance.

FIG. 7. (a) Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 15-MeV beam, 25×25-cm applicator, for various field-size inserts in the 25×25-cm applicator. The PBRA
calculations used an energy and side-of-square correction factor C(E,W) fit simultaneously to all fields (Method 2). (b)
Comparison of the correction factor C(E,W) and energy for the PBRA calculations for each field size. Values of C(E,W)
determined using Method 2 were modeled by a second-order polynomial in field size and energy dependence.

(b)(a)
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FIG. 8. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 15-MeV beam, for rectangular field sizes of (a) 2×10 cm, (b) 3×12 cm, (c) 3×8 cm, and (d) 4×15 cm. The error
bars correspond to the acceptability criteria (horizontal bars, ±1 mm; vertical bars, ±2%).

FIG. 9. Percent depth doses calculated by pencil-beam redefinition algorithm (PBRA) at 15 MeV for field
sizes 3×3 cm, 5×5 cm, and 6×6 cm—that is, field sizes not used to determine the energy and side-of-square
correction factor C(E,W)—are compared to PBRA-calculated percent depth doses for 2×2-cm and 4×4-cm
fields, which were fit to the measured data set using Method 2 (see text). Examples are given of the PBRA’s
ability to predict percent depth doses for field sizes intermediate to those for which a C(E,W) has been
explicitly calculated.
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D. Using Method 2 to determine C(E,W) at 10 MeV
At 10 MeV, the function used to model C(E,W) was a polynomial second-order in field-size

dependence and third-order in energy dependence. This was the lowest-order fit in which all

data points fell within the fitting criteria. The reduced least-squares value equals 0.63. The

resulting comparison of PBRA-calculated with measured percent depth dose curves is plotted

in Fig. 10(a) for the 2×2-, 4×4-, and 25×25-cm fields, and the corresponding curves for C(E,W)

are plotted in Fig. 10(b).

FIG. 10. (a) Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 10-MeV beam, 25×25-cm applicator, for various field-size inserts in the 25×25-cm applicator. The PBRA
calculations used an energy and side-of-square correction factor C(E,W) fit simultaneously to all fields (Method 2, see
text). (b) Energy correction factor C(E,W) versus energy for PBRA calculations for each field size. Values of C(E,W)
determined using Method 2 (see text) were modeled by a second-order polynomial in field size and third-order in energy
dependence.

(a) (b)

Again, C(E,W) can be seen to vary most for the smaller field size, particularly at the lower

energies. For the 25×25-cm depth dose, a slight under-prediction of depth dose (<1%) occurs

at the surface and for a small segment of the falloff region (1%). An approximate 1% over-

prediction also occurs at R
100

. Conversely to the 25×25-cm comparison, the 4×4-cm calculated

depth dose calculation under-predicts depth dose (1.1%) at R
100

 and slightly over-predicts depth

dose at several depths in the falloff (≈0.9%). Although all predicted points are well within

criteria, an under-prediction of depth dose (<0.8%) occurs in the falloff region and at the sur-

face (0.5%) of the 2×2-cm depth dose curve.

The 2×10-, 3×12-, 3×8-, and 4×15-cm rectangular-field percent depth dose curves calcu-

lated by the PBRA were all predicted within criteria using the square root method and the

12-term polynomial for C(E,W). Fig. 11 shows the comparisons for these rectangular-field

percent depth dose curves. All calculated depth dose points for the four field sizes fall within

criteria. The largest errors for the 3×12-cm and 3×8-cm depth dose curves occur at a depth of

2.5 cm, where dose is over-predicted by 2.7% and 2.6% respectively. Because this is a region

of high dose gradient and the predicted points are within 1 mm of the measurements, these

points fall within criteria.

IV. CONCLUSIONS

Our results support the hypothesis that a method can be implemented into the PBRA that en-

ables it to calculate central-axis percent depth dose in water at 100 cm SSD with an accuracy of

2% or 1-mm DTA. The hypothesis was true for implementing the energy-dependent correction
factor C(E) using Method 1, and the energy-dependent and field-size-dependent correction
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FIG. 11. Comparison of percent depth doses measured and calculated by pencil-beam redefinition algorithm (PBRA) in
water for a 10-MeV beam for rectangular field sizes of (a) 2×10 cm, (b) 3×12 cm, (c) 3×8 cm, and (d) 4×15 cm. The error
bars correspond to the acceptability criteria (horizontal bars, ±1 mm; vertical bars, ±2%).

factor C(E,W) using Method 2 for applicator-equipped Siemens radiotherapy accelerators, for

high- and low-energy electron beams, and for rectangular field sizes greater than 2×2 cm.

However, for clinical implementation of the PBRA, we recommend using Method 1 because

• Method 1 can calculate most rectangular-field depth doses to within approximately 1%

of measurement, which is significantly more accurate than results acquired with Method

2, and

• more subjectivity and data analysis are required than are involved in Method 2.

Future development of a fast PBRA algorithm calculating for central-axis depth dose in

water would be useful for Method 1. Although Method 2 is not recommended, it holds prom-

ise. Future investigation into the use of a function other than a polynomial to model C(E,W)

and into improved methods for determining C(E,W) for rectangular fields could make Method

2 more attractive. Both methods could improve with refinement of the selection criteria that

determine the order of the polynomial that models the energy correction factor.
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