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Abstract: This study aimed to investigate the validity of using built-in smartphone accelerometers
to estimate the active energy expenditures of full-time manual wheelchair users with spinal cord
injury (SCI). Twenty participants with complete SCI completed 10 5-min daily activities that involved
the upper limbs, during which their oxygen consumption and upper limb activity were registered
using a portable gas analyzer and a smartphone (placed on the non-dominant arm), respectively.
Time series of 1-min averaged oxygen consumption and 55 accelerometer variables (13 variables for
each of the four axes and three additional variables for the correlations between axes) were used to
estimate three multiple linear models, using a 10-fold cross-validation method. The results showed
that models that included either all variables and models or that only included the linear variables
showed comparable performance, with a correlation of 0.72. Slightly worse general performance
was demonstrated by the model that only included non-linear variables, although it proved to be
more accurate at estimating the energy expenditures (EE) during specific tasks. These results suggest
that smartphones could be a promising low-cost alternative to laboratory-grade accelerometers to
estimate the energy expenditure of wheelchair users with spinal cord injury during daily activities.

Keywords: spinal cord injury; smartphone; energy expenditure; physical activity

1. Introduction

Spinal cord injury (SCI) is defined as damage to the spinal cord, caused by either
traumatic causes, such as external forces originating from falls or traffic accidents, or non-
traumatic causes, such as inflammation or infections [1,2]. SCI can affect both sensory and
motor pathways, as well as the autonomic nervous system, leading to the impairment
or loss of sensorimotor function. SCI can result in a lack of physical exercise, which, in
turn, can reduce physical fitness and increase the impacts of the injury by increasing the
risks of secondary chronic health complications [3,4]. Furthermore, low physical fitness
can severely impact the autonomy, quality of life, and self-dependence of individuals who
suffer from SCI [5]. In addition to increasing independence, increased physical activity can
modulate SCI-induced alterations, assisting with the primary and secondary prevention
of various metabolic diseases [6]. Previous literature on SCI has reported that regular
physical activity can lead to healthy aging by reducing cardiovascular risks [7], pain [8],
and spasticity [9], and improving respiratory function [10]. A previous study performed
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by Montesinos-Magraner et al. [11] examining individuals with complete SCI found that
those individuals who were more physically active had fewer co-morbidities, including
fewer diseases and injury-related complications, which supports the recommendation of
increased physical exercise in guidelines for this population.

Muscle atrophy below the injury level and a high relative fat mass in individuals
with SCI, compared with healthy individuals [12], can result in decreased resting energy
expenditures (EEs) among individuals with SCI [13]. Impairments in sensorimotor function
can also reduce the activity-associated EE, which describes the energy used by voluntary
or involuntary physical movements and mental and emotional processing [14]. Many
techniques and instruments have been proposed for the estimation of EE during physical
activities [15]. Questionnaires, indirect calorimetry, and heart rate monitors have been used
to estimate physical activity levels based on EE. However, questionnaires can be biased,
indirect calorimetry is expensive and difficult to apply during daily activities, and heart
rate monitors have been shown to have low accuracy; therefore, additional methods must
be developed to provide accurate EE estimations of daily activities.

A systematic review of studies that evaluated commercial monitors, using either de-
fault or customized algorithms as well as custom devices and algorithms to assess physical
activity, indicated that conventional triaxial accelerometry was the most commonly applied
method for estimating EE, and the Actigraph GT3X (ActiGraph, Pensacola, FL, USA) and
the GT3X+ appear to be the most widely used accelerometers for EE estimations [16]. The
use of accelerometers to quantify EE is based on the premise that EE is determined by the
magnitude and rate of muscle forces, which are proportional to accelerations [17]. The same
review also identified indirect calorimetry as the gold standard for EE measurements, and
the portable Cosmed K4b2 (COSMED, Rome, Italy) was identified as the most commonly
used metabolic analyzer for EE measurements.

The low cost and widespread availability of the current generation of smartphones,
which include embedded accelerometers, have resulted in their increased use for the
estimation of EE in healthy individuals as an alternative to laboratory-grade devices [18,19].
Although laboratory-grade accelerometers have been validated for the estimation of EE
in people with SCI [20–22], the validity of using smartphones remains unexplored. A
few studies have investigated the validity of using wearable devices such as the Fitbit
(Fitbit Inc., San Francisco, CA, USA) [23] or the Apple Watch (Apple Inc., Cupertino, CA,
USA) [24,25] to estimate EE in people with SCI or wheelchair users, with promising results.
Although these devices can be worn throughout the day, thus allowing for unobtrusive
and continuous monitoring of physical activity, their cost might restrict their widespread
use. Smartphones, in contrast, have an increasing market penetration, and the number of
users has surpassed three billion and is forecast to further grow in the following years [26].

We hypothesized that common smartphones that contain embedded triaxial accelerom-
eters could be used to estimate EE in full-time manual wheelchair users with SCI, repre-
senting a low-cost alternative to laboratory-grade instruments. Consequently, this study
aimed to validate the use of a mid-range smartphone to estimate EE in a group of full-time
manual wheelchair users with SCI, compared with the EE measurements made using a
gold standard instrument.

2. Methods
2.1. Subjects

A convenient, consecutive sample of full-time manual wheelchair users with SCI was
recruited from two clinical facilities, Hospital la Fe (Valencia, Spain) and Asociación Provin-
cial de Lesionados Medulares y Grandes Discapacitados (Valencia, Spain). Individuals
were considered potential candidates for study participation if they met the following
inclusion criteria: (i) had a spinal injury between T2 and L5, diagnosed at least 1 year
before enrollment; (ii) were full-time wheelchair users; and (iii) experienced the complete
loss of motor function in the lower extremities, as assessed by a score of 0 for the lower
extremity items of the American Spinal Injury Association (ASIA) impairment scale.



Sensors 2021, 21, 1498 3 of 9

Twenty participants, with a mean age of 45.7 (8.37) years, weight of 74.8 (18.05) kg,
and height of 173.1 (12.47) cm, enrolled in the study.

All participants provided written informed consent prior to enrolment in the study.
The study was conducted in accordance with the Declaration of Helsinki. The study
protocol was approved by the Hospital Universitari Vall d’Hebron Institutional Review
Board (PR(ATR)85/2017) on 28 January 2019.

2.2. Instrumentation

Accelerometer data were recorded by an MI A2 Android-based smartphone (Xiaomi,
Beijing, China), which featured an 8-core Qualcomm Snapdragon 660 and 4 GB of RAM, at
a sampling rate of 50 Hz, using a dedicated mobile app, the Physics Toolbox Suite (Vieyra
Software, Washington, DC, USA). Indirect calorimetry was measured using the Cosmed
K4b2 portable gas analysis system.

2.3. Procedure

Participants were briefly introduced to the study and were equipped with the gas
analyzer and the smartphone, which was fixed to the upper part of the non-dominant arm
using a specific smartphone band. The smartphone was positioned on the lateral surface
of the arm, midway between the acromion process and lateral epicondyle of the humerus
(Figure 1).
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Figure 1. Participant equipped with the instruments (left) and an example of the signals acquired by the smartphone and
the gas analyzer (right). (a) Cosmed K4b2. (b) Smartphone with built-in accelerometer.

All participants completed a routine consisting of 10 5-min activities, with at least
1 min of rest between each activity. The activities were intended to represent different
intensities of physical activity for most manual wheelchair users [27,28] (Table 1).

Acceleration and indirect calorimetry were synchronously registered during the test-
ing by using the smartphone and the gas analyzer, respectively (Figure 1). Recording by
both instruments was initiated simultaneously to collect data synchronously, and times-
tamps were set in the Cosmed K4b2 before and after each activity to identify all events.
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Table 1. Routine of activities.

Order Activity Type Description

1 Lying down Sedentary Participants are required to lie in the lateral decubitus
position on a stretcher.

2 Watching TV Sedentary Participants are required to sit on their wheelchair and
watch TV programs.

3 Working on a computer * Sedentary Participants are required to transcribe a text from a news
website into a word processing document.

4 Moving items * Housework

Participants are required to move boxes of different
weights (1, 2, and 3 kg) from a shelf on one side of the

laboratory to a shelf on the opposite side of the
laboratory.

5 Mopping the floor * Housework Participants are required to mop the floor of the
laboratory at a self-paced speed.

6 Cleaning the windows * Housework Participants are required to wipe the windows of the
laboratory with a piece of cloth.

7 Ironing * Housework Participants are required to iron a set of t-shirts with an
iron over an ironing board.

8 Arm-ergometry exercise * Locomotion
Participants are required to crank an arm ergometer

with an intensity that would correspond to a perception
of eight points on the OMNI-Res perception scale.

9 Slow propulsion Locomotion Participants are required to propel their wheelchair at a
comfortable self-selected speed along a long corridor.

10 Fast propulsion Locomotion Participants are required to propel their wheelchair at a
fast self-selected speed along a long corridor.

* The exercise required real physical objects.

2.4. Data Analysis

A total of 55 variables, including 13 variables for each axis, the resultant vectors, and
three variables corresponding to the cross-correlation between the three orthogonal axes,
were computed for each activity and were included in the analysis.

Variables were estimated according to a previous study [21] as follows. Initially, we
divided each axis (i.e., x, y, and z) and the resultant vectors into one-minute windows. For
each temporal window, we estimated the following: (1) the standard deviation, (2) variance,
(3) 10th, (4) 25th, (5) 50th, (6) 75th, and (7) 90th percentiles, and (8) the interquartile
range. We also estimated the (9) lag-one correlation of each one-minute time window as a
measurement of the temporal dynamics [28]. The acceleration signals were analyzed using
a two-level wavelet transform, with the mother wavelet being the Daubechies 2 [29]. We
calculated the Euclidean norms of the detail coefficients for the (10) first and (11) second
levels of resolution and (12) the approximation coefficients of the second level, commonly
referred to as ND1, ND2, and NA2, respectively. We computed the (13) sample entropy for
each axis, using a tolerance of 0.3 SD and a pattern length of 2 [30]. Finally, in addition to
the 52 variables that resulted from the computation of the 13 variables for each axis and the
resulting vector, we estimated the cross-correlation between the three orthogonal axes (x–y,
y–z, and x–z cross-correlations) [31] which produced three additional variables, for a total
of 55 variables.

We obtained three different multiple linear models: one considering all variables, one
considering only linear variables, and one considering only non-linear variables. We used
a 10-fold cross-validation method [32] using the average oxygen consumption (VO2, mL
× kg−1 × min−1) for every minute as the dependent variable. We used cross-validation,
as it is a preventative measure against overfitting [33]. In each fold validation, a training
dataset, which included 90% of the total dataset, was used to obtain multiple linear models.
A validation dataset that included the remaining 10% of the total dataset was used to
determine the goodness of fit for each model. The number of variables that were included
in each model (i.e., predictors) was determined using equations containing one to ten
estimators for each model. The number of predictors that were included in each model
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was determined as a tradeoff between performance and computational cost. Finally, the
correlation coefficient, the mean squared error, and the mean absolute error (the most
widely used variables in the literature [16]) were calculated for each resulting model.
Correlations below 0.2 were considered very weak. Correlations ranging from 0.2 to
0.4, 0.4 to 0.6, and 0.6 to 0.8 were considered weak, moderate, and strong, respectively.
Finally, correlations greater than 0.8 were considered to be excellent. Signal processing was
performed using Matlab R2012a (Mathworks Inc., Natick, MA, USA).

3. Results

The correlation coefficient, the mean square error, and the mean absolute error of
the resulting models are shown in Figure 2. All models provided strong correlations.
However, the model that included all variables and the model that included only linear
variables provided comparable and better results than the model that included only non-
linear variables.

As can be inferred from the inflections of the curves, the first three predictors provided
the most substantial contributions to model performance, which were especially evident for
the model that considered all variables and the model that considered only linear variables.
The inclusion of additional predictors produced minimal changes in the performances of all
models. Although considering two predictors in the model that considered only non-linear
variables could be sufficient, a third predictor was also considered in this model, to ensure
that all models had the same degrees of freedom, facilitating comparisons between them.
Therefore, three predictors were considered in all three models, as an acceptable tradeoff
between performance and cost.

The applications of the resulting models to the training and validation datasets showed
very similar results (Figure 2).
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Figure 2. Performance of the models obtained according to the number of predictors used.

Table 2 shows the equations and performances for all three models. The model that
uses all of the variables and the model that only uses linear variables included the same
predictors and very similar weights. The model that uses only non-linear variables included
different predictors and had a slightly worse performance than the other models.

Finally, Table 3 shows the relative normalized mean squared error and mean absolute
error of the three models for each task separately, considering the validation dataset.
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Table 2. Description and performance of the resulting models.

Models Equation Dataset Correlation
Mean Square Error
(mL·kg−1·min−1)2

Mean Absolute Error
(mL·kg−1·min−1)

All variables VO2 = 3.4921 + 10.784RV75–25 −
25.4524YVAR + 21.0447YSD

Training 0.72 6.08 1.76
Validation 0.72 6.16 1.76

Linear variables VO2 = 3.4921 + 10.7083RV75–25 −
25.4524YVAR + 21.04487YSD

Training 0.72 6.08 1.76
Validation 0.72 6.16 1.76

Non-linear variables VO2 = −343.0891 + 503.1303RVDYN
+ 1.6797RVND1 − 156.1103YDYN

Training 0.71 6.42 1.85
Validation 0.71 6.48 1.85

RV = resultant vector; Y = y-axis; VAR = variance; SD= standard deviation; ND1 = detail coefficient of the first level; 75–25 = interquartile
range; DYN = lag-one correlation.

Table 3. Relative performance of the resulting models in each task.

All Variables Linear Variables Non-Linear Variables

Mean Squared
Error

Mean Absolute
Error

Mean Squared
Error

Mean Absolute
Error

Mean Squared
Error

Mean Absolute
Error

Lying down 9% 23% 9% 23% 9% 24%

Watching TV 11% 26% 11% 26% 11% 30%

Working on a computer 7% 22% 7% 22% 11% 26%

Moving items 6% 19% 6% 19% 8% 21%

Mopping the floor 5% 18% 5% 18% 5% 17%

Cleaning the windows 9% 24% 9% 24% 8% 22%

Ironing 7% 20% 7% 20% 8% 21%

Arm-ergometry exercise 11% 26% 11% 26% 14% 32%

Slow propulsion 10% 27% 10% 27% 9% 25%

Fast propulsion 7% 19% 7% 19% 7% 21%

4. Discussion

This study assessed the validity of using a smartphone with built-in accelerome-
ters to measure the active EE in full-time manual wheelchair users with SCI during the
performance of daily activities. The oxygen consumption and upper limb activities of
20 participants were registered using a portable gas analyzer and a smartphone, respec-
tively, and multiple linear models were estimated based on the linear and non-linear
accelerometer variables. Although the performance of all the estimated models was com-
parable, the best general performance resulted when using either the model that included
all of the variables or the model using only the linear variables, and these two models
demonstrated a correlation of 0.72, a mean square error of 6.16, and a mean absolute error of
1.76. However, the model that included non-linear variables showed the best performance
for some of the investigated activities. These results suggest that smartphones can be used
as a potential low-cost alternative to laboratory-grade instruments, which could support
their use in both clinical and research activities.

The data analysis and processing methods used to model predictive algorithms for active
EE in this study were similar to those used in a previous study by García-Massó et al. [27],
whose performance was highlighted in a recent literature search when searching for other
models that used wearable devices to measure activity in people with SCI [34]. The result-
ing models in the present study demonstrated better performance than previous models,
which used data from chest-placed (r = 0.68; mean square error = 10.41; mean absolute error
= 2.41) and waist-placed (r = 0.67; mean square error = 10.61; mean absolute error = 2.39) ac-
celerometers [27] and comparable performance to models based on smartwatches placed on
the dominant wrist [24]. However, the data registered by accelerometers fixed to the wrist
led to models with better performance than those reported in this study, especially when
the accelerometer was fixed to the non-dominant wrist (r = 0.86; mean square error = 4.98;
mean absolute error = 1.65) [27]. The different performance observed among these studies
is likely due to differences in the locations of the instruments. The fixation of the accelerom-
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eter to the chest or waist likely limited the ability of these devices to register many of the
movements performed during daily activities. Placing the accelerometers on more distal
anatomical parts could provide greater sensitivity for the detection of EE during daily
activities, such as wheelchair propulsion [20]. In this study, the smartphone was fixed to the
upper part of the arm, as its fixation to the wrist would have made the participants uncom-
fortable and may have diminished the ecological validity of the assessments. Conversely,
fixing the smartphone to the participants’ upper arms allowed them to move comfortably
and had minimal effects on movement performance. According to previous studies, it
could be hypothesized that fixing the smartphone to the chest, the waist, or the wheelchair
would have led to worse performance than fixing the smartphone to the arm [27,35]. In
contrast, fixing the smartphone to the wrists could have improved the estimation of the EE.
Nevertheless, these assumptions should be carefully considered, as the performance of the
models could be influenced not only by the position of the accelerometer but also by the
number and type of tasks investigated.

The use of laboratory-grade accelerometers could also have improved the estimation
of EE, compared with estimations performed using built-in smartphone accelerometers.
A previous study examining the sensitivity of laboratory-grade accelerometers placed on
the upper arm (similar to the placement used in our study) reported a better performance
(r = 0.87) in manual wheelchair users with SCI and other pathologies [20]. The use of
smartphone-based accelerometers instead of dedicated accelerometers could explain the
reduced accuracy detected in our study, although all of the models built during our study
showed strong performance. Moreover, the lower cost and widespread availability of
smartphones emphasize the results of our study. Although other studies have examined
the use of smartphones with built-in accelerometers to measure EE [36], no previous
study has investigated the validation of these devices for manual wheelchair users with
SCI. The scant literature that is available on this population has focused on identifying
wheelchair movements using the sensor data of a smartphone attached to the wheelchair,
and then attempting to extrapolate the level of physical activity based on wheelchair
movements [37,38].

The technological advances of the last decade have promoted the widespread use
of smartphones, which have become vital parts of people’s lives [39]. The increasing
number of sensors being embedded into smartphones and wearable devices has provided
researchers with untapped potential for the collection and analysis of pervasive data reliably
and at low cost, while being transparent to the study participants. The performance
of the models presented in this study for measuring EE in individuals with SCI using
commercial smartphones highlights the potential of these devices, and could support
their use as wearable and low-cost alternatives to laboratory-grade instruments. The
performance of the models built in our study could also endorse the use of smartphones for
successive assessments of EE in individuals with complete thoracic SCI, remotely guided
by clinicians and researchers, and facilitate the development of mobile health applications
that can provide individuals with SCI with accurate estimations of their EE using their
own smartphones [36].

Although the range of activities considered in our study was designed to illustrate
a representative range of daily activities [27], extrapolations to other activities should be
performed with caution. Additionally, the physical characteristics of common smartphones
prevent their use in aquatic environments, or while practicing contact sports, such as
wheelchair basketball or rugby. Other instruments should be used in these particular
situations. However, the performance of the models presented in this study suggests that
the estimation of EE in people with complete thoracic SCI is feasible using smartphones,
which represent a portable and low-cost alternative to laboratory-grade equipment, and
has potential clinical and research implications.
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5. Conclusions

The present study investigated the validity of using a smartphone to measure the
active EE during daily activities in individuals with complete thoracic SCI. Comparable
performance was obtained when considering either all of the variables computed from the
accelerometer of the smartphone, only the linear variables, or only the non-linear variables.
However, the two former options provided slightly better general results. These results
suggest that smartphones could be a potential low-cost alternative to laboratory-grade
instruments to estimate the EE in individuals with SCI.

Author Contributions: Conceptualization, A.M.-A., L.M.-M., L.-M.G., X.S.-N., R.L., and X.G.-M.;
Data curation, L.-M.G. and X.G.-M.; Formal analysis, L.-M.G., R.L., and X.G.-M.; Funding acquisition,
L.M.-M., L.-M.G., R.L., and X.G.-M.; Investigation, A.M.-A., L.M.-M., and X.S.-N.; Methodology,
A.M.-A., L.M.-M., L.-M.G., and X.G.-M.; Resources, L.M.-M., L.-M.G., R.L., and X.G.-M.; Software,
L.-M.G., R.L., and X.G.-M.; Supervision, L.M.-M., L.-M.G., and X.G.-M.; Writing—original draft,
A.M.-A., L.M.-M., L.-M.G., X.S.-N., R.L., and X.G.-M.; Writing—review and editing, A.M.-A., L.M.-M.,
L.-M.G., X.S.-N., R.L., and X.G.-M. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by Fundació la Marató de la TV3, under Projects 201720-10
and 201701-10, and European Union through the Operational Program of the European Regional
Development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Hospital Universitari Vall d’Hebron (protocol code PR(ATR)85/2017 obtained on 28 January 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jain, A.K. ISCOS-Textbook on Comprehensive Management of Spinal Cord Injuries. Indian J. Orthop. 2016, 50, 223–224. [CrossRef]
2. World Health Organization. International Perspectives on Spinal Cord Injury; WHO: Geneva, Switzerland, 2013; Volume 250.
3. Serra-Añó, P.; García-Massó, X.; Pellicer, M.; González, L.-M.; López-Pascual, J.; Giner-Pascual, M.; Toca-Herrera, J.L. Force

Normalization in Paraplegics. Int. J. Sports Med. 2012, 33, 452–458. [CrossRef]
4. Ginis, K.A.M.; Hicks, A.L.; Latimer, A.E.; Warburton, D.E.R.; Bourne, C.; Ditor, D.S.; Goodwin, D.L.; Hayes, K.C.; McCartney, N.;

McIlraith, A.; et al. The Development of Evidence-Informed Physical Activity Guidelines for Adults with Spinal Cord Injury.
Spinal Cord 2011, 49, 1088–1096. [CrossRef]

5. Noreau, L.; Shephard, R.J. Spinal Cord Injury, Exercise and Quality of Life. Sports Med. 1995, 20, 226–250. [CrossRef] [PubMed]
6. Montesinos-Magraner, L.; López-Bueno, L.; Gómez-Garrido, A.; Gomis, M.; González, L.M.; García-Massó, X.; Serra-Añó, P. The

Influence of Regular Physical Activity on Lung Function in Paraplegic People. Spinal Cord 2016, 54, 861–865. [CrossRef] [PubMed]
7. Rimaud, D.; Calmels, P.; Devillard, X. Training programs in spinal cord injury. Ann. Readapt. Med. Phys. 2005, 48, 259–269.

[CrossRef] [PubMed]
8. Van Straaten, M.G.; Cloud, B.A.; Morrow, M.M.; Ludewig, P.M.; Zhao, K.D. Effectiveness of Home Exercise on Pain, Function,

and Strength of Manual Wheelchair Users with Spinal Cord Injury: A High-Dose Shoulder Program with Telerehabilitation. Arch.
Phys. Med. Rehabil. 2014, 95, 1810–1817.e2. [CrossRef]

9. Rekand, T.; Hagen, E.M.; Grønning, M. Spasticity Following Spinal Cord Injury. Tidsskr. Nor. Laegeforen. 2012, 132, 970–973.
[CrossRef] [PubMed]

10. Van Houtte, S.; Vanlandewijck, Y.; Gosselink, R. Respiratory Muscle Training in Persons with Spinal Cord Injury: A Systematic
Review. Respir. Med. 2006, 100, 1886–1895. [CrossRef] [PubMed]

11. Montesinos-Magraner, L.; Serra-Añó, P.; García-Massó, X.; Ramírez-Garcerán, L.; González, L.-M.; González-Viejo, M.Á. Co-
morbidity and Physical Activity in People with Paraplegia: A Descriptive Cross-Sectional Study. Spinal Cord 2018, 56, 52–56.
[CrossRef]

12. Giangregorio, L.; McCartney, N. Bone Loss and Muscle Atrophy in Spinal Cord Injury: Epidemiology, Fracture Prediction, and
Rehabilitation Strategies. J. Spinal Cord. Med. 2006, 29, 489–500. [CrossRef] [PubMed]

13. Collins, E.G.; Gater, D.; Kiratli, J.; Butler, J.; Hanson, K.; Langbein, W.E. Energy Cost of Physical Activities in Persons with Spinal
Cord Injury. Med. Sci. Sports Exerc. 2010, 42, 691–700. [CrossRef] [PubMed]

http://doi.org/10.4103/0019-5413.177576
http://doi.org/10.1055/s-0032-1301889
http://doi.org/10.1038/sc.2011.63
http://doi.org/10.2165/00007256-199520040-00003
http://www.ncbi.nlm.nih.gov/pubmed/8584848
http://doi.org/10.1038/sc.2016.4
http://www.ncbi.nlm.nih.gov/pubmed/26927294
http://doi.org/10.1016/j.annrmp.2004.12.004
http://www.ncbi.nlm.nih.gov/pubmed/15914262
http://doi.org/10.1016/j.apmr.2014.05.004
http://doi.org/10.4045/tidsskr.10.0872
http://www.ncbi.nlm.nih.gov/pubmed/22562332
http://doi.org/10.1016/j.rmed.2006.02.029
http://www.ncbi.nlm.nih.gov/pubmed/16626951
http://doi.org/10.1038/sc.2017.90
http://doi.org/10.1080/10790268.2006.11753898
http://www.ncbi.nlm.nih.gov/pubmed/17274487
http://doi.org/10.1249/MSS.0b013e3181bb902f
http://www.ncbi.nlm.nih.gov/pubmed/19952846


Sensors 2021, 21, 1498 9 of 9

14. Nevin, A.N.; Steenson, J.; Vivanti, A.; Hickman, I.J. Investigation of Measured and Predicted Resting Energy Needs in Adults
after Spinal Cord Injury: A Systematic Review. Spinal Cord 2016, 54, 248–253. [CrossRef] [PubMed]

15. Liu, S.; Gao, R.X.; Freedson, P.S. Computational Methods for Estimating Energy Expenditure in Human Physical Activities. Med.
Sci. Sports Exerc. 2012, 44, 2138–2146. [CrossRef] [PubMed]

16. Tsang, K.; Hiremath, S.V.; Crytzer, T.M.; Dicianno, B.E.; Ding, D. Validity of Activity Monitors in Wheelchair Users: A Systematic
Review. J. Rehabil. Res. Dev. 2016, 53, 641–658. [CrossRef]

17. Ainslie, P.; Reilly, T.; Westerterp, K. Estimating Human Energy Expenditure: A Review of Techniques with Particular Reference to
Doubly Labelled Water. Sports Med. 2003, 33, 683–698. [CrossRef]

18. Rousset, S.; Guidoux, R.; Paris, L.; Farigon, N.; Miolanne, M.; Lahaye, C.; Duclos, M.; Boirie, Y.; Saboul, D. A Novel Smartphone
Accelerometer Application for Low-Intensity Activity and Energy Expenditure Estimations in Overweight and Obese Adults.
J. Med. Syst. 2017, 41, 117. [CrossRef]

19. Duclos, M.; Fleury, G.; Guidoux, R.; Lacomme, P.; Lamaudiere, N.; Manenq, P.-H.; Paris, L.; Ren, L.; Rousset, S. Use of Smartphone
Accelerometers and Signal Energy for Estimating Energy Expenditure in Daily-Living Conditions. Curr. Biotechnol. 2015, 4, 4–15.
[CrossRef]

20. Nightingale, T.E.; Walhim, J.-P.; Thompson, D.; Bilzon, J.L.J. Predicting Physical Activity Energy Expenditure in Manual
Wheelchair Users. Med. Sci. Sports Exerc. 2014, 46, 1849–1858. [CrossRef] [PubMed]

21. Garciá-Massó, X.; Serra-Anõ, P.; Gonzalez, L.M.; Ye-Lin, Y.; Prats-Boluda, G.; Garcia-Casado, J. Identifying Physical Activity Type
in Manual Wheelchair Users with Spinal Cord Injury by Means of Accelerometers. Spinal Cord 2015, 53, 772–777. [CrossRef]
[PubMed]

22. Nightingale, T.E.; Walhin, J.-P.; Thompson, D.; Bilzon, J.L.J. Influence of Accelerometer Type and Placement on Physical Activity
Energy Expenditure Prediction in Manual Wheelchair Users. PLoS ONE 2015, 10, e0126086. [CrossRef]

23. Maijers, M.C.; Verschuren, O.; Stolwijk-Swüste, J.M.; van Koppenhagen, C.F.; de Groot, S.; Post, M.W.M. Is Fitbit Charge 2 a
Feasible Instrument to Monitor Daily Physical Activity and Handbike Training in Persons with Spinal Cord Injury? A Pilot Study.
Spinal Cord Ser. Cases 2018, 4, 1–10. [CrossRef]

24. Moreno, D.; Glasheen, E.; Domingo, A.; Panaligan, V.B.; Penaflor, T.; Rioveros, A.; Kressler, J. Validity of Caloric Expenditure
Measured from a Wheelchair User Smartwatch. Int. J. Sports Med. 2020, 41, 505–511. [CrossRef] [PubMed]

25. Glasheen, E.; Domingo, A.; Kressler, J. Accuracy of Apple Watch Fitness Tracker for Wheelchair Use Varies According to
Movement Frequency and Task. Ann. Phys. Rehabil. Med. 2020, 101382. [CrossRef]

26. Newzoo Global Mobile Market Report 2019|Light Version [Internet]. Newzoo. Available online: https://newzoo.com/insights/
trend-reports/newzoo-global-mobile-market-report-2019-light-version/ (accessed on 9 February 2021).

27. García-Massó, X.; Serra-Añó, P.; García-Raffi, L.M.; Sánchez-Pérez, E.A.; López-Pascual, J.; Gonzalez, L.M. Validation of the Use
of Actigraph GT3X Accelerometers to Estimate Energy Expenditure in Full Time Manual Wheelchair Users with Spinal Cord
Injury. Spinal Cord 2013, 51, 898–903. [CrossRef] [PubMed]

28. Staudenmayer, J.; Pober, D.; Crouter, S.; Bassett, D.; Freedson, P. An Artificial Neural Network to Estimate Physical Activity
Energy Expenditure and Identify Physical Activity Type from an Accelerometer. J. Appl. Physiol. 2009, 107, 1300–1307. [CrossRef]
[PubMed]

29. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D. A Comparison of Feature Extraction Methods for the Classification of
Dynamic Activities from Accelerometer Data. IEEE Trans. Biomed. Eng. 2009, 56, 871–879. [CrossRef] [PubMed]

30. Hurd, W.J.; Morrow, M.M.; Kaufman, K.R. Tri-Axial Accelerometer Analysis Techniques for Evaluating Functional Use of the
Extremities. J. Electromyogr. Kinesiol. 2013, 23, 924–929. [CrossRef]

31. Teixeira, F.G.; Jesus, I.R.T.; Mello, R.G.T.; Nadal, J. Cross-Correlation between Head Acceleration and Stabilograms in Humans
in Orthostatic Posture. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 3496–3499. [CrossRef]

32. Catal, C.; Tufekci, S.; Pirmit, E.; Kocabag, G. On the Use of Ensemble of Classifiers for Accelerometer-Based Activity Recognition.
Appl. Soft Comput. 2015, 37, 1018–1022. [CrossRef]

33. Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
34. Shwetar, Y.J.; Veerubhotla, A.L.; Huang, Z.; Ding, D. Comparative Validity of Energy Expenditure Prediction Algorithms Using

Wearable Devices for People with Spinal Cord Injury. Spinal Cord 2020, 1–10. [CrossRef]
35. Nightingale, T.E.; Rouse, P.C.; Thompson, D.; Bilzon, J.L.J. Measurement of Physical Activity and Energy Expenditure in

Wheelchair Users: Methods, Considerations and Future Directions. Sports Med. Open 2017, 3, 10. [CrossRef] [PubMed]
36. del Rosario, M.B.; Redmond, S.J.; Lovell, N.H. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement.

Sensors 2015, 15, 18901–18933. [CrossRef]
37. Fu, J.; Jones, M.; Liu, T.; Hao, W.; Yan, Y.; Qian, G.; Jan, Y.-K. A Novel Mobile-Cloud System for Capturing and Analyzing

Wheelchair Maneuvering Data: A Pilot Study. Assist. Technol. 2016, 28, 105–114. [CrossRef] [PubMed]
38. Fu, J.; Liu, T.; Jones, M.; Qian, G.; Jan, Y.-K. Characterization of Wheelchair Maneuvers Based on Noisy Inertial Sensor Data: A

Preliminary Study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 2014, 1731–1734. [CrossRef]
39. Jee, H. Review of Researches on Smartphone Applications for Physical Activity Promotion in Healthy Adults. J. Exerc. Rehabil.

2017, 13, 3–11. [CrossRef] [PubMed]

http://doi.org/10.1038/sc.2015.193
http://www.ncbi.nlm.nih.gov/pubmed/26690858
http://doi.org/10.1249/MSS.0b013e31825e825a
http://www.ncbi.nlm.nih.gov/pubmed/22617402
http://doi.org/10.1682/JRRD.2016.01.0006
http://doi.org/10.2165/00007256-200333090-00004
http://doi.org/10.1007/s10916-017-0763-y
http://doi.org/10.2174/2211550104666150227220930
http://doi.org/10.1249/MSS.0000000000000291
http://www.ncbi.nlm.nih.gov/pubmed/25134004
http://doi.org/10.1038/sc.2015.81
http://www.ncbi.nlm.nih.gov/pubmed/25987002
http://doi.org/10.1371/journal.pone.0126086
http://doi.org/10.1038/s41394-018-0113-4
http://doi.org/10.1055/a-1088-5629
http://www.ncbi.nlm.nih.gov/pubmed/32176933
http://doi.org/10.1016/j.rehab.2020.03.007
https://newzoo.com/insights/trend-reports/newzoo-global-mobile-market-report-2019-light-version/
https://newzoo.com/insights/trend-reports/newzoo-global-mobile-market-report-2019-light-version/
http://doi.org/10.1038/sc.2013.85
http://www.ncbi.nlm.nih.gov/pubmed/23999111
http://doi.org/10.1152/japplphysiol.00465.2009
http://www.ncbi.nlm.nih.gov/pubmed/19644028
http://doi.org/10.1109/TBME.2008.2006190
http://www.ncbi.nlm.nih.gov/pubmed/19272902
http://doi.org/10.1016/j.jelekin.2013.03.010
http://doi.org/10.1109/EMBC.2012.6346719
http://doi.org/10.1016/j.asoc.2015.01.025
http://doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
http://doi.org/10.1038/s41393-020-0427-5
http://doi.org/10.1186/s40798-017-0077-0
http://www.ncbi.nlm.nih.gov/pubmed/28251597
http://doi.org/10.3390/s150818901
http://doi.org/10.1080/10400435.2015.1095810
http://www.ncbi.nlm.nih.gov/pubmed/26479684
http://doi.org/10.1109/EMBC.2014.6943942
http://doi.org/10.12965/jer.1732928.464
http://www.ncbi.nlm.nih.gov/pubmed/28349027

	Introduction 
	Methods 
	Subjects 
	Instrumentation 
	Procedure 
	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

