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Abstract

Acute myocardial infarction (MI) and its consequences are the most common and lethal 
heart syndromes worldwide and represent a significant health problem. Following MI, 
apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and 
of the resultant myocardial remodeling. However, in recent years, it has been discovered 
that, following MI, cardiomyocytes could activate autophagy in an attempt to protect 
themselves against ischemic stress and to preserve cardiac function. Although initially 
seen as two completely separate responses, recent works have highlighted the intertwined 
crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the 
mechanisms and the molecular players involved in this phenomenon and have identified 
in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with 
important roles in the heart, one of the major regulator. Thus, the aim of this mini review is 
to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, 
a detailed understanding of the crosstalk between apoptosis and autophagy in these 
pathologies and how HMGB1 regulates them would be of tremendous help in developing 
novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish 
tissue injury following MI.

High mobility group box 1 (HMGB1) is a small protein, 
highly conserved in evolution across mammalian species 
and considered the prototype of damage-associated 
molecular patterns (DAMPs). DAMPs usually have defined 
roles inside the cell but once passively released or actively 
secreted by stressed cells, can activate inflammation and 
eventually tissue repair through the interaction with 
different cellular receptors, mainly pattern recognition 
receptors (PPRs) (1). Inside the cell, HMGB1 is involved 

in a number of DNA-related activities such as DNA repair, 
transcription and recombination and in the regulation of 
apoptosis/autophagy balance. Once in the extracellular 
space, it is involved in a variety of different processes such 
as inflammation, proliferation, differentiation, migration, 
invasion and tissue regeneration (2). The ability to 
translocate from a cellular compartment to another 
is mainly due to its post-translational modifications, 
in particular to acetylation and phosphorylation (3). 
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Moreover, the extracellular activity of HMGB1 is regulated 
by its redox state. Indeed, HMGB1 can act as a chemokine 
in its reduced form while as a pro-inflammatory cytokine 
when it is partially oxidated (2).

Role of HMGB1 in the  
immuno-inflammatory-reparative response

A large number of papers describe HMGB1 as a leaderless 
cytokine (similar to other pleiotropic immuno-
inflammatory modifiers, such as IL-1 and FGF family 
members), underscoring its multiple roles in the 
complex response to cell damage (4). However, unlike 
other inflammatory cytokines, HMGB1 is constitutively 
expressed in almost all cell types and its functional 
adaptation to different physiopathological inflammatory 
conditions is mainly achieved by changes in its cellular 
localization (2).

The response to cell damage includes at least six main 
interrelated sequential aspects in all of which HMGB1 
may play a central role.

1. Sensing the cell damage or the damaging agents:

HMGB1 is mostly localized into the nucleus but, upon 
cellular stress and damage, it can translocate to the 
cytoplasm and be actively secreted from the cell. In 
sublethally stressed cells or during apoptosis, HMGB1 
can be released in the extracellular space docked in 
vesicles of various size, macrovesicles and exosomes. In 
the presence of necrosis, HMGB1 is passively released 
in the extracellular space (2).

2. Signaling and alerting close/distant cells and tissue:

Once in the extracellular space, HMGB1 can interact 
with different receptors, such as RAGE, TLRs and 
CXCR4 among others, present on the surface of a 
variety of cells, in particular on that of the immune 
compartment (5).

3. Activating natural immunity and inflammatory 
response:

Activated HMGB1 receptors typically generate a 
signal cascade that ends up in the activation of 
proinflammatory master transcription factors (TFs), 
such as NFkB, AP1, CREB, STAT3, NFAT and myogenin, 
all involved in the transcription of genes that 
participate in the immune-inflammatory-reparative 
response such as cytokines and chemokines and their 
receptors, metalloproteinases, adhesion molecules, 
phagocytic apparatus and cytoskeletal constituents (6).

4. Modulating all lymphoid cell of immune response:

Both the humoral and cellular forms of the 
adaptive immune response are affected by different 
subpopulations of lymphoid cells, whose function is 
in turn regulated by HMGB1 (7).

5. Regulating resolution and/or persistence of 
inflammation:

HMGB1 is a potent modulator of the inflammatory 
response. It can, indeed, stop the response leading 
to resolution or reinforce and prolong it, thus 
driving to chronic inflammation. The persistence 
of the inflammatory response is responsible for the 
inflammation-associated damage and chronic repair 
and leads to fibrosis and scar (2).

6. Inducing regeneration/repair of tissue damage:

HMGB1 activates several genes involved in cell/tissue 
repair. This process includes three different aspects in 
which HMGB1 is involved: (a) Disposal of intracellular 
damaged components and necrotic cell debris. (b) 
Proliferation and differentiation of stem cells to replace 
dead cells, as well as the transcription and synthesis 
of components (such as cytoskeletal, mitochondrial, 
enzymatic proteins) to recover the function of 
sublethally damaged cells. (c) Activation of TGF-gene 
family for extracellular matrix (ECM) molecule synthesis. 
Importantly, in chronic inflammation, this pathway 
is abnormally regulated or prolonged leading to scar, 
fibrosis and tissue/organ functional insufficiency (8).

Apoptosis/autophagy cross talk

In the past years, programmed cell death (PCD) was 
synonymous with apoptosis; however, recently, alternative 
cell death mechanisms have been described (9) as well as 
their interconnection.

Apoptosis has a fundamental role in physiological and 
pathological conditions (10) and may be triggered either 
by extrinsic or intrinsic stimuli, resulting in a cascade 
of molecular events (9) that leads to the proteolytic 
destruction of the cell (10).

However, apoptosis is not acting by itself in regulating 
the complex and well-controlled process of cell death. 
Accumulating evidence reveals that apoptosis can 
indeed cooperate, antagonize or assist autophagy, thus 
influencing differentially the destiny of the cell (11).

Autophagy is a self-degradative process that, under 
nutrient deprivation or stress, selectively delivers 
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cytoplasmic material and intracellular organelles to 
lysosomes for degradation or recycling of cellular 
components (12). A low level of constitutive autophagy 
has an important housekeeping role in the normal 
turnover of long-lived proteins and whole organelles and 
is therefore crucial for promoting cell survival during 
stress conditions (13) (Figs 1 and 2).

Autophagy and apoptosis often occur in the same 
cell: autophagy is induced in response to different stresses 
that could trigger apoptosis, in an attempt of the cells to 
survive (11). Thus, autophagy seems to be a cytoprotective 
mechanism against cell death (14). Nevertheless, it might 
also become harmful and promote cell death under 
specific conditions (12).

The crosstalk between apoptosis and autophagy may 
represent an evolutionary advantage to cells, since it 
allows a more controlled response to a given stress signal 
and homeostasis maintenance (11). However, the decision 
to switch from the autophagic process to the apoptotic 
state is complex and not completely understood. Multiple 
direct and indirect interactions between these processes 
have been described, and it is likely that each pathway 
diverts and readjusts proteins from the other to promote 
its own mechanism (11).

HMGB1’s impact on apoptosis 
and autophagy

HMGB1 is a critical regulator of the crosstalk between 
apoptosis and autophagy and participates in their 
modulation in a location- and post-translational 
modification-dependent manner (Fig. 3). In the nucleus, in 
response to stress stimuli, HMGB1 regulates the expression 
of the heat shock protein β-1 (HSPB1), responsible for the 
intracellular trafficking during mitophagy and autophagy, 
thus attenuating the apoptotic response (15). In the 
cytosol of immortalized embryonic fibroblasts and cancer 
cells, disulfide HMGB1 forms complexes with Beclin-1, 
determining its dissociation from BCL-2 and thus sustaining 
autophagy (16). In intestinal epithelial cells, instead, 
HMGB1 regulates the crosstalk autophagy/apoptosis by 
directly interacting with Beclin1 and ATG5 and blocking 
their calpain-mediated cleavage during inflammation, 
therefore maintaining their pro-autophagic functions (17). 
Indeed, in the absence of HMGB1, Beclin-1 and ATG5 are 
cleaved and transformed in pro-apoptotic effectors.

Finally, in cancer cells, exogenous HMGB1 can induce 
autophagy when reduced and promote apoptosis in its 
oxidized form (18).

The role of HMGB1 in the regulation of cell fate 
appears to be common across the majority of cell types. 
However, the study of Huebener et al. (19) showed that in 
cells characterized by an elevated number of mitochondria, 
such as hepatocytes or cardiomyocytes, HMGB1 deletion 
did not alter the structure of the mitochondria and the 
long-term survival of the cell. However, as suggested by 
Zhu et  al. (17), this could be due to the fact that basal 
level of autophagy does not require HMGB1 or that 
these cells in normal condition could compensate for its 
loss. Indeed, in the model of infectious or inflammatory 
disease in different organs, HMGB1 deletion leads to an 
increase in cell death (20, 21, 22).

Figure 1
Autophagy in ischemic/hypoxic myocardial damage. (A) Massive 
autophagy in a myocardiocyte after 4–5 h of ischemia. Autophagosomes 
contain a large variety of cell components, including degraded 
membranes (lipoperoxidation?), glycogen β-particles, ribosomes and 
indigestible material (lipofuscins). Sarcomeres are disorganized. (B) Detail 
of fusing phagosomes: some components may derive from disorganized 
and digested mitochondria. (C) Myocardium from a patient treated with 
Adriamycin (doxorubicin). Autophagocytosis of ROS-damaged subcellular 
components is massive and comparable to that induced by ischemia, 
shown in (A).
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HMGB1-mediated modulation of apoptosis 
and autophagy in ischemic heart diseases

A crosstalk between autophagy and apoptosis has been 
documented in different heart diseases (14), where the 
multiple features of apoptosis, necrosis and autophagy 
have been simultaneously observed. However, while 
the detrimental effects of apoptosis have been widely 
demonstrated, the role of autophagy is still controversial. 
Indeed, it is still unclear whether autophagy represents 
a signal for cardiomyocyte repair or a suicide pathway 
for failing cardiomyocytes. This is especially true in the 
context of ischemia/reperfusion injury (23). Considering 
the debated role of HMGB1 in cardiovascular diseases (24) 
and in the regulation of cell fate, the main aim of this 
review is to provide an overview of the effects of HMGB1-
mediated apoptosis and autophagy in the setting of 
different heart diseases.

In the context of acute myocardial infarction (MI), 
the effect of HMGB1 on cardiomyocyte survival has 
been investigated in two in vivo studies with different 
conclusions. Fei-Qi and colleagues demonstrated 
in transgenic mice overexpressing the angiotensin-
converting enzyme 2 (ACE2), that, under acute 
MI, reduced levels of circulating HMGB1 and of 
its downstream pro-inflammatory cytokines were 
associated with decreased infarct size and apoptosis (25).  

These cardioprotective effects of ACE2 were attributed 
to a decreased inflammation. However, all the analyses 
were performed 4 weeks following MI, a time point when 
the inflammatory response is resolved and the reparative 
process prevails. On the other end, the study of Foglio 
et al. showed that HMGB1 treatment, immediately after 
coronary artery ligation, induced cardiac repair not 
only by stimulating cardiac regeneration but also by 
inducing cardiomyocyte survival (26). Specifically, 3 days 
following MI, HMGB1 determined the attenuation of 
cardiomyocyte apoptosis and the induction of autophagy, 

Figure 2
Mitophagy in ischemic/hypoxic myocardial damage. (A) After 3-h 
ischemia, mitochondria show the earliest signs of damage, including 
moderate-to-severe swelling with inhomogeneous, vacuolated and 
electron-clear (water increase!) matrix and disorganized and/or 
fragmented cristae. In contrast, the sarcomeres are still well organized 
(moderately relaxed as shown by visible I-band!) suggesting that 
sarcolemma and sarcoplasmic reticulum are intact with a still preserved 
cytosolic Ca++ homeostasis. (B) Mitophagy: detail of an early formation of 
phagosome in which double membrane is segregating two moderately 
swollen mitochondria.

Figure 3
Critical role of HGMB1 in the complex interplay between apoptosis and 
autophagy. HMGB1 participates in the modulation of apoptosis and 
autophagy through different pathways depending on its cellular 
localization. In the cytosol, HMGB1 forms complexes with Beclin-1, 
determining its dissociation from the anti-apoptotic protein Bcl-2 and 
thus inducing autophagy and inhibiting apoptosis. In the nucleus, HMGB1 
regulates the expression of the heat shock protein β-1 (HSPB1), 
responsible for the intracellular trafficking during autophagy and the 
attenuation of the apoptotic response through prevention of caspases 
activation. Finally, extracellular HMGB1 regulates the crosstalk 
autophagy/apoptosis by binding to the Receptor for Advanced Glycation 
End products (RAGE), which inhibits the mammalian target of rapamycin 
(mTORC) and activates the ERK1/2/MAPK pathway.
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protective during acute MI, leading to an improvement 
in cardiac function 1 week after MI.

The reason of this discrepancy could be most likely 
attributed to the different experimental conditions: 
endogenous vs exogenous HMGB1, late vs early HMGB1-
mediated effects, detection of apoptosis 4 weeks vs 3 days 
post MI. In the first study, HMGB1 exerted its effects 
during the inflammatory response, possibly exacerbating 
the detrimental effects triggered by inflammation, while 
in the second study it played its role before the onset of 
inflammation.

HMGB1 is likely to play a role in attenuating apoptosis 
of myocardial cells also in the failing heart. Indeed, after 
doxorubicin-induced cardiomyopathy, cardiac apoptosis 
was significantly reduced in mice with cardiac-specific 
overexpression of HMGB1 (HMGB1-Tg) compared with 
WT mice. This attenuation was related to the ability of 
HMGB1 to increase the expression of the HSPB1, thus 
preventing caspase activation (27).

Apoptosis has a major role also in the context 
of myocardial I/R injury. It occurs, indeed, during 
ischemia and is boosted by the reperfusion event (28). 
Different studies have proposed to target endogenous 
HMGB1 to reduce cardiac apoptosis following I/R injury. 
Accordingly, the cardioprotective role exerted by several 
drugs in the model of I/R injury has been attributed to 
their ability to inhibit endogenous HMGB1 expression. 
For instance, pretreatment with minocycline, an 
antibiotic with anti-apoptotic properties, determined a 
reduction in the levels of HMGB1 in a rat model of I/R. 
Since, in vitro, exogenous HMGB1 significantly decreased 
cell viability and promoted the apoptosis of neonatal rat 
ventricular myocytes in a dose-dependent manner, the 
authors suggested that minocycline could protect against 
cardiomyocytes apoptosis and myocardial I/R injury 
by inhibiting HMGB1 expression (29). Similar results 
were obtained with picroside II pretreatment, an active 
compound that has already been reported to significantly 
improve the neurobehavioral function and inhibit 
neurocytes apoptosis through the inhibition of the TLR-4/
NfKb pathway in a rat model of middle cerebral artery 
occlusion and reperfusion (30). Interesting, treatment 
with picroside II before ischemia was able to protect from 
I/R injury also the myocardium as showed by the decrease 
in infarct size, cardiomyocyte apoptosis and activity of 
CK and LDH. According to the authors, these effects were 
partly due to the inhibition of the HMGB1-RAGE/TLR2/
TLR4-NfkB signaling pathway (31). The same pathway has 
been found to be affected by ethyl pyruvate (EP). Indeed, 
EP treatment, by inhibiting the HMGB1-RAGE/TLR-NfkB 

axis, decreased infarct size and apoptosis following I/R. In 
rat myocardium, upon reperfusion following a period of 
ischemia, EP treatment reduced the Bax/Bcl-2 ratio both 
under normoglycemic and hyperglycemic conditions and 
determined a decrease in the expression levels of TNF-α, 
IL-1β and IL-6 only under hyperglycemia (32, 33).

Ding and colleagues firstly explored the role of the 
HMGB1-TLR4 axis in triggering cardiomyocytes apoptosis 
by using a TLR4-mutant mouse model (34, 35). When the 
hearts of these transgenic mice were subjected to 30 min 
of ischemia followed by 6 h of reperfusion, the number of 
neutrophils and the levels of HMGB1 and inflammatory 
cytokines were lower compared to that of WT mice, 
leading to a marked decrease in the ischemic injury. 
Further, results showed decreased apoptotic indices, 
increased expression of Bc-l2 and decreased expression of 
Bax prompting the authors to suggest that HMGB1 could 
mediate neutrophil recruitment and worsen myocardial 
I/R injury by activating the TLR4-dependent pathway and 
triggering cardiomyocyte apoptosis.

Very recently, the cardioprotective effects of another 
compound with potent anti-inflammatory and anti-
tumor activities, that is celastrol, has been attributed to 
the activation of PI3/Akt pathway and to the consequent 
inhibition of HMGB1. In a rat model of myocardial I/R 
injury, celastrol treatment determined the attenuation 
not only of myocardial apoptosis but also of autophagy, 
whose activation has been considered deleterious in the 
context of I/R injury (36).

Different in vitro studies have also analyzed HMGB1-
mediated autophagy in the model of hypoxia and 
reoxygenation.

Rat cardiomyocytes, overexpressing HMGB1 and 
subjected to hypoxia and reoxygenation injury, were 
characterized by enhanced apoptosis and autophagy (37, 
38). Interestingly, another study showed that endogenous 
HMGB1, generated by cardiomyocytes subjected to 
anoxia and reoxygenation (A/R), a model that correlates 
in vitro to I/R, promoted I/R-induced myocardial apoptosis 
by potentiating the effect of TNFα/JNK (39).

Another anti-inflammatory cytokine, interleukin-33, 
showed protective effects against myocardial I/R injury 
by inhibiting inflammatory responses and attenuating 
cardiomyocyte apoptosis as indicated by an increase in 
the ratio of Bcl-2 to Bax and a reduction in the cleaved-
caspase-3 expression and in the apoptotic index. The 
authors proposed that IL33 attenuated cardiac apoptosis 
by inhibiting the release of HMGB1 and suggested a 
possible involvement of the P38 MAPK signaling pathway 
in this effect (40).
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The inhibition of endogenous HMGB1, by means 
of two specific HMGB1 inhibitors, that is glycyrrhizin 
and BoxA, has demonstrated to attenuate apoptosis. 
Specifically, glycyrrhizin is a natural compound that 
inhibits the chemotactic and mitogenic functions of 
HMGB1 and therefore could have great therapeutic 
potential to prevent I/R injury in various organs. 
Zhai and colleagues showed that in the hearts of rats 
undergoing 30 min of ischemia and 24 h of reperfusion, 
glycyrrhizin treatment, just before reperfusion, induced 
a smaller infarct size and a reduction in the serum levels 
of HMGB1 and of the related inflammatory markers 
as TNFα and IL6. Importantly, extracellular HMGB1 
inhibition resulted in the reduction of myocardial 
apoptosis and JNK/Bax pathway activation. All these 
results were reversed by administration of recombinant 
HMGB1 (41).

BoxA is a domain that has been shown to antagonize 
the extracellular activity of the full-length HMGB1 (41) 
and has been recently used to demonstrate a possible 
involvement of miR21 in mediating the effects of 
BoxA following I/R injury. Indeed, treatment with 
recombinant BoxA showed a remarkable protective effect 
against I/R injury and suppressed the activation of the 
proinflammatory cascade (42). Since preinjection of miR-
21 in vivo attenuated ischemia-induced cardiomyocyte 
damage by decreasing apoptosis, Han and colleagues 
hypothesized that recombinant BoxA pretreatment in 
rats undergoing I/R injury could attenuate cardiomyocyte 
apoptosis and, therefore, myocardial I/R damage, through 
miR21. This hypothesis was confirmed by the dramatic 
increase of myocyte apoptosis following treatment with 
BoxA and antagomiR21, demonstrating a synergistic 
effect between HMGB1, BoxA and miR21 (43).

All the studies investigating the role of HMGB1 in 
myocardial I/R injury showed that HMGB1 always induces 
apoptosis and autophagy, therefore, exerting detrimental 
effects on the heart. Most likely, these findings could be 
explained by the fact that the inflammatory response, 
present during the reperfusion, is much more severe than 
after permanent ligation, both in the acute and in the 
late phase. In this context, HMGB1, both endogenous 
and exogenous, is oxidized and promotes apoptosis and 
autophagy contributing to worsen ventricular function.

In conclusion, we hypothesize (Fig. 4) that when 
inflammation is sustained, that is in the first 2–3 days 
following MI or during I/R, HMGB1 is present in its 
oxidized form and induces both apoptosis and autophagy 
worsening cardiac function. On the contrary, in an 
environment where inflammation is at low grade, i.e. 
immediately after MI and during heart failure, HMGB1 
is also present in other redox forms as the reduced one 
and it exerts an anti-apoptotic and (following acute MI) a 
pro-autophagic effect promoting cardiac repair.
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Figure 4
A schematic representation of the role of 
post-ischemic inflammatory response in 
determining HMGB1 action in heart diseases. After 
ischemic insults, inflammation grade is crucial to 
determine HMGB1 redox status, and, as a result, 
whether HMGB1 exerts protective or detrimental 
effects in heart diseases. In particular, in an 
environment characterized by the presence of 
high-grade inflammation (i.e. in the first 2–3 days 
following MI or during I/R), HMGB1 is present in its 
oxidized form and induces both apoptosis and 
autophagy, worsening cardiac function. On the 
contrary, when inflammation is low grade  
(i.e. immediately after MI or during HF), HMGB1 is 
present in its reduced form and it exerts 
anti-apoptotic and (even just following acute MI) 
pro-autophagic effects, promoting cardiac repair.
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