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Abstract

Mendelian randomization (MR) is an instrumental variable (IV) method using genetic vari-

ants such as single nucleotide polymorphisms (SNPs) as IVs to disentangle the causal rela-

tionship between an exposure and an outcome. Since any causal conclusion critically

depends on the three valid IV assumptions, which will likely be violated in practice, MR

methods robust to the IV assumptions are greatly needed. As such a method, Egger regres-

sion stands out as one of the most widely used due to its easy use and perceived robust-

ness. Although Egger regression is claimed to be robust to directional pleiotropy under the

instrument strength independent of direct effect (InSIDE) assumption, it is known to be

dependent on the orientations/coding schemes of SNPs (i.e. which allele of an SNP is

selected as the reference group). The current practice, as recommended as the default set-

ting in some popular MR software packages, is to orientate the SNPs to be all positively

associated with the exposure, which however, to our knowledge, has not been fully studied

to assess its robustness and potential impact. We use both numerical examples (with both

real data and simulated data) and analytical results to demonstrate the practical problem of

Egger regression with respect to its heavy dependence on the SNP orientations. Under the

assumption that InSIDE holds for some specific (and unknown) coding scheme of the

SNPs, we analytically show that other coding schemes would in general lead to the violation

of InSIDE. Other related MR and IV regression methods may suffer from the same problem.

Cautions should be taken when applying Egger regression (and related MR and IV regres-

sion methods) in practice.

Author summary

Egger regression (MR-Egger) has been increasingly applied in Mendelian randomization

(MR) analyses for its easy use and perceived robustness, though MR-Egger requires the

InSIDE assumption, which in turn depends on the orientation of SNPs. The implications

of this dependence to its practical use may not be well understood yet. In particular, it is

unrealistic to assume that the InSIDE assumption holds for many or all arbitrarily chosen

coding schemes of the SNPs; instead, it is more reasonable to assume that InSIDE holds

for only one specific, but usually unknown, coding scheme of SNPs, under which,
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however, we show that use of other coding schemes of SNPs in general leads to the viola-

tion of InSIDE, and thus to biased causal estimates. The technical reason is due to the

seemingly non-restrictive assumption of the random direct effects with a non-zero mean

(i.e. directional pleiotropy) in MR-Egger (and related methods), which depends on the

orientation of SNPs. This problem persists for many other related MR and instrumental

variable regression methods, regardless whether GWAS summary data or individual-level

data are used. Given the popularity of MR-Egger in practice, one should be aware of this

issue and hence be cautious when applying MR-Egger.

Introduction

With the increasing availability of large-scale GWAS summary data nowadays, Mendelian ran-

domization (MR) has become a useful tool in epidemiologic studies for identifying determi-

nants or causes of a complex trait or disease [1–3]. In particular, the validity of MR findings

relies on three important instrumental variable (IV) assumptions, in which a valid IV used in

MR must be

(i). associated with the exposure X (relevance assumption);

(ii). not associated with any hidden confounder U (independence assumption);

(iii). not associated with the outcome Y conditional on the exposure and hidden confounder

(exclusion restriction).

While assumption (i) is more likely to hold by selecting IVs strongly associated with the

exposure, violations of assumptions (ii) and/or (iii) are more common in practice due to the

wide-spread horizontal pleiotropy. In particular, violation of assumption (ii) introduces the

so-called correlated pleiotropy (i.e. the pleiotropic effects of SNPs on Y are correlated with

their effects on X); uncorrelated pleiotropy results if assumption (iii) is violated and the direct

effects on Y are uncorrelated with those on X. Egger regression is an MR method that could

give a consistent estimate when the exclusion restriction assumption is violated for all IVs, but

requiring a milder so-called InSIDE assumption, that is, Instrument Strength Independent of

Direct Effect [4]. In general, the InSIDE assumption does not hold if assumption (ii) is vio-

lated. But other reasons such as a bidirectional relationship between X and Y could also cause

the violation of InSIDE assumption [5]. Due to both its simplicity and weaker assumptions (in

allowing all IVs to have direct effects on the outcome with directional pleiotropy), Egger

regression has become one of the most popular MR methods: as one evidence, the number of

the citations of one key reference [4] has been increasing every year, totaling over 2000, since

its publication in 2015.

Despite its claimed robustness to (uncorrelated) pleiotropy, some authors have noted that

Egger regression is dependent on the orientation (or coding) of each SNP/IV [6]. If a (usually

biallelic) SNP has two alleles, say an A allele and a G allele, its association value with a trait

using A allele as the reference allele would be the opposite of that using G as the reference.

Usually we do not expect the analysis conclusion to vary with the coding of a SNP (or any

other variables). This property of Egger regression is both surprising and undesirable; we will

show in this paper that it is indeed problematic. As to be shown in the real data analysis, when

we applied Egger regression to 48 risk factor-disease pairs, the results can be largely different

with various orientations or coding schemes of the SNPs being used. One may wonder

whether this phenomenon is just due to finite sample sizes. We point out that this problem
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exists even for large samples; the GWAS sample sizes in our example of the Height-CAD pair

are 253288 and 547261 respectively, and the number of IVs used is 986. We will confirm this

analytically and via simulations.

Some authors recognized this problem, mainly from its influence on estimating and inter-

preting the intercept term (i.e. average pleiotropic effect) in the Egger regression model, and

thus proposed the default orientation of the SNPs so that they are all positively associated with

the exposure as recommended and implemented in some popular MR software packages [7,

8], while (implicitly) imposing the InSIDE assumption being satisfied with this specific default

orientation [6]. We’d argue however that perhaps this problem is not yet as fully and widely

appreciated as it should be, including its implications in practice, as the InSIDE assumption

being used needs to be clarified. We believe that it is more realistic to assume that the InSIDE

assumption holds only for some unknown oracle coding; under this assumption, how would

various orientations of SNPs impact the causal estimate? If there are biases, are they going to

disappear as the sample size increases? In this paper, we will investigate this problem using

simulation studies, followed by analytical explanations, and hopefully raise attention to this

problem. We show that the problem carries over to similar IV regression methods with indi-

vidual-level data [9].

Methods

Data and model

Let ðbbXj; bsXjÞ and ðbbYj; bsYjÞ denote the estimate and its standard error for SNP-exposure and

SNP-outcome associations respectively from two independent GWAS summary datasets. By

default we assume that the second IV assumption (independence assumption) holds unless

specified otherwise. We consider the following true causal model (Fig 1):

X ¼
Xm

j¼1

bXjGj þ U þ �X;

Y ¼
Xm

j¼1

ajGj þ yX þ U þ �Y ;

ð1Þ

where �X and �Y are independent random errors, and (�X, �Y) ⫫ (G1, . . ., Gm, U), U is an

unmeasured (aggregated) confounder, independent with �X and �Y; θ is the causal effect of

interest, and αj is the direct or pleiotropic effect of Gj on the outcome Y not mediated through

the exposure X. Throughout the paper, we assume that the m SNPs are mutually independent.

The association between SNP Gj and the outcome Y, βYj, can be decomposed as:

bYj ¼ aj þ ybXj: ð2Þ

SNP Gj is an invalid IV with a pleiotropic/direct effect if αj 6¼ 0.

The GWAS summary statistics bbXj and bbYj, j = 1, . . ., m, are usually computed from simple

linear regressions: bbXj ¼dcovðX;GjÞ=cvarðGjÞ and bbYj ¼dcovðY;GjÞ=cvarðGjÞ, wheredcovðÞ and

cvarðÞ are the sample covariance and sample variance respectively. When G1, . . ., Gm are mutu-

ally independent, we obtain that bbXj and bbYj follow the asymptotic normal distributions with
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means βXj and βYj respectively. Given large sample sizes of GWAS as usual, we have

bbXj ¼ bXj þ �Xj; �Xj � N ð0; s2
XjÞ; j ¼ 1; . . . ;m; ð3Þ

bbYj ¼ aj þ ybXj þ �Yj; �Yj � N ð0; s2
YjÞ; j ¼ 1; . . . ;m: ð4Þ

Throughout the paper, as usual for Egger regression, we impose the no-measurement error

(NOME) assumption on the SNP-exposure estimates, i.e., σXj = 0 and bbXj ¼ bXj. We also

assume that σYj is known or well estimated as bsYj.

Inverse-variance weighted (IVW) method

The inverse-variance weighted (IVW) method can be viewed as a meta-analysis of the ratio

estimates of the causal parameter θ, bbYj=
bbXj, across all SNPs [10]. Under the NOME assump-

tion on SNP-exposure associations, the overall estimator of the causal effect can be obtained

by averaging across all m SNPs using inverse-variance weighting with weights bb2
Xj=bs

2
Yj:

byIVW ¼

Pm
j¼1
bbYj
bbXjbs

� 2
Yj

P
j
bb2

Xjbs
� 2
Yj

: ð5Þ

The same estimator can be also obtained from a weighted linear regression of bbYj on bbXj with

weights (bs � 2
Yj ) and with the intercept constrained to be zero. When there is no heterogeneity in

the Wald ratio estimates of θ based on the individual IVs, the variance of byIVW is 1=
P

j
bb2

Xjbs
� 2
Yj ,

which corresponds to a fixed-effect (FE) meta-analysis, denoted IVW(FE). Otherwise, a multipli-

cative random-effect model, or IVW(RE), should be preferred and the variance of byIVW is

sI=
P

j
bb2

Xjbs
� 2
Yj , where σI is an overdispersion parameter to be estimated from the residuals in the

weighted linear regression described above [6, 11]. In the presence of (balanced) pleiotropy, the

Fig 1. The true causal diagram.

https://doi.org/10.1371/journal.pgen.1010166.g001
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over-dispersion parameter (σI) allows the variance of byIVW to increase so that IVW(RE) could con-

trol the type-I error, but the point estimates of IVW(FE) and IVW(RE) are still the same [11].

While requiring the InSIDE assumption, IVW(RE), as another popular MR method closely

related to Egger regression, is however invariant to and thus has no problem with various ori-

entations of SNPs. This can be seen from Eq (5) that both the numerator and the denominator

are invariant to different orientations of SNPs. This advantage of IVW(RE) and other

approaches in modeling the mean of αj’s as 0 has been noted by others [12].

Egger regression (MR-Egger)

Egger regression (MR-Egger) is a simple modification of IVW(RE) by adding an intercept

term to capture the non-zero (weighted) average pleiotropic effect [4]:

bbYj ¼ r þ ybbXj þ �Ej; �Ej � N ð0; s2
Ebs

2
YjÞ; ð6Þ

where �Ej is a random error and s2
E � 1 is an unknown overdispersion parameter (as s2

I used

in IVW(RE)). The model can be derived from Eqs (3) and (4): under the NOME assumption,

we have

bbYj ¼ aj þ y
bbXj þ �Yj:

Treating αj as random, we have

EðbbYjj
bbXjÞ ¼ Eðajj

bbXjÞ þ y
bbXj ¼ EðajÞ þ y

bbXj ¼ r þ ybbXj;

where the second equality follows from the InSIDE assumption, and the third from the defini-

tion of E(αj) = r. Each bbXj is treated as fixed (as a covariate) in fitting the Egger regression Eq

(6). It is also clear that other parameters θ and r are treated as fixed.

When the intercept term r is equal to zero, that is, the average pleiotropic effect is zero

(known as balanced pleiotropy), the MR-Egger and IVW estimators coincide and both are

consistent estimators of the causal effect under the InSIDE assumption, which will be dis-

cussed next. When the average pleiotropic effect is not zero (known as directional pleiotropy),

it is known that the IVW estimator is not consistent anymore while the MR-Egger estimator is

consistent under the InSIDE assumption [4, 6].

The InSIDE assumption and orientation of SNPs

Throughout this paper, the InSIDE assumption is defined in model Eq (4) for a fixed number

of IVs; specifically, the InSIDE assumption holds if the sample weighted covariance between

the pleiotropic effects and SNP-exposure associations equals to zero for the set of SNPs used in

the MR analysis [6, 13]:

covwðα; βXÞ ¼

Pm
j¼1
bs � 2

Yj ðaj � �αÞðbXj �
�βXÞ

Pm
j¼1
bs � 2

Yj

¼ 0; ð7Þ

where �α and �βX are the weighted sample averages of αj and βXj respectively, with weights equal

to 1=bs2
Yj. The MR-Egger estimator is consistent under this InSIDE assumption [6]:

byEgger ¼
covwð

bβY ;
bβXÞ

varwð
bβXÞ

� !
n!1

yþ
covwðα; βXÞ

varwðβXÞ
¼ y; ð8Þ

where n is the sample size of the GWAS data.
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In Eq (2), if we use the other allele of SNP Gj as the reference, i.e., if we flip the coding of

SNP Gj, we will have its associated b
�

Xj ¼ � bXj and b
�

Yj ¼ � bYj, and the pleiotropic effect will

also change accordingly: a�j ¼ � aj. Consequently, the average pleiotropy (i.e., �α), and thus

possibly whether there is balanced or directional pleiotropy, will change. That is, the definition

of directional pleiotropy depends on the SNP coding. More importantly, it will impact whether

the InSIDE assumption holds or not in Eq (4). It is clear that the InSIDE assumption is defined

with respect to a specific coding scheme of the set of SNPs. With the intercept constrained to

be 0 in IVW, flipping the coding of any SNPs will not change the resulting IVW estimate, but

it will in general impact the resulting MR-Egger estimates of the causal parameter (i.e. the

slope parameter in Eq (6)) as well as the intercept. One exception is when we flip the coding of

all SNPs, the causal estimate from MR-Egger will remain the same. This issue has been recog-

nized by some authors; accordingly they proposed re-orientating all the SNPs to be positively

associated with the exposure [6, 14]. Although this current practice of MR-Egger allows the

users to obtain the same causal estimate under the same coding scheme for the same GWAS

data, notably it requires the assumption that InSIDE holds for this specific default orientation

of the SNPs; if this assumption does not hold, MR-Egger may not perform well as to be shown

in simulations. In the real analysis, we will show that the results of MR-Egger largely depend

on the specific coding being used. We can also see from Eq (8) that the variance of the causal

estimate in MR-Egger is inversely proportional to the weighted variance of bβX , which also

depends on the orientation of SNPs.

The NOME assumption and orientations of SNPs

The standard implementations of IVW and Egger regression as discussed in Inverse-variance

weighted (IVW) method and Egger regression (MR-Egger) both assume no-measurement-

errors (NOME) for the SNP-exposure associations. However, in practice with finite samples,

this could never hold, which can lead to biased causal estimates, even when InSIDE holds. The

impact of violation of NOME assumption on IVW and MR-Egger has been studied extensively

before [13, 15, 16]. In particular, for an unweighted Egger regression (when bs2
Yjs are the same),

as shown in Eq.(3) in [13], EðbyEggerÞ � yvarðβXÞ=varðbβXÞ; where var() is the sample variance

calculated on the set of m IVs used in the analysis. [13] proposed to use I2 = (Q − (m − 1))/Q to

estimate the ratio varðβXÞ=varðbβXÞ, where Q ¼
Pm

j¼1
ðbbXj �

�bβ XÞ
2
=bs2

Xj and
�bβ X is the mean of bβX

weighted by 1=bs2
Xj. It is clear that the degree of NOME violation in MR-Egger also depends on

the orientations of SNPs. As bbXj’s are more widely dispersed, I2 is closer to one, and the impact

of NOME violation is smaller. However, the default coding makes all bbXj to be positive and

thus I2 would be the smallest among all SNP coding schemes. As to be shown later in simula-

tions, this will lead to larger biases in the causal estimates using the default coding even when

the InSIDE assumption is satisfied.

Radial Egger regression

A closely related method, Radial-Egger [17], introduces a new form of MR-Egger:

by j
ffiffiffiffiffiwj
p
¼ r0 þ y ffiffiffiffiffiwj

p
þ �Rj; �Rj � N ð0; s2

RÞ;

where by j ¼
bbYj=

bbXj and we used the first-order weights wj ¼
bb2

Xj=bs
2
Yj. To derive the above

model, as for MR-Egger, we start from the true model Eqs (3) and (4) with the NOME
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assumption, obtaining

by j
ffiffiffiffiffi
wj

p
¼ aj

ffiffiffiffiffi
wj

p
=bbXj þ y

ffiffiffiffiffi
wj

p
þ �Yj

ffiffiffiffiffi
wj

p
=bbXj;

Eðby j
ffiffiffiffiffi
wj

p
j
ffiffiffiffiffi
wj

p
Þ ¼ Eðaj

ffiffiffiffiffi
wj

p
=bbXjj

ffiffiffiffiffi
wj

p
Þ þ y

ffiffiffiffiffi
wj

p
;

which reduces to the Radial-Egger regression model if

Eðaj
ffiffiffiffiffi
wj

p
=bbXjj

ffiffiffiffiffi
wj

p
Þ ¼ EðajsignðbbXjÞbs

� 1

Yj j
ffiffiffiffiffi
wj

p
Þ ¼ EðajsignðbbXjÞbs

� 1

Yj Þ ¼ r0;

where the second equality requires a new form of the InSIDE assumption that the (weighted)

pleiotropic effects (with respect to the default exposure-increasing coding as adopted here) are

independent of the Radial weights [17] (and as usual assuming that bs � 1
Yj is fixed). This InSIDE

assumption is similar to the one used (for the default coding) in MR-Egger. As to be shown in

the simulation, Radial-Egger indeed performed similarly to MR-Egger with the default coding.

GWAS summary data

We examined the SNP coding issue of Egger regression on 48 risk factor-disease pairs, includ-

ing 12 cardiometabolic risk factors and 4 diseases. The 12 risk factors were triglycerides (TG),

low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL) [18],

Height [19], body-mass index (BMI) [20], body fat percentage (BF) [21], birth weight (BW)

[22], diastolic blood pressure (DBP), systolic blood pressure (SBP) [23], fasting glucose (FG)

[24], Smoke and Alcohol [25]. The 4 diseases were coronary artery disease (CAD) [26], stroke

[27], type 2 diabetes (T2D) [28] and asthma [29].

The sample sizes for the 16 GWAS datasets ranged from 46 186 to 1 232 091, with a median

of 220 933. The numbers of IVs used in the 48 MR analyses ranged from 9 to 1345, with a

median of 126.

Simulation set-ups

We simulated data according to the true causal model Eq (1) with Gj * Binomial(2, 0.3), and

U; �X; �Y � N ð0; 1Þ independently. We simulated βXj from (a) a uniform distribution on

(−0.2, −0.1) [ (0.1, 0.2); (b) a uniform distribution on (−0.1, −0.03) [ (0.1, 0.2) and (c) a uni-

form distribution on (0.1, 0.3). We will refer them to Simulation (a), (b) and (c) respectively

later. In all three simulation set-ups, we considered 0%, 30%, 70% or 100% invalid IVs with

balanced pleiotropy aj � N ð0; 0:12Þ, or with directional pleiotropy aj � N ð0:1; 0:12Þ. It is

noted that for each simulation set-up, we generated IV strengths βXj’s and direct effects αj’s

from independent distributions. Although for each specific simulated dataset, the sample

covariance of βXj and αj (j = 1, . . ., m) (Eq (7)) might not be exactly equal to zero, across all

simulated datasets, the average sample covariance between βXj and αj will be (nearly) zero (see

S1 Text). Following [13], we refer this as ‘weak’ InSIDE assumption.

The causal effect θ was set to 0 or 0.2, and the number of IVs, m, to 30 or 100. For Simula-

tion (b), we also considered 500 IVs. The summary data for genetic associations were calcu-

lated for the exposure and the outcome on non-overlapping samples of individuals, each

consisting of n = 50 000 or 100 000 individuals. The oracle coding referred to the specific cod-

ing that was used to generate the simulated data under the (weak) InSIDE assumption.

In Simulation (a), the mean of SNP-exposure associations was zero, a special case we will

discuss later; Simulation (b) was more general with both positive and negative SNP-exposure

associations with a non-zero mean; Simulation (c) was also a special case with all SNP-
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exposure associations being positive. Here the SNP-exposure associations as well as the pleiot-

ropy were defined with respect to the oracle coding scheme.

We ran 1000 replications for each simulation set-up. For each simulated dataset, we applied

MR-Egger with (i) the default coding (as adopted in the current practice): we orientated SNPs

so that bbXj were all positive in Eq (6); (ii) the oracle coding: we used the coding generating the

simulated data, under which the weak InSIDE assumption was satisfied; (iii) the random cod-

ing: we randomly flipped the coding of some SNPs. We also applied IVW(RE) and Radial-

Egger for comparison.

Results

Real data example

As a motivating example, we applied MR-Egger to some large-scale GWAS summary data of

48 risk factor-disease pairs [30] using the default coding scheme (i.e., we orientated the SNPs

so that they were all positively associated with the exposure as recommended and implemented

in the popular TwoSampleMR software [7]) and a random coding scheme (i.e. we randomly

selected the reference allele for each SNP). With the default coding, Egger regression identified

7 significant pairs, whereas with the whatever coding given in the original GWAS datasets

from [30], Egger regression identified 17 significant pairs (after the Bonferroni correction).

Fig 2 shows some representative results for three pairs: Fasting glucose (FG)-Stroke, body

height-coronary artery disease (CAD) and FG-type 2 diabetes (T2D), in which we tried 999

Fig 2. Three real data examples showing different results from different coding schemes in Egger regression. Panel A: estimates of the causal effect;

Panel B: -log10(p-value)’s of the causal effect. The dashed line in each plot corresponds to the result from the default coding.

https://doi.org/10.1371/journal.pgen.1010166.g002
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random (and unique) codings plus the default one (as the dashed lines in the plot). We can see

that with different coding schemes in Egger regression, not only the point estimates of the

causal parameter varied (even from negative to positive), but also the p-values (from insignifi-

cant to highly significant), giving possibly opposite conclusions. For example, for the

FG-Stroke pair, using the default coding suggested a negative relationship (by ¼ � 0:44 with p-

value = 0.047) while using the original coding in the GWAS dataset suggested a positive rela-

tionship (by ¼ 0:17 with p-value = 0.010). These results clearly demonstrate the critical and

possibly dramatic dependence of MR-Egger on the orientation of SNPs.

We also investigated whether a larger intercept estimate (in absolute value) was obtained

when the default (i.e. exposure-increasing) coding was used in MR-Egger. We found that

using the default coding often yielded more extreme intercept estimates than using other (ran-

dom) coding schemes, but not necessarily more significant p-values (because the standard

errors of the intercept estimates were usually larger under the default coding). The details are

given in S1 Text.

Simulation results

Simulation (a): SNP-exposure associations with mean 0. In Simulation (a), we gener-

ated βXj from a uniform distribution on (−0.2, −0.1) [ (0.1, 0.2). Here we only show some rep-

resentative results while others are given in S1 Text. Fig 3 shows the distributions of the causal

Fig 3. Simulation (a) results with n = 100 000, θ = 0.2, m = 100. Empirical distributions of the estimates of the causal effect θ by the methods. Each

column corresponds to 0%, 30%, 70% or 100% invalid IVs. A: Directional pleiotropy. B: Balanced pleiotropy.

https://doi.org/10.1371/journal.pgen.1010166.g003
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estimates by each method with m = 100, n = 100 000, θ = 0.2 in the presence of directional

(Panel A) and balanced pleiotropy (Panel B). First, MR-Egger with the oracle coding per-

formed the best with unbiased estimates and smallest variances across all different scenarios.

In the case of balanced pleiotropy, MR-Egger with the oracle coding and IVW coincided with

each other as expected. In the meantime, MR-Egger with the default coding gave slightly

biased estimates towards the null. This was perhaps due to the violation of NOME assumption

with the average estimated I2 statistic about 0.921. On the other hand, the average estimated I2

statistic was 0.997 with the oracle coding. (More simulation results studying the NOME

assumption are given in S1 Text.) Despite the slight bias due to violation of NOME assump-

tion, we note that the (weak) InSIDE assumption still held under the default coding in this

simulation set-up, which will be shown in Analysis. As for Radial-Egger, we can see that it per-

formed similarly to the default coding in MR-Egger. Also, perhaps surprisingly, IVW yielded

the unbiased estimates even in the case of directional pleiotropy (Fig 3A), and we will show the

reason later. In addition, even though the (weak) InSIDE assumption still held, using the

default coding magnified the extent of the violation of NOME assumption, leading to larger

finite-sample biases. Finally, MR-Egger with the default coding yielded the largest variance for

the causal estimate, implying its low power.

Simulation (b): SNP-exposure associations with a non-zero mean. In Simulation (b),

we generated βXj from a uniform distribution on (−0.1, −0.03) [ (0.1, 0.2). Fig 4 shows the dis-

tributions of the causal estimates by each method with θ = 0.2 in the presence of directional

Fig 4. Simulation (b) results with directional pleiotropy. Empirical distributions of the estimates of the causal effect θ by the methods with 30%

invalid IVs and θ = 0.2. Each column corresponds to m = 30, 100 or 500 IVs. A: n = 50 000. B: n = 100 000.

https://doi.org/10.1371/journal.pgen.1010166.g004
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pleiotropy with 30% invalid IVs. The top row corresponds to n = 50 000 and the bottom corre-

sponds to a larger sample size of n = 100 000. As we can see, only MR-Egger with the oracle

coding gave unbiased estimates. Radial-Egger and MR-Egger with the default coding per-

formed similarly with the largest bias. Moreover, the bias did not disappear as the sample size

and the number of IVs increased. This result may seem to contradict the common belief that

MR-Egger is robust to directional pleiotropy (under InSIDE), but we will show later that the

current practice of flipping SNPs actually led to the violation of the InSIDE assumption in this

scenario, thus yielding the biased causal parameter estimates. Furthermore, this was not due to

the violation of the NOME assumption either. When we used the true βXj, instead of the esti-

mated bbXj, the bias still persisted for the default coding in MR-Egger; the details are given in S1

Text.

Fig 5 shows the results with m = 100 and n = 100 000 in the case of balanced pleiotropy. In

this case, MR-Egger with the oracle coding and IVW yielded unbiased estimates with the

smallest variance. Again, though the (weak) InSIDE assumption held under the default coding

here (with balanced pleiotropy) as to be shown in Analysis, it yielded slight under-estimation

perhaps due to the violation of NOME.

Simulation (c): All positive SNP-exposure associations. In Simulation (c), we generated

βXj to be all positive from a uniform distribution on (0.1, 0.3). As a result, the default coding

coincided with the oracle coding in this case. As shown in Fig 6, the default and oracle codings

Fig 5. Simulation (b) results with balanced pleiotropy, n = 100 000, m = 100. Empirical distributions of the estimates of the causal effect θ by the

methods. Each column corresponds to 0%, 30%, 70% or 100% invalid IVs. A: θ = 0. B: θ = 0.2.

https://doi.org/10.1371/journal.pgen.1010166.g005
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in MR-Egger had the same results with approximately unbiased estimates, as expected. Again,

Radial-Egger gave the similar results to that of the default coding in MR-Egger. On the other

hand, IVW yielded biased estimates in the presence of directional pleiotropy (panel A), but

gave unbiased estimates with balanced pleiotropy (panel B).

Analysis

In this session, we will dive into the relationship between the orientation of SNPs and the

InSIDE assumption, and the impact on the IVW and MR-Egger estimates of the causal param-

eter. For simplicity of notation, we assume that the m SNPs have the same minor allele fre-

quency so that bs2
Yj are the same and thus no need to use the weighted covariance in the

definition of InSIDE; a similar argument carries over for the general case. First, the InSIDE

assumption in Eq (7) for the oracle coding becomes:

m � covðα; βXÞ ¼
Xm

j¼1

ajbXj � m�α�βX ¼ 0 ð9Þ

If we flip the coding of some SNPs, say the first 0< k < m SNPs, and denote the new data as

ðb
�

Xj; b
�

YjÞ. That is, for j = 1, . . ., k, b
�

Xj ¼ � bXj, b
�

Yj ¼ � bYj and a�j ¼ � aj, while for others,

Fig 6. Simulation (c) results with n = 100 000, θ = 0.2, m = 100. Empirical distributions of the estimates of the causal effect θ by the methods. Each

column corresponds to 0%, 30%, 70% or 100% invalid IVs. A: Directional pleiotropy. B: Balanced pleiotropy.

https://doi.org/10.1371/journal.pgen.1010166.g006
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b
�

Xj ¼ bXj, b
�

Yj ¼ bYj and a�j ¼ aj. Then in general we have

m � covðα�; β�XÞ ¼
Xm

j¼1

a�j b
�

Xj � m�α��β�X ¼
Xm

j¼1

ajbXj � m�α��β�X 6¼ 0; ð10Þ

where the last inequality is due to
P

jajbXj ¼ m�α�βX 6¼ m�α��β�X unless under some special situa-

tions. This suggests that the default coding or an arbitrarily chosen coding in MR-Egger is

likely to lead to the violation of the InSIDE assumption, and by (8) and (10), to inconsistent

estimates.

In general, the (asymptotic) bias of the MR-Egger estimate will not diminish even for a

large m after flipping the coding of k SNPs on the basis of the oracle coding. Under the theoret-

ical model that both αj’s and βXj’s are iid from two continuous distributions each of a bounded

domain and non-zero mean, and that k/m! c 2 (0, 1) as m!1. It is easy to verify that as m
!1, we have �α ! ma say, and �α� ! ð1 � 2cÞma 6¼ ma, and similarly for �βX and �β�X. Then

with probability one we have �α�βX � �α��β�X =! 0 as m!1.

In contrast, the IVW estimate in Eq (5) after flipping the coding becomes

by�IVW ¼

Pm
j¼1
bb�Yj
bb�Xj

Pm
j¼1
ðbb�XjÞ

2
¼

Pm
j¼1
bbYj
bbXj

Pm
j¼1
bb2

Xj

¼ byIVW � !
n!1

yþ

Pm
j¼1
ajbXj

Pm
j¼1
b

2

Xj

; ð11Þ

showing that the IVW estimate is invariant to re-orientation of SNPs, and it is consistent when

∑j αj βXj is zero. Under the InSIDE assumption in Eq (9), this holds when �α ¼ 0, i.e., balanced

pleiotropy, and/or �βX ¼ 0. The latter condition explains why IVW still yielded unbiased esti-

mates even in the case of directional pleiotropy in Simulation (a), where we generated βXj from

a uniform distribution on (−0.2, −0.1) [ (0.1, 0.2).

In summary, the key issue here is that even though the InSIDE assumption holds for some

unknown oracle coding, in general it does not for the default coding or an arbitrarily chosen

coding, leading to inconsistent estimates in MR-Egger. Notably the InSIDE assumption is dif-

ficult to check [31, 32].

The problem remains with the use of individual-level data

Instead of applying MR to GWAS summary data, one can apply IV regression to model (1)

with individual-level data. With high-dimensional IVs, i.e. a large m, the InSIDE assumption is

required [9]: covðα; βXÞ ¼ 0 (or more generally,! 0 as m!1) for some oracle coding.

Using the same argument as before, if the SNPs/IVs are recoded with the corresponding α�

and β�X, under general conditions we have covðα�; β�XÞ 6¼ 0 (or /! 0), leading to the violation of

the InSIDE assumption and thus an inconsistent estimate. Corresponding to MR-Egger, we

can implement the 2-stage IV regression by imposing aj � N ðr; s2
a
Þ iid. As shown in S1 Text,

it was confirmed in the simulations that when applied to individual-level data, such an IV

regression method behaved similarly to MR-Egger, yielding biased estimates of θ for non-ora-

cle coding schemes. In contrast, the method imposing r = 0 performed similarly to IVW(RE),

invariant to re-orientations of the SNPs.

Results for other related methods

We note that other methods that incorporate Egger regression, such as MV-MR-Egger [14],

LDA MR-Egger [33], MV-IWAS-Egger [34], PMR-Egger [35], mixIE [36], strictly speaking,

would also inherit the limitations of MR-Egger, but possibly to varying extents. We applied

both PMR-Egger and mixIE to simulated data as detailed in S1 Text. Under some general
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conditions PMR-Egger might not perform well. On the other hand, mixIE was much more

robust to various orientations of SNPs except when the proportion of invalid IVs was

extremely high (e.g. close to 100%), which might be rare in practice. This is because mixIE

depends on the IVW estimate (based on detected valid IVs) to a larger degree than on the

MR-Egger estimate (based on detected invalid IVs), and often it could correctly identify valid

IVs. Furthermore, mixIE is also more robust to mild to moderate violations of the InSIDE

assumption [36].

We also applied some robust MR methods that are invariant to allele coding, including

MR-cML [37] and MR-RAPS [12]. In simulations these methods performed well when the

proportion of invalid IVs were not high; otherwise, e.g. when all IVs were invalid, only MR-Eg-

ger (with the oracle coding) performed well. The results are shown in S1 Text.

Irrelevant IVs

Albeit not the main point here, we point out a related issue that MR-Egger, or more specifically

the InSIDE assumption, is not robust to the presence of irrelevant IVs (i.e. with the IV rele-

vance assumption violated). Suppose that we mistakenly use m0� 1 irrelevant IVs with βXj = 0

for j = m + 1, . . ., m + m0, in addition to m IVs used before. Even if the oracle coding is known

and the InSIDE holds for the first m IVs, we have

ðmþm0Þcovðα; βXÞ ¼
Xmþm0

j¼1

ajbXj � ðmþm0Þ�α�βX ¼
Xm

j¼1

ajbXj � ðmþm0Þ�α�βX 6¼ 0; ð12Þ

because, by (9),
Pm

j¼1
ajbXj ¼ ð

Pm
j¼1
ajÞð
Pm

j¼1
bXjÞ=m 6¼ ð

Pmþm0

j¼1
ajÞð
Pm

j¼1
bXjÞ=ðmþm0Þ in

general unless under special cases such as
Pm

j¼1
bXj ¼ 0, or

Pm
j¼1
aj ¼

Pmþm0

j¼1
aj ¼ 0. Note that

this conclusion holds regardless whether the irrelevant SNPs have direct effects or not (unless

under some special cases). Hence, in general the InSIDE assumption would be violated if all m
+ m0 IVs are used, leading to an inconsistent estimate; this was confirmed in the simulations

detailed in S1 Text. Section G. This non-robustness property of MR-Egger is in contrast to

some other methods, such as MR-RAPS [12] and MR-cML [37], whose consistency will not be

influenced by the presence of a few irrelevant IVs (without and with pleiotropy respectively);

see the conditions for Theorem 3.3 in [12], which also holds for cML. This is relevant because

some authors [12] have advocated using various larger sets of IVs, possibly including some

weak or irrelevant IVs, to increase the estimation efficiency and assess the robustness of a

causal conclusion in an MR analysis, including from MR-Egger [38].

Testing the intercept in MR-Egger

We also performed simulations to study the performance of testing the intercept term with the

null hypothesis H0: r = 0 versus H1: r 6¼ 0 in MR-Egger Eq (6) using different SNP coding

schemes. This test can be useful in suggesting the presence of invalid IVs with pleiotropic effect.

We summarize our main findings here with all details given in S1 Text. Section H. First, when

all IVs are valid, the intercept term in Eq (6) is expected to be zero, no matter what coding

scheme is used. Thus using any coding scheme could maintain a correct type I error rate. Sec-

ond, the estimated intercept in MR-Egger based on the default coding tended to be larger (in

absolute values) than those using other coding schemes, but the power could still be relatively

low because of the lower precision of the estimate. Third, a non-zero intercept could mean sev-

eral different things, such as the presence of correlated pleiotropy, the presence of uncorrelated

directional pleiotropy, or both. In general the intercept term should not be simply interpreted

as the average pleiotropic effect in practice [6]. As shown in Section H.3 in S1 Text, in the
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presence of correlated pleiotropy, even in the scenario where the pleiotropic effects of all invalid

IVs were positive under the default coding, the estimated intercept could still be negative.

Discussion

Although the phenomenon that MR-Egger depends on the coding of SNPs has been noticed

and the default coding as a remedy has been recommended and widely applied [6, 14], to our

best knowledge, there has been no other assessment and analysis of its implications and

impact. In this paper, we have examined the influence of SNPs’ coding on MR-Egger. Our

findings could be summarized as follows. First, the current practice of orientating SNPs to be

all positively associated with the exposure (referred as the default coding in MR-Egger) will be

problematic unless its corresponding and coding-specific InSIDE assumption holds. Assuming

that there is a true oracle coding under which the InSIDE assumption holds, the InSIDE

assumption under the default (or another) coding will still hold and the current practice will

yield a consistent estimate in the case of balanced pleiotropy (with respect to the oracle coding)

and/or the SNP-exposure associations under the oracle coding have mean zero. When the

SNP-exposure associations under the oracle coding have the same sign (all positive or nega-

tive), the default coding coincides with the oracle coding, thus will also give a consistent esti-

mate; this is what is imposed in the current practice of MR-Egger, different from that the

InSIDE assumption holds for some unknown oracle coding, under which, more generally and

more likely, the current practice of applying MR-Egger will yield biased estimates. We also

point out that this is not a finite-sample problem. In addition to our analysis, we have shown

in the motivating real data examples and simulation studies that even with large n (and m),

this issue persisted. Second, even in the (special and unlikely) case when using the default cod-

ing in MR-Egger could still give consistent estimates, its variance is usually large because of the

small ranges of SNP-exposure association effects after reorientation [6]. This also contributes

to the low power with the default coding as noticed previously [37]. A small range of SNP-

exposure associations would also magnify the degree of NOME violation, leading to a larger

bias. Third, compared with another popular method IVW(RE), as shown in our simulation

studies and analysis, the current practice of MR-Egger would only have an advantage when the

default coding is the oracle coding and there is directional pleiotropy with respect to the

default (oracle) coding. Fourth, most importantly, in practice we don’t know the oracle coding

under which the InSIDE assumption holds (if so) and the InSIDE assumption is very difficult

to test, hence cautions should be taken when applying MR-Egger.

One may wonder whether the oracle coding, under which the InSIDE assumption holds,

can be identified in practice. We tried a model selection approach to select the “best” coding

for the Egger regression model (Eq (6)), but it did not always work, sometimes not only failing

to select the best model but also leading to inflated type I errors. Alternatively, we tried to

choose a coding scheme giving the minimum evidence of the violation of the InSIDE assump-

tion. This turned out to be quite challenging too, involving a circular reasoning—to test

whether a coding scheme under which the InSIDE assumption is satisfied requires a reliable/

valid causal estimate, which however relies on the InSIDE assumption. It is noted that, under

any non-oracle coding, although MR-Egger may give a biased estimate, the corresponding

regression model is indeed “correct” in the usual sense that the specified regression model may

still fit well the given data. A possible approach is to use one of other robust MR methods that

do not require the InSIDE assumption to obtain a reliable causal estimate, such as MR-cML

[37] and MRMix [39]. Then we could use this estimate to assess the InSIDE assumption for a

given coding of SNPs. However, those methods have their own assumptions. In particular,

when all the SNPs are invalid with directional pleiotropy, those methods all break down, while
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MR-Egger with the oracle coding still works, as shown in S1 Text. Furthermore, such a practice

appears unnecessary if we feel confident in having already obtained a reliable causal estimate

via another method.

Treating some nuisance parameters as random is a common and often effective way to

reduce the number of the parameters to be estimated. For example, by modeling the direct

effects αj’s as Normal random effects in MR-Egger, we do not need to estimate them but their

mean r (and variance). In longitudinal and clustered data analysis, subject-specific effects are

modeled as random in generalized linear mixed-effects models (GLMMs). However, modeling

nuisance parameters as random usually imposes another important but largely neglected

assumption: the distribution of the random effects is independent of other covariates; in

MR-Egger, the other covariates are SNP-exposure associations bbXj, and the assumption is

equivalent to the InSIDE assumption. The violation of this assumption can happen, leading to

biased estimates in GLMMs [40]. [40] also showed that, by treating the subject-specific effects

as fixed, instead of random, then applying a conditional likelihood approach (that eliminates

the subject-specific effects from the conditional likelihood by conditioning on their sufficient

statistics) avoids the problem. In the current context, if we treat the direct effects as fixed, the

model is over-specified and the parameters are not estimable while it is unclear how to apply a

conditioning argument; however, under other assumptions, notably that some αj = 0 in the

framework of MR-cML, one can allow the violation of the InSIDE assumption (and more gen-

erally allow correlated pleiotropy) for a subset of the IVs [37]. Furthermore, with a mean zero

assumption on the random effects in GLMMs and IVW(RE), there is no issue of the depen-

dence of the result on the coding of the covariates/SNPs; in contrast, it becomes problematic

by assuming a non-zero mean of the random effects in MR-Egger.

In summary, we have studied the impact of SNP coding/orientation on Egger regression

(and similar IV regression methods requiring the InSIDE assumption [9]). We emphasize that,

since the InSIDE assumption is defined with respect to a specific coding scheme of the SNPs,

even if it holds for some unknown (oracle) coding scheme, generally it does not hold for the

default (exposure-increasing) coding (and many other codings) unless under some special and

unlikely scenarios (such as when the default coding coincides with the oracle coding). The vio-

lation of the InSIDE assumption leads to the inconsistent estimator of the causal effect in

MR-Egger. Thus, it is important for practitioners to keep in mind that, when applying MR-Eg-

ger with the default exposure-increasing allele coding, the interpretation of the causal effect esti-

mate depends crucially on the non-violation of the InSIDE assumption under the default

coding. We suggest that this SNP coding-specific assumption should be stated clearly when

interpreting the results. How to fix the problem does not appear obvious since the InSIDE

assumption is difficult to test and selecting the oracle coding is challenging. We have also con-

firmed that SNP coding in MR-Egger impacts the precision of the causal estimate as well as the

extent of the NOME violation. The default coding gives the smallest range of IV-exposure asso-

ciations, which tends to increase the variance of the causal estimate and magnify the degree of

the NOME violation. Moreover, MR-Egger is not robust to outliers due to its use of the squared

error loss function; it will be more robust to use other robust loss functions [12]. Until a better

solution appears, we should be cautious when applying MR-Egger (and other related MR and

IV regression methods for either GWAS summary or individual-level data) in data analysis.

Supporting information

S1 Text. Supplementary file with additional real data analysis results and additional simu-

lation results.

(PDF)
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