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Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation. However, current

protocols for genome-wide TSS profiling are laborious and/or expensive. We present Survey of TRanscription Initiation at

Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequenc-

ing capped RNA 5′ ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and reaction cleanups, a

STRIPE-seq library can be constructed in about 5 h. We show application of STRIPE-seq to TSS profiling in yeast and human

cells and show that it can also be effectively used for quantification of transcript levels and analysis of differential gene ex-

pression. In conjunction with our ready-to-use computational workflows, STRIPE-seq is a straightforward, efficient means

by which to probe the landscape of transcriptional initiation.

[Supplemental material is available for this article.]

Understanding the spatiotemporal control of transcriptional initi-
ation hinges on accurate identification of transcription start sites
(TSSs) and coregulated clusters of TSSs, commonly referred to as
transcription start regions (TSRs). Usage of alternative TSSs is wide-
spread (Davuluri et al. 2008; Reyes and Huber 2018) and results in
mRNAs with shortened or lengthened 5′ untranslated regions
(5′ UTRs), which can lead to the inclusion or exclusion of sequence
elements such as upstreamopen reading frames (uORFs), which al-
ter mRNA stability and translational efficiency (Calvo et al. 2009;
Barbosa et al. 2013; Wang et al. 2016; Kurihara et al. 2018).
Large-scale shifts in TSS usage are also prevalent in various devel-
opmental contexts (Batut et al. 2013; Haberle et al. 2014; Zhang
et al. 2017; Adiconis et al. 2018; Danks et al. 2018) as well as hu-
man cancers (Thorsen et al. 2011; Demircioğlu et al. 2019) and in-
flammatory bowel diseases (Boyd et al. 2018).

Because of the importance of TSS selection to the regulation
of gene expression, several methods for global TSS profiling have
been developed. The most frequently cited method is cap analysis
of gene expression (CAGE) (Shiraki et al. 2003), wherein total RNA
is reverse transcribed and 5′-complete cDNA:RNA hybrids are iso-
lated via oxidation and biotinylation of the 5′ 7-methylguanosine
(m7G) cap and streptavidin pulldown followed by the generation
of adapter-ligated cDNA libraries. In conjunction with high-
throughput sequencing, CAGE has been extensively used to char-
acterize the landscape of transcription initiation across numerous
species (Valen et al. 2009; Hoskins et al. 2011; Nepal et al. 2013;
Andersson et al. 2014; The FANTOM Consortium and the RIKEN
PMI and CLST (DGT) 2014; Lizio et al. 2017; Kurihara et al.
2018). Despite extensive revisions to the CAGE protocol over the
years since its introduction (Kodzius et al. 2006; Takahashi et al.
2012; Murata et al. 2014), the method remains costly and labori-
ous, with a high total RNA input requirement. The standard
CAGE protocol has recently been adapted to low input via selec-
tively degradable carrier oligos as super low-input carrier CAGE

(SLIC-CAGE), but this approach further increases the complexity,
cost, and time associated with the protocol (Cvetesic et al. 2018)
(see Supplemental Fig. S25 and Supplemental Table S4 for cost
and time estimates of TSS profiling methods). An alternative cap-
trapping approach, MAPCap, uses immunoprecipitation with an
anti-m7G antibody for capped RNA isolation (Bhardwaj et al.
2019). Notably, MAPCap works well with as little as 100 ng total
RNA input.

Anumberof other TSS profilingmethodsuse anoligo capping
approach, which involves enzymatic removal of the m7G cap and
replacement with a synthetic oligo, allowing selection of 5′-com-
plete cDNAs (Suzuki and Sugano 2003; Wakaguri et al. 2007;
Yamashita et al. 2011). Methods incorporating oligo capping in-
clude paired-end analysis of TSSs (PEAT) (Ni et al. 2010), transcript
leader sequencing (TL-seq) (Arribere and Gilbert 2013), transcript
isoform sequencing (TIF-seq) (Pelechano et al. 2013), CapSeq (Gu
et al. 2012), simultaneous mapping of RNA ends (SMORE-seq)
(Park et al. 2014), and global/precision run-on sequencing of
capped RNAs (GRO-/PRO-cap) (Core et al. 2014). However, oligo
capping methods suffer from drawbacks including high-input
RNA requirements (e.g., 30 µg in the case of Arabidopsis PEAT
[Morton et al. 2014]) and the sequence biases of RNA ligases used
to attach oligo caps (Hafner et al. 2011; Jayaprakash et al. 2011).

Another staple molecular approach in TSS mapping is tem-
plate-switching reverse transcription (TSRT), which leverages the
propensity of MMLV-derived reverse transcriptases to act as termi-
nal transferases, adding a few nontemplated nucleotides, usually
1–3 Cs, when they reach the capped 5′ end of RNA molecules
(Schmidt and Mueller 1999). A template-switching oligo (TSO)
bearing three riboguanosine residues (rGrGrG) at its 3′ end can
then anneal to this CCC overhang, allowing template switching
to add an adapter sequence to the 5′ end of the cDNA (Zhu et al.
2001). TSS mapping methods incorporating TSRT include 5′ serial
analysis of gene expression (5′ SAGE) (Zhang and Dietrich 2005),
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nano-cap analysis of gene expression
(nanoCAGE 2010/2017) (Plessy et al.
2010; Poulain et al. 2017), single-cell
tagged reverse transcription (STRT) (Is-
lam et al. 2011), RNA annotation and
mapping of promoters for the analysis
of gene expression (RAMPAGE) (Batut
et al. 2013), Tn5Prime (Cole et al.
2018), and parallel analysis of RNA
5′ ends from low input (nanoPARE)
(Schon et al. 2018). Although TSRT pro-
vides additional specificity for mRNA
5′ ends, library complexity is often limit-
ed by artifacts such as concatemerization
of TSOs from secondary template-switch-
ing events, erroneous template switch-
ing, and high PCR cycle requirements
(Kapteyn et al. 2010; Turchinovich et al.
2014). Some TSRT-based methods (RAM-
PAGE, nanoCAGE 2017, and nanoPARE)
also require custom sequencing primers,
complicating pooling of other sample
types in the same sequencing lane.

Thus, despite the successful applica-
tion of TSS profiling methods to identify
transcriptionally active elements on a ge-
nome-wide basis (Djebali et al. 2012;
Andersson et al. 2014), their wider adop-
tion is limited by barriers of expense,
technical difficulty, and time. To over-
come these hurdles, we introduce a new
method: Survey of TRanscription Initia-
tion at Promoter Elements with high-
throughput sequencing (STRIPE-seq).
STRIPE-seq addresses several concerns
of efficiency and bias inherent in other
methods through a specially designed
TSO, a stringent bead purification
scheme, and various other methodologi-
cal considerations (Fig. 1; Supplemental
Fig. S1). Requiring only a TSRT reaction
and PCR amplification following enzy-
matic depletion of uncapped RNA,
STRIPE-seq is a simple and cost-effective protocol that can be per-
formed in any molecular biology laboratory in approximately half
a working day.We also provide an end-to-end bioinformatic work-
flow available via GitHub code download or as a containerized
package in a ready-to-use Singularity image (Kurtzer et al. 2017)
to facilitate interoperability for straightforward and reproducible
analysis of STRIPE-seq data. We envision that the simplicity of
the STRIPE-seq protocol, in conjunction with our ready-to-use
computational workflow, will lead to the widespread adoption of
TSS profiling as a standard approach in studies of transcriptional
regulation.

Results

Design of STRIPE-seq

STRIPE-seq library construction relies on three enzymatic steps:
depletion of uncapped RNA (predominantly rRNA) from total
RNA using Terminator exonuclease (TEX), TSRT, and library

PCR. For TSRT, we designed custom reverse transcription oligonu-
cleotides (RTOs) based on the Illumina TruSeq P7 barcode adapter
and a custom TSO based on the Illumina TruSeq P5 adapter
(Supplemental Fig. S2; Supplemental Results). TSO introduction
into the RT reaction was withheld until 5 min into the extension
step, allowing synthesis of 5′-complete first-strand cDNA to reduce
TSO invasion and internal priming (Turchinovich et al. 2014). The
introduction of barcodes during TSRT facilitates pooling of sam-
ples before library PCR. Following TSRT, a solid phase reversible
immobilization (SPRI) bead-based size selection is performed to re-
move TSO/RTO dimers and small fragment inserts. After second-
strand cDNA synthesis, library PCR, and a two-step reaction clean-
up/size selection to remove excessively small and large fragments,
the library is ready for Illumina sequencing. Because STRIPE-seq
relies on bead-based size selection to optimize the size distribution
of the final library, only a single round of PCR is necessary, com-
pared with the two rounds of PCR used in tagmentation-based
TSS mapping methods such as nanoCAGE 2017, Tn5Prime, and
nanoPARE.

Figure 1. Schematic illustration of the STRIPE-seq method. Briefly, total RNA is treated with
Terminator 5′-phosphate-dependent exonuclease (TEX) to reduce the proportion of uncapped RNA
present in the sample. After a 1-h incubation, template-switching reverse transcription (TSRT) is per-
formed using a barcoded reverse transcription oligo (RTO) primed with a random pentamer, followed
by the addition of a unique molecular identifier (UMI)-containing, 5′-biotin-modified template-switch-
ing oligo (TSO) with three 3′ riboguanosines that permit the annealing of the oligo to the untem-
plated triplet Cs that are generated by reverse transcriptase when it reaches the m7G cap. Library
PCR is then performed using the cleaned TSRT product as input, which ensures that TruSeq adapters
are present on both sides of the insert (blue line). The cap-adjacent base, which identifies the transcrip-
tion start site (TSS), is identified using the signature sequence [N8]-TATAGGG in the R1 read. Once the
library PCR step is completed and cleaned, the STRIPE-seq library is then submitted for sequencing on
an Illumina platform.
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STRIPE-seq provides high-resolution

maps of the yeast initiation landscape

We first tested the STRIPE-seq library
construction protocol with three rela-
tivelymodest quantities of budding yeast
total RNA (50, 100, and 250 ng). Biologi-
cal replicate libraries were highly con-
sistent, with a size distribution from
∼200–1000 bp and a library amount of
25–100 ng with very little oligo dimer
present (Supplemental Fig. S3). No li-
brary was generated in control reactions
lacking input RNA, indicating that the
bio-TSO has a low potential for con-
catemerization and generation of artifac-
tual libraries (Supplemental Fig. S3). We
then sequenced each library and per-
formed a number of quality control steps
before and after alignment using our spe-
cifically developed computational work-
flow, GoSTRIPES (Supplemental Fig. S4;
Supplemental Results; Supplemental
Methods). Final accepted read pairs num-
bered between 270,815 and 739,857,
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Figure 2. STRIPE-seq captures the yeast initi-
ation landscape. (A) Plot of the fraction of
unique TSSs that are promoter-proximal
(−250 to +100 bp relative to an annotated
gene start) at or above the indicated read
threshold. Dot color is indicative of the number
of genes with a promoter-proximal TSS.
Corresponding plots for all STRIPE-seq samples
are presented in Supplemental Figure S6. (B)
Hierarchically clustered heatmap of Pearson’s
r values for pairwise comparisons between
TSSs identified in STRIPE-seq samples. Before
clustering, samples were thresholded such
that each TSS had to have at least 3 raw counts
inone sample, and thencountswereTMMnor-
malized. (C) Genomic distribution of TSSs in
100-ng STRIPE-seq replicate 1 broken into
quintiles by TSS strength. The “promoter” an-
notation indicates −250 to +100 relative to an
annotated gene start and “downstream” refers
to the 3 kb downstream from a 3′ gene end.
Genomic distributions of TSSs for all STRIPE-
seq samples are presented in Supplemental
Figure S7. (D) Density plot of 100-ng STRIPE-
seq replicate 1 unique TSS positions relative to
annotated gene starts. (E) Genome browser
tracks showing CPM-normalized STRIPE-seq
(replicate 1 for each input amount) and
poly(A)+ RNA-seq (replicate 1) at two represen-
tative regions of the yeast genome. (F) Se-
quence logos of TSSs detected in 100-ng
STRIPE-seq replicate 1 broken into quintiles by
TSS strength. Sequence logos of TSSs in all
STRIPE-seq samples are presented in Supple-
mental Figure S9. (G) Nucleotide color plot of
the sequence context of TSSs detected in
100-ng STRIPE-seq replicate 1. TSSs are ranked
descending by read count. (H) Dinucleotide
frequencies at TSSs detected in 100-ng
STRIPE-seq replicate 1. Dinucleotide frequen-
cies at TSSs in all STRIPE-seq samples are pre-
sented in Supplemental Figure S10.
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which amounts to 8.8%–20.4% of the initial input pairs. A sub-
stantial fraction of removed read pairs corresponded to rRNA,
and rRNA contamination increased as more total RNA was used
as input for STRIPE-seq library construction. Additionally, many
read pairs weremarked as PCR duplicates and removed, suggesting
oversequencing of libraries (Supplemental Table S1; Supple-
mental Results). Indeed, sequencing saturation analysis suggested
little gain in information beyond ∼2 million mappable sequenced
read pairs (Supplemental Fig. S5). Following processing with
GoSTRIPES, we detected TSSs using TSRchitect. Collectively,
GoSTRIPES and TSRchitect represent an end-to-end pipeline for
TSS identification that we termTSRbuild (SupplementalMethods).

To determine a read number threshold for STRIPE-seq analy-
sis, we assessed the promoter-proximal fraction of TSSs, with a pro-
moter definition of −250 to +100 bp relative to annotated gene
starts. At a threshold of 3 counts per TSS, the nine STRIPE-seq sam-
ples yielded promoter-proximal fractions of 0.723–0.88, with
4314–5075 genes having at least one unique TSS (Fig. 2A; Supple-
mental Fig. S6). Increasing the threshold beyond 3 counts slightly
increased the promoter-proximal fraction for each sample but re-
sulted in a substantial loss of geneswith a unique TSS. For instance,
increasing the threshold to 4 increased the promoter-proximal
fraction of 100-ng replicate 1 from 0.851 to 0.878 but decreased
the number of genes with a unique promoter-proximal TSS from
4710 to 4354. We thus consider a threshold of 3 counts per TSS
to be a suitable balance between removal of likely artifacts and
retention of unique TSSs potentially associated with weakly ex-
pressed genes. Using this threshold, we assessed the reproducibili-
ty of STRIPE-seq TSS signal. We normalized TSS counts using the
trimmed mean of M-values (TMM) method (Robinson and Osh-
lack 2010), determined Pearson correlation coefficients between
samples, and hierarchically clustered the results. This analysis re-
vealed high concordance between replicates derived from a single
input amount (Pearson’s r= 0.938–0.961) as well as strong correla-
tion between data sets generated from different input amounts
(Pearson’s r=0.919–0.957) (Fig. 2B). Given the strong correlations
between STRIPE-seq replicate TSSs, we present the results of analy-
sis of a single 100-ng sample in the main figures while showing
analysis of all replicates in the Supplemental Material.

We first performed a more detailed analysis of the genomic
distribution of TSSs detected by STRIPE-seq. Division of TSS distri-
bution into quintiles based on read count revealed that the stron-
gest TSSs were most likely to be promoter-proximal, with
progressively smaller promoter-proximal fractions as TSS strength
decreased (Fig. 2C; Supplemental Fig. S7). A density plot of unique
TSS positions relative to annotated gene starts also revealed a
strong promoter-proximal preference (Fig. 2D).We then inspected
TSS signal andmatched poly(A)+ RNA-seq data at individual geno-
mic regions. At the GCN4 locus, we observed RNA-seq signal ex-
tending nearly 600 bp upstream of the start codon, where a TSR
was found (Fig. 2E). This observation is consistent with transla-
tional regulation of the GCN4 mRNA by four uORFs (Mueller
andHinnebusch 1986). At theAIM39 locus, we found a TSR down-
stream from the annotated start codon, with no upstreamRNA-seq
signal (Fig. 2E), suggesting misannotation of the AIM39 start co-
don. Indeed, comparison of STRIPE-seq and RNA-seq signal to ri-
bosome profiling (Ribo-seq) data (Nissley et al. 2016) revealed
strong ribosome occupancy downstream from the AIM39 TSR
and 5′ end of the associated RNA-seq signal (Supplemental Fig. S8).

We next analyzed the sequence context of STRIPE-seq-detect-
ed TSSs. Consistentwith previouswork (Zhang andDietrich 2005),
we detected a consensus A−8Y−1R+1 motif (Fig. 2F,G; Supplemental

Fig. S9). Through sequence analysis of TSS quintiles divided by TSS
strength, we observed that the information content of the A−8 base
decreased as TSS strength diminished (Fig. 2F), consistent with the
previously described positive relationship between this position
and TSS usage (Zhang and Dietrich 2005). Last, we analyzed the
dinucleotide frequencies at TSSs identified by STRIPE-seq. All rep-
licates identified the four possible Y−1R+1 combinations (CA, TG,
TA, and CG) as the most prevalent initiator dinucleotides (Fig.
2H; Supplemental Fig. S10), consistent with previous data (Lu
and Lin 2019).

It has been previously reported in traditional CAGE andTSRT-
based protocols such as nanoCAGE that extra spurious bases, espe-
cially guanosines (corresponding to cytosines in the first-strand
cDNA), are sometimes present at the 5′ most position of the R1
read (Harbers and Carninci 2005; Carninci et al. 2006; Kawaji
et al. 2014; Cumbie et al. 2015). Furthermore, a recent in-depth
analysis of TSRT showed an almost universal addition of an extra
cytosine on the cDNA adjacent to the TSS of capped RNA, but al-
most no addition of this base in uncapped RNA, which is speculat-
ed to occur owing to the cap acting as a template for reverse
transcriptase (Wulf et al. 2019). In CAGE and nanoCAGE-based
analysis, rates of addition for these extra bases are often inferred
from those thatwere not incidentally templated onto the reference
genome, but rather soft-clipped (marked as havingnomatch to the
reference genome) by the alignment software (Haberle et al. 2015).
For the STRIPE-seq read pairs surviving the initial quality control
steps, ∼50%–70% had soft-clipped bases on the 5′ end of the R1
read, a majority of which only had one or two additional bases
added (Supplemental Fig. S11). Most of the added bases on the
first-strand cDNA were cytosine, with a much smaller fraction of
thymidine (Supplemental Fig. S12). These values are consistent
with what is seen in the SLIC-CAGE and nanoCAGE samples ana-
lyzed and are consistent with previous literature (Zajac et al. 2013;
Cumbie et al. 2015; Wulf et al. 2019). Taken together, these obser-
vations indicate that STRIPE-seq effectively and comprehensively
profiles the yeast initiation landscape.

Quantification of transcript levels with STRIPE-seq

As the primary focus of STRIPE-seq is profiling of initiation events,
our analyses thus far have focused on the 5′-most base of se-
quenced R1 reads. However, TSRT-based methods are routinely
used for general quantification of annotated transcripts in bulk
and single-cell RNA-seq (Picelli et al. 2013; Turchinovich et al.
2014). Because we sequenced STRIPE-seq libraries in paired-end
mode, each sample retains additional information on transcript
origin owing to the presence of reverse (i.e., R2) reads usually orig-
inating fromwithin transcript bodies. Thus, assignment of paired-
end STRIPE-seq fragments to transcripts could in principle be used
to more accurately measure transcript abundance. To test this pos-
sibility, we assessed the correlation between STRIPE-seq and poly
(A)+ RNA-seq signal within annotated transcripts. We observed ro-
bust correlations between all STRIPE-seq and RNA-seq samples
(Spearman’s ρ=0.786–0.846) (Fig. 3). Correlations improved
when more total RNA was used as input, likely because of capture
of more moderately expressed transcripts.

Systematic comparison of yeast STRIPE-seq with CAGE-based

methods

A previous study used three distinct iterations of CAGE (nano-
CAGE, nAnT-iCAGE, and SLIC-CAGE) (Cvetesic et al. 2018) to pro-
file the initiation landscape of yeast. This work established high
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concordance between nAnT-iCAGE and SLIC-CAGE while sug-
gesting inferior performance of nanoCAGE in detecting TSSs. We
thus set out to systematically compare STRIPE-seq to these meth-
ods. To this end, we compared our nine STRIPE-seq samples to
two replicate 100-ng SLIC-CAGE data sets and two replicate data
sets each for nanoCAGE using 500 or 25 ng input RNA with or
without TEX treatment, respectively. As with STRIPE-seq, a thresh-
old of at least 3 counts per TSS provided a suitable balance between
promoter-proximal TSS fraction and number of genes with a
unique TSS in SLIC-CAGE and nanoCAGE data sets (Supplemental
Fig. S13). Duplicate removal was not possible for SLIC-CAGE or
nanoCAGE, as both methods were sequenced in single-end
mode and theUMI for the nanoCAGE sampleswas removed before
deposition.We first assessed correlation between all threemethods
in a conservative promoter window of −250 to +100 bp relative to
the annotated start codons of 6572 mRNA transcripts. We ob-
served good correlation between STRIPE-seq and SLIC-CAGE
signal at promoters (Spearman’s ρ=0.708–0.743) (Fig. 4A). Al-
though STRIPE-seq andnanoCAGEboth rely on TSRT, correlations
between STRIPE-seq and nanoCAGE were weaker than those be-
tween STRIPE-seq and SLIC-CAGE (Spearman’s ρ=0.609–0.680)
(Fig. 4A). Visual inspection of TSS signal at selected loci revealed
high similarity between STRIPE-seq and SLIC-CAGE, with similar
patterns of TSS distributions and higher TSR complexity relative
to nanoCAGE (Fig. 4B).

We next compared the dinucleotide frequencies of TSSs de-
tected by STRIPE-seq, SLIC-CAGE, and nanoCAGE. STRIPE-seq
and SLIC-CAGEboth preferentially detected all four Y−1R+1 combi-
nations (CA, TG, TA, and CG), with CA most preferred (Fig. 4C;
Supplemental Fig. S14). STRIPE-seq TSSs displayed a slight prefer-
ence for TG versus SLIC-CAGE TSSs, whichwere slightlymore like-
ly to have a TA dinucleotide. The overall dinucleotide frequency
distribution of STRIPE-seq TSSs was much more similar to that of

SLIC-CAGE TSSs versus nanoCAGE TSSs, which displayed a strong
bias for a TG dinucleotide (Fig. 4C; Supplemental Fig. S14). We
next assessed the numbers of genes with a detectable TSR in
each method as a means to analyze methodological sensitivity.
We associated TSRs with transcripts and then counted the number
of transcripts with a promoter-proximal TSR in each sample. In
three STRIPE-seq replicates each from 50, 100, and 250 ng of total
RNA input, we detected 4591–4980, 5049–5119, and 5228–5494
such transcripts, respectively. With 100-ng input RNA, SLIC-
CAGEdetected 5265 and 5330 transcriptswith promoter-proximal
TSRs, and nanoCAGE detected 5057 and 5334 transcripts with a
promoter-proximal TSRs at 500 ng and 2985 and 4775 such tran-
scripts at 25 ng (Fig. 4D). We conclude that the sensitivity of
STRIPE-seq in TSR discovery is comparable to that of SLIC-CAGE
and higher-input nanoCAGE in yeast. We note that a potential
limitation of these comparisons between STRIPE-seq, SLIC-
CAGE, and nanoCAGE is biological variability: We performed
STRIPE-seq in the S288C strain,whereas bothpreviously published
CAGE data sets used RNA derived from strain BY4741, an auxotro-
phic derivative of S288C.

Last, we compared the spatial distribution of TSSswithin TSRs
detected by STRIPE-seq and CAGE-basedmethods using the shape
index (SI), ameasure of TSR shape reflecting the entropy of the dis-
tribution of its constituent TSSs (Hoskins et al. 2011). We filtered
TSRs with fewer than 10 TSSs to remove potential artifacts from
sparse TSRs and then classified TSRs as peaked if they had a SI >
−1. Across three replicates each of 50, 100, and 250 ng STRIPE-
seq, proportions of peaked TSRs were 77.1%–81.9%, 72.7%–

75.9%, and 62%–68.9% (Supplemental Fig. S15). These values
were closest to those obtained with SI analysis of SLIC-CAGE, for
which peaked TSR proportions of 78.2% and 80.2%were obtained.
Both pairs of nanoCAGE data sets displayed substantially higher
peaked TSR proportions (92% and 94.9% at 500 ng; 96.2% and
97.2% at 25 ng), indicative of loss of TSR complexity relative to
STRIPE-seq and SLIC-CAGE. Taken together, these data indicate
that STRIPE-seq effectively captures the complexity of TSS distribu-
tion within yeast TSRs. Furthermore, although this analysis indi-
cates that the majority of yeast TSRs are considered peaked based
on SI, STRIPE-seq and SLIC-CAGE detect a broad range of SI values,
indicating that TSS dispersion is a widespread phenomenon in
yeast.

Differential STRIPE-seq analysis identifies changes in yeast TSR

usage and transcript abundance

Thus far, we have shown that STRIPE-seq effectively detects yeast
TSSs under normal growth conditions. Because a major potential
application of thismethod is the detection of changes in TSS usage
between distinct biological conditions, we investigated the capa-
bility of STRIPE-seq to detect TSRs altered by diamide-induced ox-
idative stress. Correlation analysis of TSSs detected in three
untreated 100-ng STRIPE-seq replicates and three 100-ng STRIPE-
seq replicates derived from cells treated with 1.5 mM diamide for
1 h revealed high within-group concordance (untreated
Pearson’s r=0.957–0.958; diamide Pearson’s r=0.942–0.963), but
greatly reduced correlation between conditions (Pearson’s r=
0.635–0.654) (Fig. 5A), suggesting a widespread shift in TSS usage
upon diamide stress. Consistent with this, correlation of untreated
and diamide-treated samples within amerged set of 4866 TSRs was
also weak compared to within-sample concordance (Pearson’s r=
0.651–0.679; untreated Pearson’s r=0.983–0.984; diamide
Pearson’s r=0.963–0.989) (Fig. 5A). Visualization of STRIPE-seq

Figure 3. STRIPE-seq provides RNA-seq-like information on transcript
abundance. Hierarchically clustered heatmap of Spearman’s ρ values for
pairwise comparisons between TMM-normalized per-gene STRIPE-seq
and poly(A)+ RNA-seq fragment counts.
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andmatched RNA-seq signal atHSP150, encoding a cell wall man-
noprotein up-regulated by various stressors (Russo et al. 1993), re-
vealed increased TSR usage and transcript abundance as measured
bymatched poly(A)+ RNA-seq (Fig. 5B).Within the same regionwe
also observed down-regulation of the convergent CIS3 locus (Fig.
5B). We observed reduced TSR usage and RNA-seq signal at the
divergent RPS16B and RPL13A genes (Fig. 5B), consistent with
the known repression of ribosomal protein gene expression during
the environmental stress response (Gasch et al. 2000;Weiner et al.
2012).

To systematically characterize differential initiation in dia-
mide-treated yeast, we performed differential TSR analysis using
the merged untreated/diamide TSR set. This analysis revealed
986 up-regulated and 1030 down-regulated TSRs at a fold change
cutoff of 2 and a FDR threshold of 0.05 (Fig. 5C; Supplemental
Table S2). Of these, 756/986 (76.7%) up-regulated and 871/1030
(84.6%) down-regulated TSRs were within the −250 to +100 pro-
moter window (Supplemental Table S2). Gene Ontology (GO)
analysis revealed that down-regulated TSRs were strongly enriched
for biological processes related to ribosome and rRNA biogenesis

A

B

C

D

Figure 4. Comparison of yeast STRIPE-seq to SLIC-CAGE and nanoCAGE. (A) Hierarchically clustered heatmap of Spearman’s ρ values for pairwise com-
parisons of STRIPE-seq, SLIC-CAGE, and nanoCAGE signal within promoter regions (−250 to +100 bp relative to an annotated gene start). Before clustering,
samples were thresholded such that each promoter had to have at least 3 raw counts in one sample, and then counts were TMM normalized. (B) Genome
browser-style tracks showingCPM-normalized STRIPE-seq, SLIC-CAGE, nanoCAGE (replicate 1 for each input amount) and poly(A)+ RNA-seq (replicate 1) at
two representative regions of the yeast genome. (C) Dinucleotide frequencies at TSSs detected in the indicated samples. Dinucleotide frequencies at TSSs in
all replicates of all technologies are presented in Supplemental Figure S14. (D) Jitter plot of the number of genes with a promoter-proximal TSR in each
sample. Error bars represent standard deviation.
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(Fig. 5D), again consistent with the general down-regulation of ri-
bosomal protein genes observed during environmental stress
(Gasch et al. 2000; Weiner et al. 2012), whereas up-regulated
TSRs were enriched for a number of metabolic processes as well
as the GO term “oxidation-reduction process” (Fig. 5D). Last, we

assessed potential shifts in TSS distribution within TSRs, because
it was previously suggested that TSS shifting is a pervasive phe-
nomenon between environmental conditions (Lu and Lin 2019).
UsingCAGEr (Haberle et al. 2015) to calculate TSS shifts, we detect-
ed only four shifted TSRs out of 7373 aggregated TSRs (0.054%)

A

C

B

D E

F

Figure 5. STRIPE-seq captures differential TSR usage and transcript abundance. (A) Hierarchically clustered heatmaps of Pearson’s r values for pairwise
comparisons between merged TSS and TSR sets from 100-ng control and diamide STRIPE-seq samples. (B) Genome browser-style tracks showing CPM-
normalized STRIPE-seq and poly(A)+ RNA-seq from control and diamide-treated samples at two representative regions of the yeast genome.
(C ) Volcano plot of differential TSRs resulting from comparison of control and diamide-treated samples. (D) Dot plots of GO biological process terms
for genes associated with TSRs that increased and decreased upon diamide treatment. (E) Venn diagrams of the overlap between DEGs identified
by STRIPE-seq and RNA-seq in control and diamide-treated samples. (F) Cumulative distribution plots for fractions of DEGs captured by STRIPE-seq versus
log2(FC) in poly(A)+ RNA-seq.
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using default parameters. After removing the shifting score thresh-
old but using a FDR threshold of 1 ×10−10, we detected shifts at
73/7373 (0.99%) aggregated TSRs; however, it is difficult to inter-
pret this result given the modest magnitude of most of the ob-
served changes. We conclude that diamide treatment of yeast is
not accompanied by large-scale TSS shifting. This finding is consis-
tent with a recent budding yeast CAGE study reporting exception-
al stability of TSS positions across four distinct environmental
conditions (Börlin et al. 2019).

Because we showed that quantification of STRIPE-seq frag-
ments within transcripts provides measurements of transcript
abundance comparable to those determined by RNA-seq (Fig. 3),
we next asked if RNA-seq-like analysis of control and diamide
STRIPE-seq data sets could provide comparable results to a more
conventional differential expression analysis. Correlation analysis
of three 100-ng control and three 100-ng diamide-treated STRIPE-
seq replicates alongsidematched RNA-seq replicates again revealed
strong concordance (untreated Spearman’s ρ=0.798–0.818;
diamide Spearman’s ρ=0.842–0.850) (Supplemental Fig. S16). Dif-
ferential expression analysis with STRIPE-seq yielded 714 up-regu-
lated and 886 down-regulated genes, whereas RNA-seq detected
1026 up-regulated and 1158 down-regulated genes (Supplemental
Table S3). A total of 1197 up-regulated genes were detected by
STRIPE-seq and/or RNA-seq; of these, 543 (45.4%) were shared,
171 (14.3%) were specific to STRIPE-seq, and 483 (40.4%) were
specific to RNA-seq (Fig. 5E). We detected a total of 1321 down-
regulated genes, with 723 (54.7%) shared between STRIPE-seq
and RNA-seq, 163 (12.3%) specific to STRIPE-seq, and 435
(32.9%) specific to RNA-seq (Fig. 5E). Despite the smaller number
of differentially expressed genes (DEGs) detected by STRIPE-seq
versus RNA-seq, similar biological processes were enriched in up-
and down-regulated genes (Supplemental Fig. S17), indicating
that RNA-seq-like analysis of STRIPE-seq data can accurately
capture overall changes in the cellular transcriptional program.
Finally, to probe whether the reduced number of DEGs reported
by STRIPE-seq might be attributable to reduced sensitivity, we
assessed the cumulative fraction of RNA-seq DEGs detected by
STRIPE-seq as a function of the absolute value of the RNA-seq
log2(FC). We found that STRIPE-seq captured a large fraction of
genes with robust fold changes in RNA-seq but was less likely to
detect DEGs with moderate to low fold changes in RNA-seq
(Fig. 5F).

STRIPE-seq effectively profiles initiation and transcript

abundances in human cells

To explore the utility of STRIPE-seq in analyzing more complex
initiation landscapes, we performed STRIPE-seq in human K562
erythroleukemia cells. We constructed three biological replicate
STRIPE-seq libraries using 100-ng of total RNA (Supplemental
Fig. S3). We obtained 686,981–806,174 accepted read pairs after
processing, representing 11%–18.8% of the initial input, with
most removed read pairs corresponding to rRNA or PCR duplicates
(Supplemental Results; Supplemental Table S1). Saturation analy-
sis suggested undersequencing of K562 STRIPE-seq libraries and
that library complexity would benefit from a sequencing depth
of 20–30 million mappable fragments (Supplemental Fig. S18).
Although not tested directly for human samples, library complex-
ity would likely also benefit from increased input amounts as was
seen in the yeast samples. For comparison, we also analyzed K562
CAGE, RAMPAGE, and nanoCAGE-XL data sets (Adiconis et al.
2018). CAGE was the most sensitive method, detecting upward

of 15,000 genes with a promoter-proximal TSS at fewer than 10
million mappable fragments (Supplemental Fig. S18). However,
the comparison between CAGE and STRIPE-seq is not straightfor-
ward, because these CAGE libraries were constructed with the no-
amplification nAnT-iCAGE approach and very high input (10 µg),
whereas STRIPE-seq uses PCR and low input (100 ng). Themost ap-
propriate comparison for STRIPE-seq is RAMPAGE, which uses
TSRT, PCR, and the CAGE cap-trapping approach, but with a
high RNA input (5 µg). One deeply sequenced RAMPAGE sample
detected a few thousand more genes with a promoter-proximal
TSS than STRIPE-seq, but a second RAMPAGE replicate appeared
essentially identical to STRIPE-seq in this regard (Supplemental
Fig. S18).

At a threshold of 3 counts per TSS, we obtained promoter-
proximal fractions (defined for these samples as −500 to +500 rel-
ative to an annotated TSS) of 0.938–0.942, with 7353–7778 genes
having at least one unique STRIPE-seq TSS (Fig. 6A). K562 STRIPE-
seq TSSs at a threshold of 3 were highly reproducible (Pearson’s
r= 0.932–0.937) (Fig. 6B). Consistent with the threshold analysis,
themajority of detected TSSs were foundwithin promoter regions,
with stronger TSSs displaying a greater promoter bias (Fig. 6C;
Supplemental Fig. S19A), an observation also confirmedby density
analysis of unique TSS positions relative to annotated TSSs (Fig.
6D). Visual inspection of STRIPE-seq data revealed capture of fea-
tures reflective of the complexity of the human transcriptome.
For instance, at the TBPL1 locus, we observed preferential usage
of a TSR that would lead to a short form of its 5′ UTR, a finding sup-
ported by visualizationofmatched poly(A)+ RNA-seqdata (Fig. 6E).
We also detected initiation at an internal site within the lncRNA-
encodingMALAT1 gene (Fig. 6E).

We then analyzed the sequences found at STRIPE-seq TSSs.
Consistent with previously published CAGE data, we detected a
strong Y−1R+1 initiator with a bias for G at the +1 position (Fig.
6F,G; Supplemental Fig. S19B). Notably, the −1 preference for R
progressively diminished as weaker TSSs were considered, whereas
the +1 bias for R, andG in particular, remained consistent (Fig. 6F).
We note that although the Y−1R+1 initiator we report here is con-
sistent with that found by CAGE (Frith et al. 2008), it is distinct
from that detected by 5′-GRO-seq (BBCA+1BW) (Vo ngoc et al.
2017), potentially owing to the analysis of steady-state versus na-
scent transcripts by thesemethods, respectively. Alternatively, dif-
ferences in analysis (individual TSS positions for the present
analysis of STRIPE-seq data versus identification and characteriza-
tion of sequences at highly focused, strong TSSs)may contribute to
the different sequences detected. Consistent with sequence logo
and color plot analysis, four of the five most frequently detected
dinucleotides followed the NG pattern (Fig. 6H; Supplemental
Fig. S19C). In all methods but nanoCAGE-XL, ∼50%–60% of
mapped reads had soft-clipped bases, with the majority of reads
only displaying a single added base (Supplemental Fig. S20).
Most of the added bases on the first-strand cDNA were cytosine,
with a much smaller fraction of thymidine (Supplemental Fig.
S21). Because human promoters tend to be more GC rich than
those of yeast (Fenouil et al. 2012), it is likely more common for
these spurious guanosines to be incidentally templated onto the
genome, which would explain the smaller fraction of TSSs having
soft-clipped bases compared to yeast in all methods.

We then assessed the ability of STRIPE-seq to measure tran-
script levels in K562 cells by quantificationof fragmentswithin an-
notated exons compared to matched poly(A)+ RNA-seq data. As
observed for yeast, transcript signal for STRIPE-seq and RNA-seq
was well correlated (Pearson’s r=0.822–0.835) (Supplemental Fig.
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Figure 6. STRIPE-seq profiling of the human initiation landscape. (A) Plot of the fraction of unique TSSs that are promoter-proximal at the indicated read
threshold. Dot color and size are indicative of the number of genes with a promoter-proximal TSS. (B) Heatmap of Pearson’s r values for pairwise compar-
isons between TSSs identified in STRIPE-seq samples. Before clustering, samples were thresholded such that each TSS had to have at least 3 raw counts in
one sample, and then counts were TMMnormalized. (C) Genomic distribution of TSSs in K562 STRIPE-seq replicate 1 broken into quintiles by TSS strength.
Genomic distributions of TSSs for all K562 STRIPE-seq samples are presented in Supplemental Figure S19A. (D) Density plot of K562 STRIPE-seq replicate 1
unique TSS positions relative to annotated TSSs. (E) Genome browser tracks showingCPM-normalized STRIPE-seq and poly(A)+ RNA-seq (replicate 1) at two
representative regions of the human genome. (F) Sequence logos of TSSs detected in K562 STRIPE-seq replicate 1 broken into quintiles by TSS read count.
Sequence logos of TSSs in all K562 STRIPE-seq samples are presented in Supplemental Figure S19B. (G) Nucleotide color plot of the sequence context of
TSSs detected in K562 STRIPE-seq replicate 1. TSSs are ranked descending by read count. (H) Dinucleotide frequencies at TSSs detected in K562 STRIPE-seq
replicate 1. Dinucleotide frequencies at TSSs in all STRIPE-seq samples are presented in Supplemental Figure S19C.
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S22), indicating that STRIPE-seq can be used for estimation of tran-
script abundances alongside TSS usage in human cells.

We next compared STRIPE-seq to CAGE, RAMPAGE, and
nanoCAGE-XL data generated from K562 cells (Adiconis et al.
2018).We first analyzed correlation between themethods in a pro-
moter window of −500 to +500 bp relative to 152,701 annotated
TSSs of protein-coding genes. Within these promoter windows,
replicates of each method were well correlated (STRIPE-seq Spear-
man’s ρ=0.842–0.846; CAGE Spearman’s ρ= 0.912; RAMPAGE
Spearman’s ρ= 0.849) (Fig. 7A). STRIPE-seq signal was also highly

correlated with that of CAGE (Spearman’s ρ=0.790–0.805) and
RAMPAGE (Spearman’s ρ=0.771–0.798). Of note, these correla-
tions are similar to those between CAGE and RAMPAGE (Spear-
man’s ρ=0.772–0.804) (Fig. 7A). Poor correlation was observed
between nanoCAGE-XL and all other methods. Good correspon-
dence between STRIPE-seq and other methods was observed visu-
ally at the shared promoter region of the RARS2 and ORC3 genes
(Fig. 7B). The dinucleotide frequencies of TSSs detected by
STRIPE-seq were very similar to those found by CAGE and RAM-
PAGE, whereas no consistent dinucleotide preferences were found

A C
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Figure 7. Comparison of human STRIPE-seq to CAGE, RAMPAGE, and nanoCAGE-XL. (A) Hierarchically clustered heatmap of Spearman’s ρ values for
pairwise comparisons of STRIPE-seq, CAGE, RAMPAGE, and nanoCAGE-XL signal within promoter regions (−500 to +500 bp relative to an annotated
TSSs). Before clustering, samples were thresholded such that each promoter had to have at least 3 read counts in one sample, and then counts were
TMM normalized. (B) Genome browser-style tracks showing CPM-normalized STRIPE-seq, CAGE, RAMPAGE, nanoCAGE-XL (replicate 1 for each input
amount), and poly(A)+ RNA-seq (replicate 1) at a representative region of the human genome. (C) Dinucleotide frequencies at TSSs in all replicates of
all technologies. (D) Jitter plot of the number of transcripts with a promoter-proximal TSR in each sample. Error bars represent standard deviation.
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for nanoCAGE-XL TSSs (Fig. 7C). Last, as was done for yeast, we as-
sessed the sensitivity of STRIPE-seq relative to CAGE-based meth-
ods by calling TSRs and determining the number of transcripts
with a promoter-proximal TSR (defined in this analysis as a TSR
within −500 to +500 bp of an annotated TSS). With three
STRIPE-seq replicates, we detected 8474–9006 transcripts with pro-
moter-proximal TSRs, a lower quantity than were detected in the
analyzed CAGE samples (13,076 and 13,903) (Fig. 7D). STRIPE-
seq detected fewer proximal TSR-associated transcripts than
RAMPAGE replicate 1 (13,266) but more than replicate 2 (7340),
potentially because of their different sequencing depths: Replicate
1 had a total of ∼36.4million reads from two separate runs, where-
as replicate 2 yielded∼5.3million reads from a single run (Fig. 7D).
This observationmay suggest that higher sequencing depth is nec-
essary to fully realize the complexity of RAMPAGE libraries (Sup-
plemental Fig. S18).

Last, we analyzed human TSR shape. Across our three K562
STRIPE-seq replicates, we detected peaked TSR proportions of
56.6%–59.5% (Supplemental Fig. S23). Both CAGE and RAM-
PAGE detected slightly lower peaked fractions (47.1% and
49.1% for CAGE; 48.6% and 53.1% for RAMPAGE). nanoCAGE-
XL gave a peaked proportion of 57.7%, although the interpreta-
tion of this result is complicated by the fact that nanoCAGE-XL
appears to detect unusually large TSRs (Supplemental Fig. S23).
These observations indicate that although STRIPE-seq effectively
detects a range of TSR shapes in human cells, it has somewhat re-
duced sensitivity for broad TSRs compared to higher-input
CAGE and RAMPAGE. From a biological perspective, our data
suggest that TSSs are generally more dispersed in human versus
yeast TSRs.

Analysis of promoter-distal TSRs in human cells

Although themajority of TSSs detected by STRIPE-seq in K562 cells
are promoter-proximal, a small fraction was located within genes
or intergenic regions (Fig. 6C; Supplemental Fig. S19A). Given
that enhancers may be transcribed to generate enhancer RNAs
(eRNAs) (Lam et al. 2014), we asked whether these distal TSSs
were representative of eRNA initiation. To investigate this possibil-
ity, we first detected TSRs in K562 STRIPE-seq data and divided
them into promoter-proximal (<1 kb from an annotated TSS)
and distal (≥1 kb from an annotated TSS) sets. Considering only
TSRs present in all three STRIPE-seq replicates, we detected 6648
proximal and 513 distal TRSs. The majority of distal TSRs detected
by STRIPE-seq also showed signal in CAGE, RAMPAGE, and
nanoCAGE-XL data sets, suggesting that they are unlikely to be ar-
tifacts (Supplemental Fig. S24A). We next compared proximal and
distal TSRs to a set of 43,119 K562 enhancers from EnhancerAtlas
2.0 (Gao and Qian 2019). Only 310 of 6648 (4.7%) of proximal
TSRs overlapped enhancers, but 179 of 513 (34.9%) distal TSRs co-
incided with annotated enhancers, a significantly higher propor-
tion by Pearson’s χ2 test (p= 9.49×10−150). Consistent with this,
heatmap visualization of histone modification cleavage under tar-
gets and tagmentation (CUT&Tag) (Kaya-Okur et al. 2019) enrich-
ment around distal TSRs revealed that a fraction of these sites are
highly enriched for H3K4me1 and H3K27ac but not H3K4me3
(Supplemental Fig. S24B), a chromatin signature of active enhanc-
ers (Heintzman et al. 2009; Creyghton et al. 2010; Rada-Iglesias
et al. 2011; Zentner et al. 2011). These large-scale analyses were
confirmed by visual inspection of specific loci. For instance, at a
TSR within an intron of LDLRAD3, we observed signal in all ana-
lyzed TSS data sets as well as strong H3K4me1 and H3K27ac

CUT&Tag signal (Supplemental Fig. S24C). This active enhancer
signature was also observed at an intergenic site containing a
TSR (Supplemental Fig. S24C). We conclude that, even with mod-
est input (100 ng total RNA), STRIPE-seq can detect a moderate
number of eRNAs. The number of putative eRNA TSRs identified
here is likely a conservative estimate, because the number of distal
TSRs in total is 2948 when a TSR is only required to be present in a
single sample. The presence of many single-replicate distal TSRs
may be attributable in part to the generally low abundance of
eRNAs (De Santa et al. 2010; Rahman et al. 2017).

Discussion

Here, we present STRIPE-seq, a rapid and efficient method for ge-
nome-wide profiling of TSSs. Requiring only a TSRT reaction and
PCR amplification following depletion of uncapped RNA,
STRIPE-seq is a simple and cost-effective protocol that can be per-
formed in any molecular biology laboratory in <5 h for ∼US
$11.76/sample. STRIPE-seq thus provides a substantial savings in
terms of time and cost versus other TSS profilingmethods (Supple-
mental Fig. S25; Supplemental Table S4). STRIPE-seq incorporates
a number of modifications to TSRT-based cDNA 5′ end profiling
methods that address concerns related to efficiency and bias (Sup-
plemental Fig. S1). First, to reduce the occurrence of spurious TSSs
within gene bodies owing to premature template switching, addi-
tion of the TSO is not added until reverse transcription has pro-
ceeded for 5 min. Second, to minimize TSO chaining, we
rigorously tested TSO sequences for intrinsically low concatemeri-
zation potential andmodified the 5′ end of the final TSOwith bio-
tin. Because we were reproducibly unable to generate STRIPE-seq
libraries from oligo-only samples (i.e., no-RNA samples) (Supple-
mental Fig. S3), these strategies are effective in minimizing TSO
concatemerization. Third, we used SPRI bead cleanups rather
than tagmentation to optimize the size distribution of the cDNA
library, removing the post-tagmentation PCR step necessary in
nanoCAGEwhen ≥50 ng of total RNA are available, and thus min-
imizing the PCR cycles required for library amplification. In addi-
tion to the STRIPE-seq methodology, we provide an end-to-end
computational workflow that enables reproducible analysis of
STRIPE-seq data. With appropriate modifications to parameters
at the alignment and processing steps, TSRbuild can be used to
identify TSSs and TSRs from any related mapping technology. Fur-
thermore, we are currently developing an R package, TSRexploreR,
that will allow comprehensive exploration of TSSs and TSRs de-
rived from our method and processing workflow.

The major limitation of STRIPE-seq, and indeed any TSRT-
based method, is the efficiency of TSRT itself (Wulf et al. 2019).
Althoughwewere able to lower the number of PCR cycles required
for library amplification relative to relatedmethods using tagmen-
tation or semisuppressive PCR (Poulain et al. 2017), the high fre-
quencies of PCR duplicates in STRIPE-seq libraries are indicative
of an upper limit on library complexity with the current iteration
of the protocol. Using increasing amounts of yeast total RNA, we
observed a positive relationship between the proportion of unique
read pairs and the amount of RNA used for library preparation, in-
dicating that library complexity is partially limited by input
amount. This is not a practical limitation for STRIPE-seq in bud-
ding yeast and would presumably not complicate STRIPE-seq in
other organisms with similar numbers of expressed transcripts,
as our data indicate comparable sensitivity to both SLIC-CAGE
and nanoCAGE. However, STRIPE-seq of more complex transcrip-
tomes may yield fewer transcripts relative to CAGE and deeply
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sequenced RAMPAGE samples. Thus, in its present form, STRIPE-
seq has reduced sensitivity in large transcriptomes relative to cur-
rent high-input gold-standard methods at low to moderate se-
quencing depths. However, given the simplicity and rapidity of
the protocol, its low cost, and modest input requirements, we
think that it will be broadly useful and a practical approach for ex-
ploring transcription initiation on a global scale. Future develop-
ment of STRIPE-seq will focus on improving TSRT efficiency to
increase the complexity of the initial cDNA pool to overcome
this problem. A recent rigorous examination of TSRT parameters
(Wulf et al. 2019) may provide some improvements in this area.
For instance, adding excess dCTP to a TSRT reaction was shown
to almost double TSRT efficiency.

An exciting potential application of STRIPE-seq is TSS profil-
ing in precious clinical or developmental samples fromwhich only
modest quantities of RNA are available. We found that STRIPE-seq
can reliably generate libraries from as little as 50 ng of total RNA.
Assuming a total RNA content of 1–50 pg per mammalian cell
(Han and Lillard 2000; Livesey 2003; Islam et al. 2011), STRIPE-
seq could, in its present form, be used with the amount of RNA ex-
tracted from fewer than 50,000 such cells, depending on yield. Fur-
thermore, we envision that, in conjunction with methodologies
for single-cell isolation and lysis such as those used in Smart-
seq2 (Picelli et al. 2013), STRIPE-seq could be adapted for single-
cell profiling of TSSs. The demonstrated sensitivity of STRIPE-seq
for low-abundance and/or unstable transcripts such as eRNAs
could also potentially be enhanced by using nascent rather than
total RNA as input for library preparation. Furthermore, the addi-
tion of barcodes during the TSRT reaction opens the possibility
of pooling samples after this step, allowing simultaneous process-
ing of multiple STRIPE-seq samples to further save on cost and
time. Last, given the simplicity of the STRIPE-seq method, we an-
ticipate that some or all of the protocol could be automated to en-
hance throughput.

Methods

Biological samples

Yeast strain S288Cwas grown in YPDmedium at 30°C under cons-
tant agitation. Where indicated, cells were treated with 1.5 mM
diamide under the same growth conditions for 1 h. Yeast total
RNA was extracted with the MasterPure Yeast RNA Purification
Kit (Lucigen MPY03100) per the manufacturer’s protocol.
HumanK562 cells were grown inDMEM+10%FBS and 1× penicil-
lin/streptomycin at 37°C with 5% CO2. K562 total RNA was ex-
tracted with TRIzol (Invitrogen) per the manufacturer’s protocol,
treated with DNase I, and purified using RNAClean XP beads
(Beckman Coulter) at a beads:sample ratio of 1.8:1 per the manu-
facturer’s protocol.

STRIPE-seq library preparation

Terminator exonuclease (TEX) treatment of total RNA, TSRT, and
library PCR were performed as described in the Supplemental
Methods. See Supplemental Table S5 for RTO and TSO sequences.
A step-by-step STRIPE-seq library construction protocol is available
at protocols.io (https://www.protocols.io/view/stripe-seq-library-
construction-bdtri6m6) and as a Supplemental Protocol. STRIPE-
seq libraries were sequenced for 150 cycles in paired-end mode
on the Illumina NextSeq 500 platform at the Indiana University
Center for Genomics and Bioinformatics (CGB). See the
Supplemental Methods for further considerations on sequencing
STRIPE-seq libraries.

RNA-seq

Total RNA (10 µg) was used to generate poly(A)+ libraries with the
Illumina TruSeq Stranded mRNA Library Prep kit. Libraries were
prepared by the CGB and sequenced as for STRIPE-seq samples.

Data analysis

Our analysis of STRIPE-seq and RNA-seq data is comprehensively
described in the Supplemental Methods.

Public data sets

All raw data sets were obtained from the NCBI Sequence Read
Archive (SRA) using the accession numbers listed in Supplemental
Table S6. Yeast Ribo-seq WIG files were obtained from NCBI Gene
ExpressionOmnibus (GEO) (GSM1949550/1) (Nissley et al. 2016).
Chromosome names in the Ribo-seq WIG files were converted
fromUCSC to Ensembl format (e.g., chrI to I) using the Linux com-
mand sed s/ = chr/ = /g to permit display in Gviz.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE142524. Scripts used to perform all analyses described here
are available at GitHub (https://github.com/zentnerlab/STRIPE-
seq; also see Supplemental Methods) and as Supplemental Code.
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