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Abstract

Human newborns spend up to 18 hours sleeping. The organization of their sleep differs

immensely from adult sleep, and its quick maturation and fundamental changes correspond

to the rapid cortical development at this age. Manual sleep classification is specifically chal-

lenging in this population given major body movements and frequent shifts between vigi-

lance states; in addition various staging criteria co-exist. In the present study we utilized a

machine learning approach and investigated how EEG complexity and sleep stages evolve

during the very first weeks of life. We analyzed 42 full-term infants which were recorded

twice (at week two and five after birth) with full polysomnography. For sleep classification

EEG signal complexity was estimated using multi-scale permutation entropy and fed into a

machine learning classifier. Interestingly the baby’s brain signal complexity (and spectral

power) revealed developmental changes in sleep in the first 5 weeks of life, and were

restricted to NREM (“quiet”) and REM (“active sleep”) states with little to no changes in state

wake. Data demonstrate that our classifier performs well over chance (i.e., >33% for 3-class

classification) and reaches almost human scoring accuracy (60% at week-2, 73% at week-

5). Altogether, these results demonstrate that characteristics of newborn sleep develop rap-

idly in the first weeks of life and can be efficiently identified by means of machine learning

techniques.

Introduction

Sleep of newborns greatly differs from the sleep of kids or adults. Adult-like classification of

sleep into classical sleep stages is possible only from the age of 2–3 months onwards, since only

then typical NREM patterns, like sleep spindles, K-complexes, or slow waves emerge (AASM;

[1]). Until then the EEG landscape is dominated by low-voltage-irregular (REM/Wake), high-

voltage slow (NREM/REM), mixed (Wake/NREM/REM) and tracé alternant patterns in

NREM. Oscillatory activity of newborns is dominated also during wake by slow oscillations of

a very high amplitude up to 100 μV [2]. Another hallmark of early brain activity is bursting
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activity (known also as spontaneous “activity transients” or “delta brushes”), characterized by

slow delta-like waves with superimposed fast, beta range activity [3, 4]. Hence in the first

weeks of life the only discrimination of sleep stages possible is between wake, active sleep

(REM) and quiet sleep (NREM) [5, 6].

Importantly the neonatal sleep-wake state organization also impacts on later development

[7–9]. For instance sleep characteristics during the first postnatal days are related to cognitive

development at an age of 6 months [10]. Being able to reliably characterize sleep in newborns

has been recognized as crucial for both research and pediatric practice but is even to-date an

inherently difficult endeavor.

Traditionally, sleep of infants is staged based on a visual inspection of polysomnographical

(PSG) recordings, which often is supplemented by simultaneous observation of overt behavior

and respiratory activity. However such manual sleep staging is time consuming, costly,

requires high expertise, and can be quite variable due to varying staging criteria and/or noisy

data. Crowell and colleagues [11] for example reported moderate inter-scorer reliability for

infant sleep staging, with kappa coefficient going below 0.6, when staged according to the

modified Anders manual [5]. Reliability can be improved by refining criteria for a specific age

group individually, as done for example by Satomaa and colleagues [12], who reached kappa

score of 0.73 indicating substantial agreement for one-month old babies. From a practical

point of view however such fine tuning of sleep staging criteria might yield rather low repro-

ducibility as the results cannot generalize to other age groups. We here try to address this issue

and reached out for a more data-driven and objective analysis of EEG data using machine

learning.

In the context of brain oscillations typically frequency-resolved information is exploited by

means of spectral methods such as Fast Fourier Transform (FFT). More recently however, a

stronger focus on irregular dynamics of brain signals gave rise to entropy-based features (for a

review see [13]). Entropy quantifies the extent of irregularity in the EEG time signal, where

repeating, predictable signal yield low entropy, while irregular, unpredictable signal yields

high entropy. In contrast to the power spectrum capturing only linear properties of the brain

signal, entropy-based features emphasize also additional characteristics of the EEG that are

related to non-linear dynamics [14]. A non-linear behavior of human EEG was for example

detected during adult sleep, especially in N2 stage [15, 16]. In contrast to FFT-based measures,

symbolic measures such as permutation entropy are operating on the order of values rather

than on the absolute values of a time series. This has a big practical advantage if a signal is

highly non-stationary and corrupted by noise [17], as is the case with the data of newborns.

For instance, noise due to high electrode impedance is less likely to affect symbolic measures

such as permutation entropy [14].

Mounting evidence suggests that fluctuations in EEG entropy reflect both transient, state-

like changes in human brain activity (e.g. wake and sleep states), as well as slower and more

long lasting dynamics across a day or even brain maturation. Sleep studies investigating

healthy adults report an overall trend of entropy decrease from WAKE, across transitional

(N1) and light (N2) to deep (N3) sleep, with a relative increase during REM sleep [18–20]. A

similar pattern was reported in newborns with higher entropy levels in active/REM sleep as

compared to quiet /NREM sleep [21]. Diurnal changes in EEG entropy between daytime and

night time periods–although diminished in size in relation to healthy individuals–were also

found in patients following a severe brain-injury [22].

Across the development from childhood to adulthood a permanent increase of EEG

entropy has been observed [23]. Also in adults (19–74 years) an age-related increase of EEG

entropy was reported [24]. Interestingly, during the first weeks of infancy, this pattern is much

less consistent, and may even be accompanied by transient declines in EEG entropy. For
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instance, Zhang and colleagues [25] reported EEG entropy during sleep to increase across the

first month of baby’s life. Then suddenly this patterns changes, such that entropy remains con-

stant during quiet sleep, but decreases during active sleep. This transient change in entropy

evolution is in good agreement with previous results showing a general decrease in high fre-

quency (beta band) power occurring within the first month of life ([26, 27]also for sleep stage

specific findings see [28]).

To delve deeper into the dynamically changing landscape of early brain activity, we ana-

lyzed newborn sleep EEG data (PSG and hdEEG) of 42 participants at week 2 and 5 after birth.

It has to be mentioned that the reported data were not recorded during continuous night-time

sleep period, thus may differ from natural sleep in newborns. First we evaluated sleep that was

previously scored visually, in terms of both entropy and oscillatory power. In contrast to

Zhang and colleagues, where temporally unspecific entropy was used, we quantify entropy

over multiple temporal scales, with the aim to add knowledge, especially in light of classic, ‘fre-

quency-resolved’ findings. Second we aimed at testing the possibility of automatizing sleep

staging by using the previously extracted entropy measures in a machine learning approach.

This approach could ultimately complement or even replace visual staging and thus make the

sleep scoring in newborns more objective and replicable. Last but not least, we tried cross-ses-

sion classification such that we could assess whether our algorithm can generalize between age

groups and reveal the similarity or “dissimilarity” in sleep organization this early in life.

Participants and methods

Participants and EEG recording

Mothers of 42 full-term infants (15 female) were recruited for a study on prenatal learning.

Polysomnography (PSG) was recorded from all but one newborn during two separate sessions:

first at 2 weeks (14.8±4.3 days) after birth and then 5 weeks (36.7±4.3 days) after birth. Record-

ing took place in the home environment of the mother and infant. EEG were recorded with an

ambulatory, high-density (128-EEG channels cap) system using a Geodesic Sensor Net (Geo-

desic EEG System 400, Electrical Geodesics, Inc, Eugene, OR; US). The signal was recorded

continuously with a sampling rate of 500Hz over 35min (n = 11) or 27min (n = 31). Recording

times were determined by the experimental protocol including nine 3min or 5min periods of

alternating rest and auditory stimulation periods (with simple pre-recorded nursery rhymes).

For the current study we disregard this experimental stimulation and merely focus on the

changes in behavioral states over the full recording time. The study was approved by the ethic

committee of the University of Salzburg (EK-GZ 12/2013) and all parents provided written

informed consent before participation.

Data preprocessing

Preprocessing was done in Brain Vision Analyzer (Brain Products GmbH, Gilching, Germany,

version 2.0) and MNE-python software (version 0.16.1). Data was down-sampled to 125 Hz

and re-referenced to average reference of all the 128 EEG channels. EEG was band-pass filtered

(FIR filter with hamming window) between 0.5 and 35 Hz. Electrode (impedance check) arti-

facts characterized by a 20Hz component were deleted semi-automatically by first visually

inspecting individual recordings in the time-frequency domain and next iterating over seg-

ments. 95% percentile thresholding was used to exclude bad segments which resulted in an

exclusion of 4.5% of total segments. Note that this step was performed in addition to the exclu-

sion of segments staged as movement or transitional sleep by the human scorer. The high den-

sity EEG montage was then subsampled to the equivalent of a habitual sleep montage with

only 6 EEG channels (F3, F4, C3, C4, O1, O2) and 5 peripheral channels: bipolar ECG, bipolar

Development of sleep in newborns
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EMG, bipolar VEOG, as well as a HEOG left, and HEOG right both re-referenced to the right

ear as recommended in [29]. For the subsequent automatized sleep scoring we used the same

reduced PSG setup as we used for the visual sleep scoring. This allows making a fair compari-

son between the two sleep scoring approached on one hand, and increases applicability of our

classifier to other baby PSG datasets on the other hand.

Visual sleep staging

Eighty-four recordings were visually sleep-scored by an expert sleep scorer (Scholle) according

to scoring criteria [30] based on 30-second PSG segments. Each segment was assigned to one

of the five classes: quiet sleep (NREM), active sleep (REM), wake (WAKE), movement time,

and transitional sleep. To account for possible difference in the amount of movement from

week-2 to week-5 all epochs scored as movement (as well as transitional sleep) were excluded

from further analysis (7.7% of segments). Ten recordings were considered “unscorable” by our

expert and removed from further analysis. In the next step we validated the manual scorings

by examining the simultaneously recorded videos. We followed established Prechtl staging cri-

teria [31]. Whenever we detected mismatch between PSG-based scorings and video record-

ings, for example observed infant’s open eyes in epochs staged as sleep, we sought for a

consensus score. Due to technical issues (EEG signal corrupted) we excluded one of the

recording sessions of one participant. All in all 72 recordings (34 at 2 weeks of age; 38 at 5

weeks of age) were included in the final analyses.

Entropy measure

Entropy quantifies the irregularity or complexity of signal fluctuations, where repeating, highly

predictable signal yield low entropy, while irregularity yields high entropy. We used permuta-

tion entropy (PE) as a robust entropy measure that first converts EEG time series into a

sequence of data-patterns (where each pattern describes the order relations between neighbor-

ing EEG voltages), and next quantifies the distribution of these patterns by using the Shannon

entropy equation (cf. Fig 1a). Highest PE (maximal information) is attained when all patterns

have equal probability. Further generalization of this method, called multi-scale permutation

entropy (MSPE), [32] applies coarse-graining to the original broadband signal by averaging

data within non-overlapping windows [33]. Like low-pass filtering, coarse-graining eliminates

fast fluctuations from the signal biasing the complexity estimates towards increasingly slower

time scale (cf. Fig 1b).

MSPE was calculated for non-overlapping 30s segments, for each PSG channel separately,

and for 5 different levels of coarse-graining (scales). To maximize the predictive power of the

classifier we used all 5 temporal scales as an input. This resulted in 55-dimensional feature vec-

tors (per segment) for each subject. The classifier is later called as MSPE-based. For univariate

analysis reported later we used MSPE computed at a scale of 1 (original signal, mixture of fast

and slow temporal scales) and at a scale of 5 (fast temporal scales eliminated), later referred to

as fast scale and slow time scales respectively. Analysis for intermediate scales was included in

supplementary materials for completeness (cf. S6 Fig).

Spectral measure

We also calculated power spectral density (PSD) for the same 30s segments in 1 Hz steps and

for frequencies between 1–30Hz. Welch’s method with overlapping Hamming windows was

used. Similarly to MSPE analysis, we used all frequency bins as an input for the classifier (later

called PSD-based) providing 330-dimensional (11 x 30) feature vectors (per segment) for each

subject.

Development of sleep in newborns
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Fig 1. Multi-scale permutation entropy as useful feature for neonatal sleep stage classification. (a) Six possible

ordinal patterns are identified (pi), their distribution is formed and Shannon entropy is computed. (b) Simulated time

series prior (left) and after the coarse-graining procedure (right) are shown. Note that the granulation removes the fast-

varying changes, which allows estimating the entropy on a slower temporal scale. (c) PSDs of individual epochs for a

single recording (week-5) and corresponding visual/manual sleep staging, log-transformed power is shown for better

Development of sleep in newborns
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Statistical analysis

Univariate statistical analysis was performed for both entropy measures as well as PSD esti-

mates. To compare entropy data linear mixed models were used as they are more suited to

deal with unbalanced datasets than repeated measure ANOVA. This is of a particular benefit

as the number of available segments was limited (for example NREM for week 2; cf. Table 1).

To provide an equal number of observations for each subject and for each sleep stage a boot-

strap sample of 10 MSPE values was repeatedly (1000 times) drawn and then averaged. Matrix

of MSPE values (sleep stage x participant x session x location) entered the model as a depen-

dent variable. Two sessions (week-2 and week-5), three sleep stages (NREM, REM, WAKE)

and three locations (frontal, central, occipital) served as fixed effects, and participants as a ran-

dom effect. We also included a random slope to account for inter-individual differences in

complexity of each baby from week-2 to week-5. To select the model with optimal fit the

Akaike information criterion was applied. All model parameters were estimated using

restricted maximum likelihood estimation. Wald Chi-Squared test was used to test for signifi-

cance of the model variables. Two independent testings were performed with MSPE at scale of

1 and at scale of 5 as a dependent variable. Additionally, we carefully report differences if the

exclusion of statistical outliers (as identified by the interquartile range rule) changed results

significantly. Linear mixed model analysis was performed with the lme4 package [34] by using

the statistical software R 3.4.0 [35]. Post hoc, multiple comparison procedure was performed

with Tukey test using the glht-method of the multcomp package [36].

To compare power spectra between the two sessions we first used similar bootstrapping as

for MSPE and then ran cluster-based permutation tests as implemented in MNE-python soft-

ware (version 0.16.1).

Machine learning

The principle behind supervised machine learning (ML) is to train a predictive model, by auto-

matically encapsulating information from previously labeled dataset (in our case visual sleep

staged PSG epochs). We performed an epoch-by-epoch classification into one of three distinct

visibility. (d) Corresponding MSPE values for the same recording depicted separately for the original signal (left) and

after coarse-graining (right). Note that these three classes or stages are distinguishable on both scales, yet different

patterns are observed in the original and coarse-grained computation.

https://doi.org/10.1371/journal.pone.0224521.g001

Table 1. Sample descriptives.

Session Age (in days) Sleep stages (visually

scored 30s epochs)

Subjects MSPE Fast MSPE fast MSPE Slow MSPE slow

Mean SD Name n % Mean SD Mean SD

week-2 13.9 3.7 NREM 213 35 1.356 0.05 1.609 0.031

REM 1004 97 1.435 0.048 1.615 0.032

WAKE 431 62 1.451 0.053 1.585 0.045

week-5 36.2 3.9 NREM 387 66 1.315 0.044 1.58 0.051

REM 1056 95 1.392 0.042 1.606 0.028

WAKE 392 66 1.44 0.056 1.569 0.036

The analyzed data set consisted of two recordings from a group of healthy newborns with three sleep stage classes that were identified using visual scoring. EEG signal

complexity was estimated using multi-scale permutation entropy (MSPE). The subjects% column reflects the percentage of participants who actually showed a specific

sleep stage in the respective (week-2 or week-5) recording sessions. MSPE values refer to the results from frontal channels (F3 and F4).

https://doi.org/10.1371/journal.pone.0224521.t001
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sleep classes: NREM, REM, WAKE. A random forest (RF) classifier was used as a main compo-

nent of the classification pipeline. We employed repeated (10 repetitions) two-fold cross-vali-

dation by indexing half of the subjects as testing and the other half as training subjects. It has

been shown that this procedure has smaller variance than the typical leave-one-subject-out

cross validation [37]. Training and testing sets were created by concatenating data of all sub-

jects assigned to one of the two groups. Random under sampling of epochs was performed to

equalize the number of epochs across sleep class, both in the training and testing set. Addi-

tional cross-validation with the training set was performed to find optimal configuration of the

classifier parameters (hyper-parameters). Finally we used two types of the two-fold cross-vali-

dation: (1) within sessions such that both training and testing subjects were of the same age,

(2) across sessions such that training subjects and testing subjects were of different age (cf. S2

Fig). Importantly both procedures were run as a between-subject classification, such that each

participant was assigned to either the training or testing set (i.e., no two sessions of the same

subject in training and testing at the same time). Each cross-validation was repeated 20 times,

and the median scores (accuracy, F1-score) are reported. Chance level of the accuracy scores

was estimated by running each cross-validation on shuffled data (100 repetitions). The

machine learning analysis was performed in Python using the scikit-learn package [38]. To

evaluate the performance of a classifier standard performance metrics were used. Class-wise

performance (for NREM, REM and WAKE classes separately) as well as the overall perfor-

mance was accessed using the F1 score and the accuracy score respectively (cf. Fig 2).

Fig 2. Evaluation of the performance. (a) The confusion matrix relates the actual (visual) scoring to the classifier predictions. (b)

Values from the confusion matrix were used to calculate the overall accuracy and the class-specific F1 scores. Note that diagonal

corresponds to agreement between the visual sleep staging and the MSPE-based automatic classification. Whereas accuracy (top

panel) reflects relative amount of agreement between predicted and actual scores, F1 accounts for precision (middle panel) and recall

(bottom panel). Precision (known also as positive predictive value) takes into account false positives and is defined as the ratio of

epochs classified by both the classifier and the human scorer as given sleep stage to all of the epochs that the classifier assigned as that

sleep stage (b, middle panel). Recall (known also as sensitivity) in turn takes into account the amount of false negatives and is defined

as the ratio of epochs classified by both the classifier and the human scorer as given sleep stage to all of the epochs that the human

scorer classified as the given sleep stage (b, lower panel). (c) The F1 score combines the two measures into a single metric.

https://doi.org/10.1371/journal.pone.0224521.g002

Development of sleep in newborns

PLOS ONE | https://doi.org/10.1371/journal.pone.0224521 October 29, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0224521.g002
https://doi.org/10.1371/journal.pone.0224521


To compare output of the classifiers based on different data both a MSPE- and PSD-based

classification was repeated 20 times on the full dataset (i.e., the week 2 and week 5 data

merged). The corresponding accuracy scores of MSPE- and PSD-based classifiers were com-

pared statistically with Mann-Whitney U test. Since the MSPE-based classifier had signifi-

cantly better performance as compared to the PSD-based classifier (cf. S1 Fig), we restricted

our subsequent classification analysis to MSPE classifier results.

Results

To assess sleep rhythm of newborns EEG recordings in a sample of 42 participants were used.

Final analysis included 72 visually sleep scored PSG recordings divided into two age groups:

2-weeks-old (N = 34) and 5-weeks-old (N = 38). We evaluated changes in sleep stage distribu-

tion (including NREM, REM and WAKE stages) from the age of 2 weeks to the age of 5 weeks.

On average 5-week old newborns spend a higher percentage of total time (19%) in NREM

sleep as compared with 2-weeks old babies (11.5%). In contrast relative REM duration

decreases from 60.6% at week-2 to 57.2%, at week-5, and WAKE decreases from 27.9% at

week-2 to 23.8 at week-5. A significantly larger proportion of participants showed NREM dur-

ing week-5 (66%) as compared to week-2 (35%) (χ2 (1) = 6.81, p< .05). Using paired-samples

Wilcoxon test (by including only those subjects that actually show given sleep-state in both ses-

sions), we found no significant differences in the median duration of classes from week-2 to

week-5 (Wilcoxon Signed-Ranks tests; NREM: Z = 10.5, p = .15, REM: Z = 191.0, p = .56,

WAKE: Z = 32.5, p = .21). Subsequently, EEG signal complexity was investigated across differ-

ent sleep stages and recording sessions. Please see Table 1 for a detailed overview with respect

to age, distribution of sleep stages and the complexity measure–multi-scale permutation

entropy.

Entropy and spectral measures

We observed that the multi-scale permutation entropy (MSPE) at a fast scale (i.e., no coarse-

graining, incl. mixture of low and faster frequencies) as well as slow scale (i.e., fast temporal

scales eliminated) significantly differed between sleep stages, recording sessions as well as

channel locations. Table 1 and Fig 3 illustrate the results for MSPE averaged over F3 and F4

channels (for central and occipital sites see S4 Fig).

Fig 3. Entropy at both fast (left) and slow (right) time scale across sleep/wake states and the two recording sessions. MSPE

values were averaged over frontal electrodes. Note that at the fast scale all three stages are distinguishable at week 5, but not yet at

week 2. At both scales there is a clear difference in signal complexity between week 2 and week 5 with week 2 being generally higher

in entropy.

https://doi.org/10.1371/journal.pone.0224521.g003
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At a fast time scale (Fig 3, left) there was a main effect of session (week-2 vs week-5: Wald

chi-square (1, 73) = 27.65, p< .001) indicating higher permutation entropy during week-2 as

compared to week-5. Furthermore we observed a main effect of sleep stage (NREM vs REM vs

WAKE: Wald chi-square (2, 73) = 237.64, p< .001), and a main effect of channel location

(frontal vs central vs occipital: Wald chi-square (2, 73) = 45.71, p< .001). There were signifi-

cant interactions between session and sleep stage (Wald chi-square (2, 73) = 7.79, p = .02) as

well sleep stage and location. A post-hoc Tukey test for the factor sleep state confirmed higher

entropy during WAKE compared to both REM (mean(SE) = .021(.005); Z = 4.09, p< .001) as

well as NREM (mean(SE) = .086(.006); Z = 13.93, p< .001). In addition there was also signifi-

cant difference between REM and NREM (mean(SE) = .065(.005); Z = 12.03, p< .001). A

post-hoc Tukey test for the factor location yielded lower entropy over frontal channels as com-

pared to the central location (mean(SE) = -.024(.006); Z = 4.18, p< .001), as well as lower

entropy over frontal as compared to occipital sites(mean(SE) = -.029(.006); Z = 5.0, p < .001).

A post-hoc Tukey test on the interaction between session and sleep stage revealed higher

entropy during WAKE compared to REM, but only at week-5 (mean(SE) = .031(.007); Z = 4,

p< .001). A post-hoc Tukey test on the interaction between sleep stage and location yielded

higher entropy during WAKE compared to REM, only over the frontal location (mean(SE) =

.032(.008); Z = 4.18, p< .001). Note that the session x sleep stage interaction changed to a

trend after outliers (based on the interquartile rule) were excluded (Wald chi-square (2, 73) =

4.67, p = .09).

At a coarse time scale (Fig 3, right) we found a similar main effect of session (week-2 vs

week-5: Wald chi-square (1, 73) = 6.96, p = .008) indicating an overall decrease in EEG com-

plexity from week-2 to week-5. Additionally we observed a significant main effect of the sleep

stage (NREM, REM, WAKE) (Wald chi-square (2, 73) = 87.4, p< .001). A post-hoc Tukey

test for the factor sleep state revealed higher entropy during REM compared to NREM

(mean(SE) = .02(.004); Z = 5.47, p< .001), also higher entropy during REM compared to

WAKE (mean(SE) = .03(.004); Z = 8.81, p< .001), as well as higher entropy during NREM

compared to WAKE (mean(SE) = .01(.004); Z = 2.42, p = .04) Moreover, we observed that the

pattern of relative entropy levels (across sleep stages) reverses at coarse temporal scale (Fig 3,

right) compared to fine temporal scale (Fig 3, left); such that WAKE shows the lowest entropy

level for coarse temporal scale. The interaction between session and sleep stage was found to

be marginally significant (Wald chi-square (2, 73) = 6.0, p = .051). A post-hoc Tukey test

showed that NREM is distinguishable from REM but only during week-5 (mean(SE) = .03

(.005); Z = 5.79, p< .001).

Similarly, we also evaluated changes in power spectral densities (PSD) across sleep stages

and recording session. We found an increase in spectral power from week-2 to week-5, but

only during NREM (Fig 4, left). This pattern was observed also for central electrodes and to a

limited degree (2–4Hz frequency bins) for occipital ones (cf. S5 Fig). For Spearman’s rho cor-

relations between spectral and entropy features please see S9 Fig.

Machine learning classification

Influence of the feature extraction on the classification performance: PSD vs MSPE.

Multiscale permutation entropy improves the overall classification accuracy as compared to

PSD (cf. S1 Fig). The per-class evaluation shows that MSPE improves performance in the dis-

crimination of all classes, but in particular for WAKE (73% instead of 59% median accuracy)

wherefore we decided to focus on MSPE in all subsequent classification analyses.

Separate classification for week-2 and week-5—Within age-group. To automate sleep

staging we used machine learning and previously extracted entropy features. We first

Development of sleep in newborns

PLOS ONE | https://doi.org/10.1371/journal.pone.0224521 October 29, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0224521


performed within age-group classification and evaluated results from the two independent

and age-specific classifiers. That is, we computed the performance scores of a classifier that

was both train and tested on data from either (1) weekd-2 or (2) week-5 recording. Accuracy

scores across all 3 sleep stages were significantly higher than would be expected by chance. In

randomization test across 3 classes, chance level was at ~33%. For both the week-2 and week-5

classification (cf. Fig 5, left upper panel). Moreover, the classifier performed better on the

week-5 (Mdn = 72.7%) as compared to the week-2 (Mdn = 60.1%) babies (U = 1, Z = 6.5,

Fig 4. Average log-log-scale PSD spectra per sleep stage over frontal electrodes. The shaded area highlights statistical differences

between week-2 and week-5 recordings. The dashed lines represent the standard error of the mean. Note that only NREM shows

differences in the PSD spectra between age groups and the developing 9–14 Hz peak exclusively observed at week-5 of age.

https://doi.org/10.1371/journal.pone.0224521.g004

Fig 5. Classification of sleep states in the week-2 and week-5 old newborn (left panel) and its generalization across age (right

panel). Sleep in older (5 week old) babies can be classified more accurately as compared to 2 weeks (left panel). Right panel shows

that the “generalization” or classification across age-groups leads to lower classification accuracy specifically for detecting stage

NREM (week-5 training, week-2 test), but also stage REM (week-2 training, week-5 test). Vertical histograms represent the null

distribution, with the empirically estimated chance levels in both cases being close to 33% (red dashed line). 95% confidence-

intervals (for both accuracy and F1 scores) are displayed on the basis of bootstrap analysis.

https://doi.org/10.1371/journal.pone.0224521.g005
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p<0.001). The per-class evaluation (cf. Fig 5, left lower panel) shows higher F1 classification

scores during week-5 (Mdn = 63.1%) as compared to week-2 for REM (Mdn = 53.2%);

(U = 24, Z = 5.2, p<0.001), as well as for WAKE (Mdn = 83.6% vs. Mdn = 58.5%; U = 1,

Z = 6.6, p<0.001).

A confusions matrix (cf. S3 Fig) as well as visual inspection of the single subject results (cf.

S7 Fig for an exemplary subject) reveals that a very limited proportion of NREM epochs is

actually falsely classified as WAKE (on average 3%) or vice versa (8% of the epochs). During

week-2 the classifier is worst in distinguishing REM and WAKE, while at week-5 the classifica-

tion generally increases and NREM and REM are sometimes wrongly assigned.

Cross classification between week-2 and week-5—Across age-groups. In a second and

last step we tested whether the classifier can generalize across age groups. That is we trained

the classifier on a given age-group and looked at the classification accuracy onto the other age-

group (cf. Fig 5, right).

Compared to the within-session classification (week-2 to week-2 and week-5 to week-5),

the cross-session (week-5 to week-2 and week-2 to week-5) classification accuracy was

decreased by 7.7% and 9.9%, respectively. Classification however remained well above chance

level (~33%) and was better when the classifier was trained on week-2 and tested on week-5

data (Mdn = 62.8%) as vice versa (Mdn = 53.1%) (cf. Fig 5, right). Interestingly, the per-class

evaluation shows that detection of NREM deteriorates when trained on week-5 (and tested on

week-2) data, and REM classification deteriorates when trained on week-2 (and tested on

week-5) data only. The classification of state WAKE remains relatively stable indicating that

the way this stage presents itself in the EEG remains widely constant from week-2 to week-5 in

the newborn.

Uncovering the black box of classification– feature importance and decision bound-

aries. Evaluation of channel importance from a trained random forest classifier revealed that

primarily the horizontal EOGs, frontal brain channels (F4, F3) as well ECG contribute to a

good classification accuracy (S8 Fig). Visualization of classification boundaries of a trained

random forest classifier in addition confirms previous results and reveals more compact and

distinct sleep/wake classes at week-5 as compared to week-2 (see S8 Fig for details).

Discussion

The main focus of this study was the development of an automatic sleep staging technique in

order to sleep stage newborn sleep as early as 2 to 5 weeks after birth. As babies at this age also

sleep a significant proportion of time (and irrespective of environmental stimulation such as

noise) we also had the opportunity to study sleep and associated brain dynamics in this early

age group. However, please note that we do not claim that our newborn sleep data is necessar-

ily representing natural sleep at that early age as auditory stimulation is ongoing half of the

time in our study protocol.

Generally newborns are known to sleep up to 16–17 hours a day. We found that the most

dominant behavioral state in our study is actually active sleep or state REM (week-2: 60.6%,

week-5: 57.2% of total time). Indeed, several earlier studies have shown that newborns spend

more than half their time in REM [2]. Its proportion, however, gradually decreases within the

first 12 weeks of life [39], which is interpreted as an ongoing adaptation of the sensory system

to the environment [2]. In contrast the mean percentage of time for NREM increases from

week-2 (11.5%) to week-5 (19%). This proportional increase in NREM is believed to reflect a

gradual shift towards the adult pattern known as slow wave sleep (SWS) [2] which is known

to be important for recovery as well as brain plasticity or learning. However, it is worth men-

tioning that testing longitudinally within subject, we found no significant changes in the
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percentage of NREM. It was likely due to limited sensitivity in this measure, magnified by

small number of available subjects with NREM during week 2.

Over the first weeks of life the human brain is growing at a rapid rate establishing a complex

network that includes trillions of synaptic connections [40]. Accordingly, a continuous

increase in brain signal complexity could be expected. Instead, we observed a clear decrease in

EEG complexity from week-2 to week-5 in present data. Although similar findings have

already been reported for both entropy [25] as well as spectral [26–28, 41] EEG brain mea-

sures, the understanding of what might account for this effect remains limited. Most of the

aforementioned authors point to a decline in bursting activities (known also as spontaneous

“activity transients” or “delta brushes”), which are abundant in premature infants, but which

remain detectable until about the end of the first month of life [42].

In contrast to prior approaches, where temporally more unspecific entropy measures were

used [25], we used multi-scale entropy (MSE) providing more details about temporal scale or

frequency band which may contribute to the effect. In our data we found that EEG entropy

decreases with age (especially during NREM and REM). This change was observed not only at

the fast temporal scale, (mixture of low and high frequencies), but also at the slow temporal

scale (slow frequencies only), suggesting a specific bandwidth or temporal scale being involved.

Indeed, we also observed a significant increase in EEG spectral power at 1–15Hz (during

NREM). The observed entropy decrease and corresponding power increase is likely linked to

the emergence of sleep spindles taking place between week-2 and week-8 after birth [41]. The

fact that frontal channels have been identified as the ones with lowest entropy (fast temporal

scale) could be related to infant (1.5–6 months) sleep spindles which are prominent over the

fronto-central area [43]. Nevertheless, this result needs to be interpreted with caution. It is

widely acknowledged that frontal EEG channels are impacted most by eye blinks and muscles

artifacts. Despite using robust entropy measure, we cannot exclude the possibility that some

part of the effect may be driven by non-neural sources.

Most of the before mentioned studies focus exclusively on sleep periods (as it constitutes

about 70% of the time in newborns from birth to 2 months), and leave out periods of wakeful-

ness. It was therefore rather unclear whether foremost “quiet” NREM and “active” REM sleep

states show these extensive changes early in development or if similar changes in the “brain

signatures” are found in wakefulness during the first weeks of life. Indeed, data indicate that a

drop in entropy at the fast temporal scale is exclusive to NREM and REM sleep states, with no

significant changes during wakefulness. Likewise, we observed an increase in EEG spectral

power only during NREM. These findings support the first line of interpretation, as in adults,

newborns sleep spindles are observed during NREM sleep [2, 41]. Interestingly, the age-related

decrease in entropy at a slow temporal scale is also observed only for NREM which supports

the idea of a reorganization of brain oscillations, and the formation of more stable sleep-wake

cycles with dominant slow waves during NREM.

Finally, in adults the relative entropy level across sleep stages is strongly time-scale depen-

dent. At fast temporal scale EEG entropy follows a pattern of WAKE > REM> N2 >N3

whereas at slow temporal scale this pattern reverses (N3> N2 > N1> REM> WAKE) and is

interpreted as a reflection of mainly local information processing during WAKE and increas-

ingly global synchronization during NREM (reaching its culmination during N3) [15]. Our

result shows that in neonates this pattern reverses partially. Both NREM and REM sleep show

higher entropy than WAKE, however there is no significant difference between NREM and

REM at the slow temporal scale which suggests that global connections may not be yet fully

functional likely due to incomplete myelination of the newborns brain [44]. In relation to PSD

data, we observed that high frequency spectral components correspond to higher entropy
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(when compared across sleep stages), which agrees with previous studies suggesting a link

between fast scale entropy and PSD slope [19, 24].

In addition to this descriptive analysis of baby EEG data in the first weeks of life, we devel-

oped a neonatal sleep classifier by employing machine learning using entropy-based features.

We reveal that our classifier performs well over chance (60.1% week-2, 72.7% week-5) and is

close to human scoring performance with adapted scoring rules (inter-scorer agreement of

80.6%, kappa score of 0.73 [12]). Crowell and colleagues [11] for example reported moderate

inter-scorer reliability for infant sleep staging, with kappa coefficient going below 0.6.

However it has to be noted, that visual sleep scoring of neonatal recordings is particularly

difficult, even for experienced sleep experts. In order to reach an acceptable inter-scorer agree-

ment intensive training and careful attention to scoring specifications (which even vary in the

literature) are required [11], which undermines the practical applicability of this approach.

Note that even in adults the interrater agreement rarely exceeds 80% agreement [45]. As a mat-

ter of fact, 12 out 72 recordings in our sample have been classified as “difficult” by our scoring

expert (Scholle S.;[30]). Considering the uncertainty in the ‘ground truth’, the obtained results

are notably high. In fact after excluding the 12 “difficult” recordings the overall classification

raises by about 6% which confirms presence of mislabeling in the dataset. The high classifica-

tion accuracy of our automatic classifier also demonstrates that complexity measures are able

to capture and quantify essential characteristics of vigilance states in newborns. Recently an

independent group of researchers has used a similar approach to study sleep in preterm infants

finding a significant correlation between the EEG complexity and the infant’s age (ranging

from 27 to 42 weeks) [46]. In contrast to the aforementioned study (where sample entropy was

used), our approach was based on robust permutation entropy. A limitation of our current

approach is certainly that we did not yet include respiration (mainly due to practical reasons,

e.g., to ensure a rapid recording-start in the newborns) and that our “ground truth” scoring is

lacking a double scoring. Given that we included a pioneer (Scholle S.) in infant sleep staging

which carefully reviewed all our baby PSG recordings (including simultaneous video record-

ings and Prechtl vigilance-scorings from the recordings) we believe that our manual scoring is

as good as it can get for the moment. Future studies should still try to add respiration and inde-

pendent second scorers which potentially would lead to further improvement of classification

accuracy.

The significantly higher overall classification performance for week-5 as compared to

week-2 recordings indicates that the neonatal sleep/wake states become more distinguish-

able within a very short time spanning only about 3 weeks of early human development. For

across age-groups classification we observed overall decrease in accuracy as compared to

within-group classification, which indicates marked "dissimilarity" in the sleep organization

between the two sessions. It is worthy of note that although fully consistent with our univari-

ate entropy results, the classification approach models simultaneously all temporal scales

and all channels (including EMG, ECG, EOGs), which provides a more complete picture on

the entropy changes across time. Hence, to account for the rapid developmental changes in

newborns and thus further improve the automated sleep classification, we suggest using

‘transfer learning’ procedure, known from recent application in deep-learning. In this sce-

nario a classifier could be pre-trained on larger dataset and further fine-tuned on a specific

age-group.

Interestingly testing on week-5 (when trained on week-2) is outperforming testing on

week-2 (when trained on week-5) classification. This seems surprising as in case of cross-ses-

sion (or -condition) classification it is in general more efficient to train a classifier on data with

clear class-boundaries (high signal-to-noise; in our case week-5) and test it on data with less

definite class-boundaries (low signal-to-noise; in our case week-2) than the other way around
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[47]. In our case however, this difference in signal-to-noise ratio has been counterbalanced by

the sleep specific entropy decrease from week-2 to week-5, which manifests itself as decreased

performance in classifying both NREM (week-5 training, week-2 test) and REM (week-2 train-

ing, week5-test) with a 24% and 14% accuracy drop, respectively. Interestingly there is no

change for stage wake when applying cross-session classification. This suggests that develop-

mental changes in signal complexity are more pronounced for NREM and REM states whereas

stage wake may be already widely developed.

Finally yet importantly we found that horizontal EOGs, frontal brain channels as well ECG

contribute the most in the classification. This suggests that development of sleep patterns is

not only associated with neural, but also with physiological changes (e.g., eye movement) and

that these features may be crucial markers for the manually labeled sleep stages. In summariz-

ing we observed massive developmental changes on the brain-level in the first 5 weeks of life in

human newborns. These changes were limited to “quiet” NREM and “active” REM sleep and

showed an unexpected drop of signal complexity from week-2 to week-5. In addition our clas-

sifier data demonstrated that we can classify well above chance and similar to human scorers

using multi-scale permutation entropy (using just 6 EEG and 5 physiological channels). Alto-

gether, these results highlight the need to perform electrophysiological studies during the first

weeks of life where rapid changes in neuronal development and related brain activity can be

observed.

Supporting information

S1 Fig. Influence of the feature extraction procedure on the classification performance.

Multiscale permutation entropy as compared to PSD boosts discrimination of sleep stages.

MSPE improves classification especially of WAKE, also REM and slightly NREM class (note

the diagonals of the lower panels).

(TIF)

S2 Fig. Cross-validation schemes. Splitting into training (in blue) and testing (in green) sets

was performed within sessions (upper row) or across sessions (lower row). Note, that half of

the subjects are used to train and half to test (two-fold cross validation), with both sessions of a

single subject (week 2 and 5) always being in separate sets.

(TIF)

S3 Fig. Confusion matrices summarizing the classification results for week-2 and week-5

(MSPE-based classifier). Note the off-diagonals showing limited proportion of NREM falsely

classified as WAKE (on average 3%) and similarly WAKE falsely classified as NREM (on aver-

age 8%).

(TIF)

S4 Fig. Comparison of MSPE at fast time scale between sleep stages and the two recording

sessions (week-2 vs week-5 data)—Central and occipital channels. Note that overall entropy

at the fast temporal scale is lower over frontal (see Fig 3, main text) as compared to both central

and occipital channels (left panels).

(TIF)

S5 Fig. Average log-log-scale PSD spectra for the individual sleep stages for central and

occipital electrodes. The shaded area shows statistical difference between week-2 and week-5.

Note that similarly to frontal channels (main text), there is a clear difference in PSD also for

central channels during NREM.

(TIF)
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S6 Fig. Comparison of multi-scale permutation entropy values across different scales

between sleep stages and sessions. Points represent the averages and error bars show the 95%

bootstrap confidence intervals. Note that results for scale = 1 and scale = 5 (X-axis) correspond

to the results presented in the main text. Maximal entropy in NREM and WAKE (also REM) is

attained at different temporal scale (X-axis). Also, similarly to the main text there is no statisti-

cal difference in WAKE between sessions (week-2 vs week-5) across all temporal scale.

(TIF)

S7 Fig. Exemplary single-subject classification (week-5). Note the limited proportion of

NREM epochs being falsely classified as WAKE and similarly WAKE classified as NREM.

(TIF)

S8 Fig. Channel importance extracted from a trained random forest classifier and a deci-

sion boundaries of a trained random forest classifier. Horizontal EOGs, frontal channels as

well ECG contribute most to the sleep classification (upper panel). For visualization purposes

multidimensional scaling was used to reduce dimension of the MSPE data to two (lower panel,

X and Y axis). Points represent epochs (N = 100 for each class), colors (red, green and blue)

represent true class labels and shading (pink, light blue and light grey) shows the decision

boundary. Note that in week-5 (right panel) there is more apparent overlap between the true

class labels (points) and the predictions (shading) as compared to week-2, which agrees with

higher classification accuracies for week-5.

(TIF)

S9 Fig. Correlations between spectral features and entropy at fast temporal scale (both ses-

sions were merged). Spectral features correspond to the average power values within three fre-

quency ranges (rows). Solid red line indicates significant results. Note negative correlation

between entropy and delta-theta band power during NREM.

(TIF)
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