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Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of

network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain

imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for

the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-

resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive

power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic

zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and

simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroenceph-

alography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient

seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific

connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of

brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions.
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Introduction
Neural network oscillations are a fundamental mechanism

for the establishment of precise spatiotemporal relation-

ships between neural responses that are in turn relevant

for cognition, memory, perception and consciousness.

When neurons discharge, the subsequent oscillatory activity

propagates through the network recruiting other brain re-

gions, thereby dynamically binding widely distributed sets

of neurons into functionally coherent ensembles, hypothe-

sized to represent neural correlates of a cognitive or

behavioural content (Singer, 1999). As the transient
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synchronization wave evolves, it establishes a spatiotem-

poral pattern characteristic for cognitive processes, sensory

(Engel et al., 1991), motor and sensorimotor tasks (Kelso,

1995), resting state (Allen et al., 2014; Hansen et al., 2014)

and stimulation paradigms (Spiegler et al., 2016).

Alterations of the spatiotemporal organization of these net-

work oscillations play an important role in the pathophysi-

ology of brain disorders. In particular focal epilepsy shows

complex alterations of resting state functional connectivity

patterns, responsible for some of the symptomatology

(Bettus et al., 2009; Liao et al., 2011; Haneef et al.,
2012; Pittau et al., 2012; Ridley et al., 2015). Simple acti-

vation paradigms lack the functional complexity to explain

the richness of observed spatiotemporal behaviours linked

to these brain dynamics (Bressler, 1995), leaving it essen-

tially to network processes to explain the origin of the

emergent functional and pathological spatiotemporal pat-

terns. When structural connectivity is merged with math-

ematical modelling, then generative brain network models

can be constructed allowing for the exploration of the

causal network mechanisms of brain function and clinical

hypothesis testing.

Large-scale brain network models (BNMs) emphasize the

network character of the brain and bring dynamical prop-

erties to the structural data of individual brains. In BNMs,

a network region is a neural mass model of lumped neur-

onal activity and is connected to other regions via a con-

nectivity matrix representing white matter fibre tracts of the

brain. This form of virtual brain modelling (Jirsa et al.,

2002, 2010) exploits the explanatory power of measured

network connectivity imposed as a constraint upon net-

work dynamics and has provided important insights into

the mechanisms underlying the emergence of the resting-

state networks dynamics (Ghosh et al., 2008; Deco et al.,

2011) of healthy subjects, stroke (Falcon et al., 2016) and

schizophrenic patients (Cabral et al., 2013). So far, these

studies have exploited generic or averaged connectomes to

uncover basic principles of brain network functioning.

What yet needs to be demonstrated, however, is the influ-

ence of individual structural variations of the connectome

on the large-scale brain network dynamics of the models.

The impact for personalized medicine would be substantial,

allowing exploiting the predictive value with regard to the

pathophysiology of brain disorders, and their associated

abnormal brain imaging patterns. A personalized BNM

derived from non-invasive structural imaging data, poten-

tially fit to non-invasive functional imaging data, would

allow testing of clinical hypotheses and exploration of

novel therapeutic approaches. To explore this capacity of

personalized BNMs to serve as a clinical validation and

exploration tool in brain network disorders, we here sys-

tematically test the virtual brain approach along the ex-

ample of epilepsy. So far, neural mass models have

proven successful in explaining the biophysical and dynam-

ical nature of seizure onsets and offsets (Robinson et al.,

2002; Wendling et al., 2002; Lopes da Silva et al., 2003;

Breakspear et al., 2006; Kalitzin et al., 2010; Touboul

et al., 2011; Kramer et al., 2012; Jirsa et al., 2014). Only

recently, however, has propagation of epileptic seizures

started to be studied using BNMs (Terry et al., 2012;

Taylor et al., 2013; Hutchings et al., 2015). Partial seizures

have been reported to propagate through large-scale net-

works in humans (Bartolomei et al., 2013) and animal

models (Toyoda et al., 2013). Around 30% of the patients

with focal epilepsies are drug-resistant. A possible treat-

ment for these patients is the surgical resection of the epi-

leptogenic zone, a localized region or network where

seizures arise, before recruiting secondary networks, called

the propagation zone (Talairach and Bancaud, 1966;

Bartolomei et al., 2001; Spencer, 2002). As a part of the

standard presurgical evaluation, stereotactic EEG is used to

help correctly delineate the epileptogenic zone (Bartolomei

et al., 2002). Alternative imaging techniques such as struc-

tural MRI, EEG, MEG and PET help the clinician to out-

line the epileptogenic zone. Recently, diffusion MRI and

the derived streamlines reflecting the connectivity between

different brain regions started to be investigated to better

understand the pathophysiology of temporal lobe epilepsy,

revealing reduced fractional anisotropy (Ahmadi et al.,

2009; Bernhardt et al., 2013) or other structural alterations

in the connectome of epileptic patients (Bonilha et al.,

2012; Besson et al., 2014; DeSalvo et al., 2014).

However, the usefulness of diffusion MRI in the delineation

of the epileptogenic zone and propagation zone during pre-

surgical evaluation of epilepsy remains elusive.

We sharpen our virtual brain hypothesis with regard to

personalized large-scale BNMs as clinical tools for the case

of epilepsy and will explore their predictive power with

regard to the organization of the epileptogenic zone and

the propagation zone prior to epilepsy surgery. In this art-

icle, we use connectivity matrices derived from patient-spe-

cific diffusion MRI scans to build BNMs for a cohort of 15

epileptic patients, simulate the individual seizure propaga-

tion patterns and validate the analytical and numerical pre-

dictions of the propagation zone against clinical diagnosis

and stereotactic EEG signals. Our results demonstrate that

personalized virtual brain models reliably predict the

propagation zone for a given epileptogenic zone. A correl-

ation of virtual brain-based simulations and surgical out-

comes further underlines the predictive power of this

approach.

Materials and methods

Patient selection and data acquisition

We selected 15 drug-resistant patients (seven males, mean age
33.4 years, range 22–56) with different types of partial epi-
lepsy accounting for different epileptogenic zone localizations.
Patients were retrospectively enrolled based on the following
criteria: (i) stereotactic EEG recordings were performed and
the epileptogenic zone was clearly defined from ictal record-
ings; and (ii) all these patients had available MRI with
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diffusion MRI sequences. All patients underwent a presurgical
evaluation (Supplementary Table 1). The first phase in the
evaluation of each patient is not invasive and comprises the
patient clinical record, neurological examinations, PET, and
EEG along with video monitoring. T1-weighted anatomical
images (MPRAGE sequence, repetition time = 1900 ms, echo
time = 2.19 ms, 1.0 � 1.0 � 1.0 mm, 208 slices) and diffusion
MRI images (DTI-MR sequence, angular gradient set of 64
directions, repetition time = 10.7 s, echo time = 95 ms, 2.0
� 2.0 � 2.0 mm, 70 slices, b-weighting of 1000 s/mm2)
were also acquired on a Siemens Magnetom Verio 3 T MR-
scanner. From the gathered data clinicians conclude potential
epileptogenic zones. Further elaboration on the epileptogenic
zone was done in the second phase, which is invasive and
comprises the placement of stereotactic EEG electrodes in or
close to the suspected regions. These electrodes have 10 to 15
contacts that are 1.5 mm apart. Each contact is 2 mm of length
and 0.8 mm in diameter. The stereotactic EEG was recorded by
a 128 channel DeltamedTM system using a 256 Hz sampling
rate. The stereotactic EEG recordings were band-pass filtered
between 0.16 and 97 Hz by a hardware filter. All the chosen
patients showed seizures in the stereotactic EEG starting in one
or several localized areas, i.e. the epileptogenic zone before
recruiting distant regions: the propagation zone. The position
of the electrodes was determined by performing a CT scan or
an MRI after implanting the electrodes. Two-thirds of the pa-
tients were operated, in agreement with current rate of surgery
after stereotactic EEG recordings.

Additionally, five healthy control subjects were studied to
evaluate the predictive power of subject-specific connectivity
derived from diffusion MRI data and used in personalized
brain network models. All controls signed an informed consent
form according to the rules of the local ethics committee
[Comité de Protection des Personnes (CPP) Marseille 2] and
underwent the same MRI protocol.

Data processing

To import structural and diffusion MRI data in The Virtual
Brain, the data were processed using SCRIPTS (Proix et al.,
2016). This processing pipeline makes use of various tools
such as FreeSurfer (Fischl, 2012), FSL (Jenkinson et al.,
2012), MRtrix3 (Tournier) and Remesher (Fuhrmann et al.,
2010) to reconstruct the individual cortical surface and large-
scale connectivity. The surface was reconstructed using 20 000
vertices. Cortical and volumetric parcellations were performed
using the Desikan-Killiany atlas with 70 cortical regions and
17 subcortical regions (Desikan et al., 2006). Two additional
parcellations were used to quantify the uncertainty in the exact
size of the epileptogenic zone due to the sparse sampling issue
of stereotactic EEG. To do so, we subdivided each cortical
regions of the Desikan-Killiany atlas in two and four to
obtain 157 and 297 regions, respectively (Zalesky et al.,
2010). The diffusion data were corrected for eddy-currents
and head motions using eddy-correct FSL functions. Fibre
orientation estimation was performed with constrained spher-
ical deconvolution (Tournier et al., 2007), and improved with
anatomically constrained tractography (ACT; Smith et al.,
2012). Tractography was performed using 5 � 106 streamlines
and were corrected using spherical-deconvolution informed fil-
tering of tractograms (SIFT; Smith et al., 2013) to obtain
2.5 � 106 streamlines. The connectivity matrix was obtained

by summing track counts over each region of the parcellation,
and normalized so that the maximum value of the connectivity
matrix was one (connection density: 45.7%). No threshold
was used to prune weaker edges; however, the BNM is sensi-
tive to connection strength, thereby effectively discarding the
effect of smaller weights.

The CT or MRI scan performed after electrode placements
were aligned with the structural MRI recorded before the surgery
using the FLIRT function of FSL, with six degrees of freedom
and a mutual information cost function. Each contact surface
was reconstructed and assigned to the region of the correspond-
ing parcellations containing the most of the contact volume.

Definition of the epileptogenic zone
and the propagation zone

The epileptogenic zone was evaluated by a clinical expert
(F.B.) based on the patient comprehensive evaluation data
gathered throughout the two-step procedure (non-invasive
and invasive). Non-invasive data were used to define the hy-
pothesis about the epileptogenic zone and to guide stereotactic
EEG implantation and strategy. Invasive stereotactic EEG sig-
nals are used to define the epileptogenic zone by the mean of
visual analysis (regions involved at seizure onset, generally
characterized by low voltage fast activity) and by quantifica-
tion of the Epileptogenicity Index (Bartolomei et al., 2008).
The propagation zone was as a first approach defined by a
clinical expert (F.B.) by visual analysis of the stereotactic EEG
recordings (delayed, rhythmic modifications, low values of epi-
leptogenicity index) (referred thereafter as ‘stereotactic EEG
clinician estimation’ of the propagation zone). As a secondary
alternative approach, the propagation zone was defined
through quantification of stereotactic EEG signals (referred
thereafter as ‘stereotactic EEG signal quantification’ of the
propagation zone). In particular, for each patient, all seizures
were isolated in the stereotactic EEG time series. The bipolar
stereotactic EEG was considered (between pairs of electrode
contacts) and filtered between 1 and 50 Hz using a
Butterworth band-pass filter. The energy of the signal is

defined as Ei ¼
X

x2
i ½n�, where xi[n] is the nth value of the

ith channel of the stereotactic EEG time series. A contact was
considered to be in the propagation zone if its signal energy was
responsible for at least 30% of the maximum signal energy over
all the contacts excluding the ones in the epileptogenic zone. The
corresponding region was then assigned to the propagation zone.

Comparing the estimates of the pro-
pagation zone

Two different scores were computed to compare predicted propa-
gation zone with the estimated propagation zone as describe
above. The binary score S1 simply counts the accordance of
each region found in the simulated propagation zone (ensemble
PZS) and the predicted propagation zone (ensemble PZP):

S1 ¼
XNPZS

i¼1

1 if Ri 2 PZP

0 if Ri =2 PZP

(
ð1Þ

The distance score S2 quantitatively estimates the L1-norm be-
tween the normalized probability of the predicted propagation
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xPZS
i and the strength of the stereotactic EEG signal energy (for

clinician prediction, the strength was set to 1):

S2 ¼
XNPZS

i¼1

ð1� jxPZS
i � EPZP

i jÞ ð2Þ

Chance level to predict areas in the
propagation zone

The chance level was the probability of obtaining k regions in
the propagation zone by drawing randomly n regions from the
set of all regions in the parcellations, multiplied by the score
obtained for k regions, summed over all possibilities for k
(Haken, 2000). This can be mathematically written as:

Xm

k¼1

scoreðkÞ � PðX ¼ kÞ ¼
Xm

k¼1

k

m
�

m

k

 !
�

N �m

n� k

 !

N

m

 ! ð3Þ

with m 2 F the number of regions that are in the clinical esti-
mation of the propagation zone, n the number of regions
drawn randomly from the parcellations, N the total number
of regions in the parcellation.

Modelling

Brain network model

Based on recordings of epileptic seizures in different species,
Jirsa et al. (2014) identified the dominant bifurcations
involved at seizure onset and offset amid the theoretically 16
possible classes of bifurcation pairs for bursting activity pre-
dicted by dynamical system theory (Izhikevich, 2000). This
consideration resulted in a phenomenological model, called
the Epileptor. The model autonomously switches between
interictal and ictal states because of a slow permittivity vari-
able that could be related to tissue oxygenation (Suh et al.,
2006), metabolism (Zhao et al., 2011), and extracellular levels
of ions (Heinemann et al., 1986). The Epileptor is mathemat-
ically a set of two coupled oscillators linked together by the
slow permittivity variable z. The two oscillators account for
the fast discharges (variables x1 and y1) and spike and wave
events (variables x2 and y2) observed in electrographic seizure
recordings. The Epileptor model was also shown to reproduce
refractory status epilepticus and depolarization block (El
Houssaini et al., 2015). Using time-scale separation as well
as evidence from stereotactic EEG recordings, Proix et al.
(2014) suggested considering seizure recruitment among
brain regions on a slow time scale and defined a permittiv-
ity-based coupling. Such a coupling function can be expressed
as a linear difference coupling term, subsuming first order
deviations from the homeostatic equilibrium of the slow per-
mittivity variable, expressing perturbations of ion regulation
in remote regions. Possible biophysical mechanisms for such
coupling include potassium spatial buffering by glial cells
(Amzica et al., 2002), extracellular diffusion of potassium
(Durand et al., 2010), and increase of firing rate in remote
regions leading to increase of remote extracellular potassium
(Avoli et al., 2016). We used the same approach here in the
general case of N coupled Epileptors, which reads for each

Epileptor i:

_x1;i ¼ y1;i � f1ðx1;i;x2;iÞ � zi þ I1

_y1;i ¼ 1� 5x2
1;i � y1;i

_zi ¼
1

t0

�
4ðx1;i � x0;iÞ � zi �

XN
j¼1

Kij � ðx1;j � x1;iÞ

�

_x2;i ¼ �y2;i þ x2;i � x3
2;i þ I2 þ 0:002gðx1;iÞ � 0:3ðzi � 3:5Þ

_y2;i ¼
1

t2
ð�y2;i þ f2ðx2;iÞÞ

ð4Þ

where

f1ðx1;i; x2;iÞ ¼

(
x3

1;i � 3x2
1;i if x1;i < 0�

x2;i � 0:6ðzi � 4Þ2
�

x1;i if x1;i � 0

f2ðx2;iÞ ¼

(
0 if x2;i < �0:25

6ðx2;i þ 0:25Þ if x2;i � �0:25

gðx1;iÞ ¼

Zt
t0

e�gðt�tÞx1;iðtÞdt

and t0¼ 2857; t2 ¼ 10; I1 ¼ 3:1; I2 ¼ 0:45; g ¼ 0:01. Kij is the
connection strength between Epileptor i and Epileptor j as
given by the connectivity matrix. The degree of excitability
of each Epileptor is represented by the value x0,i that we
varied in this study. To simplify the interpretation, we define
�x0;i ¼ x0;i � xC

0 with xC
0 ¼ �2:1 the critical value of excitabil-

ity. If �x0;i > 0, a brain region is epileptogenic and seizures
are triggered autonomously. Otherwise, �x0;i < 0 and regions
are in a healthy equilibrium state.

Two-dimensional reduction of the Epileptor

Taking advantage of time scale separation and focusing on the
slower time scale, the five-dimensional Epileptor reduces to
(Proix et al., 2014):

_x1;i ¼ �x3
1;i � 2x2

1;i þ 1� zi þ I1;i

_zi ¼
1

t0

�
4ðx1;i � x0;iÞ � zi �

XN
j¼1

Kijðx1;j � x1;iÞ

�
8>><
>>: ð5Þ

for each Epileptor i with �0 = 2857 and I1,i = 3.1.

One-dimensional reduction of the Epileptor

Using averaging methods to project the activity on the slow
manifold (Haken, 1987), we can further reduce the Epileptor
to a one-dimensional system (Supplementary material):

_zi ¼
1

t0

�
� 4x0;i þ 4FðziÞ � zi �

XN
j¼1

KijðFðzjÞ � FðziÞÞ

�
ð6Þ

with FðzÞ ¼ 1=4ð�16=3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8z� 629:6=27
p

Þ

Numerical simulations

The simulations were performed with The Virtual Brain (TVB;
Sanz Leon et al., 2013) using a Heun integration scheme (time
step: 0.04 ms). A zero mean white Gaussian noise with a vari-
ance of 0.0025 was added to the variables x2 and y2 to make
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time series reproduces more closely the stereotactic EEG re-
corded seizures. Two hundred and fifty-six time steps corres-
pond to 1 s of physical time for realistic seizure durations. In
Fig. 2, simulated signals are filtered with an order 5 bandpass
Butterworth filter (0.16 Hz–97 Hz) to reproduce hardware fil-
ters used in stereotactic EEG data acquisition.

Model-based prediction of
propagation zone

We predict the propagation zone as a function of the spatial
location of the epileptogenic zone, the network model and its
chosen parameterization via the excitability values �x0,i, and
the connectivity matrix. To do so, we estimated the propagation
zone by identifying the dominating subnetworks involved in the
transition toward the seizure state via a linear stability analysis
(Supplementary material). The centre manifold theorem in non-
linear dynamical system theory predicts that the dominating sub-
network is closest to the onset of instability at the bifurcation
point. To make use of this insight and determine the propagation
direction as equivalent to the strongest direction of instability, we
performed the linear stability analysis on a reduced 2D Epileptor
model and computed numerically the corresponding Jacobian
matrix. We confirmed the validity of our approach with respect
to the simulated Epileptor system (Supplementary Fig. 1A–C).

Surrogate models

Scores for each surrogate model were obtained by replacing
the Epileptor models in the BNM by the following surrogate
models, while keeping the connectivity matrices and the spatial
location of the epileptogenic zone unchanged.

Fast coupling

Epileptors in the BNM are coupled via a slow permittivity
coupling function. We implemented a surrogate model with
coupling on the fast time scale. The coupling function in
Equation 5 was set to operate on the fast time scale, with
opposite sign to keep the coupling function excitatory:

_x1;i ¼ �x3
1;i � 2x2

1;i þ 1� zi þ I1;i þ
XN
j¼1

Kijðx1;j � x1;iÞ

_zi ¼
1

t0

�
4ðx1;i � x0;iÞ � zi

�

8>>>><
>>>>:

ð7Þ

Time-scale separation

The Epileptor model assumes a time-scale separation, where
the slow permittivity variable drives the transition between the
interictal and the ictal state. We implemented a surrogate
model with no time scale separation. The time-scale separation
was suppressed by setting �0 = 1 in Equation 5.

Generic saddle-node bifurcation

The seizure onset in the Epileptor model is represented by a
saddle-node bifurcation. We also implemented a generic
normal form of a saddle-node bifurcation

_xi ¼ x2
i þ x0;i þ 2:1þ

XN
j¼1

Kijx1;j ð8Þ

and validated to which degree it could predict the propagation
zone.

Surrogate connectivities

Scores for each surrogate connectivity matrix were obtained by
replacing the connectivity matrix of each patient by the surro-
gate connectivity matrix, while keeping the Epileptor models
and the spatial location of the epileptogenic zone unchanged.

Connectivity from control subjects

Connectivity matrices were obtained for five control subjects.
For each patient, scores were computed for a surrogate model
using the connectivity matrix of the individual control subjects,
and then averaged over all the control subjects.

Shuffled connectivity

Connectivity matrices were shuffled while preserving the
degree and weight distributions (Rubinov and Sporns, 2011).
In short, the procedure iteratively rewires the connectivity
matrix links by randomly swapping connected node pairs,
and then attributes the weights to the new network while at-
tempting to preserve each node strength, i.e. the sum of the
weighted connections to each node. Five shuffled connectivity
matrices were obtained.

Changing the weights

Each non-zero weight kij of the connectivity was summed to a
draw of a uniform random distribution, whose values were
taken between �" � kij and þ" � kij, with " a chosen percentage.

Log of the connectivity matrix

We simply redefined ~kij ¼ logðkij þ 1Þ as the log of the con-
nectivity matrix.

Statistics

We compared the different group medians for different condi-
tions using first a Kruskal-Wallis test, followed by pairwise
Mann Whitney U-tests.

Results
Partial seizures were recorded with stereotactic EEG elec-

trodes in 15 drug-resistant epileptic patients undergoing

presurgical evaluation. The clinical characteristics of each

patient are given in Supplementary Table 1. Two examples

of epileptic seizures of Patient CJ are shown in Fig. 1A. On

the left of Fig. 1A the seizure is symptomatic and propa-

gates from the epileptogenic zone, i.e. a part of the left

lateral occipital cortex (channel highlighted in yellow), to

the propagation zone (channels highlighted in red). On the

right of Fig. 1A the seizure is asymptomatic and stays lim-

ited to the epileptogenic zone. Structural and diffusion MRI

were preprocessed to construct individualized virtual pa-

tients, comprising cortical surface, surface and volumetric

parcellation, electrode positions, and structural connectivity

matrix (Fig. 1B and C). We used three different parcellation

scales with 17 subcortical regions and 70, 140 or 280
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cortical regions, accounting for the uncertainty in the exact

size of the epileptogenic zone due to the sampling issue of

stereotactic EEG. These virtualized patients were then im-

ported into The Virtual Brain (Sanz Leon et al., 2013), a

neuroinformatics platform for large-scale brain simulation.

Modelling seizure propagation

A BNM (Sanz-Leon et al., 2015) was constructed by pla-

cing at each node of the parcellation a neural mass model

able to reproduce the temporal seizure dynamics and to

switch autonomously between interictal and ictal states,

the so-called Epileptor model (Jirsa et al., 2014).

Epileptors were connected together via a permittivity cou-

pling acting on a slow time-scale (i.e. seconds), which is

sufficient to describe the recruitment of other brain regions

in the seizure (Proix et al., 2014). For each patient, the

epileptogenic zone localization was evaluated by a clinical

expert (F.B.) using patient presurgical evaluation data, and

the corresponding regions were set with a high excitability

value such that the Epileptors trigger seizures autono-

mously (Fig. 2A, regions in yellow). Figure 2B shows an

example of a simulation for Patient CJ, reproducing both

symptomatic and asymptomatic seizures without any par-

ameter changes. For this simulation, the brain regions in

the propagation zone were set with different excitability

values to correctly reproduce this recruitment scenario.

However, choosing these parameters is a difficult and com-

putationally costly task. Here we presented a systematic

method to estimate the propagation zone directly from

the knowledge of the epileptogenic zone and the large-

scale connectivity matrix (see ‘Materials and methods’

section).

We systematically applied our method to predict seizure

propagation for the 15 patients. We set the regions in the

epileptogenic zone close to the epileptogenic state

(�x0,j = �2.2, Figs 3A, 4A and 5A, regions in yellow),

and we set all the other regions not epileptogenic with

the same excitability (�x0,i = �2.5, Figs 3A, 4A and 5A,

regions in blue). Examples of propagation zones predicted

by the analytical analysis for Patients CJ, GC, and ML are

shown in Figs 3B, 4B and 5B, respectively. The model pre-

diction of the propagation zone was compared to (i) the

clinical estimation of the propagation zone based stereotac-

tic EEG acquired during the patient evaluation (Figs 3C,

4C and 5C); and (ii) the total energy of the stereotactic

EEG signal over each channel during a seizure to evaluate

the propagation zone (Litt et al., 2001) (Figs 3D, 4D and

5D). For the comparison, two different scores were applied

to measure the accuracy of the predicted propagation zone:

(i) a normalized binary score; and (ii) a normalized distance

between the predicted propagation zone values and the ref-

erence propagation zone (i.e. stereotactic EEG clinician es-

timation or stereotactic EEG signal quantification). In

addition, we used three different parcellations to explore

the influence of different sizes of the epileptogenic zone

around the stereotactic EEG contacts considered to be in

the epileptogenic zone. Figure 6 shows individual scores

obtained for both reference measures with a normalized

binary score and a parcellation of 158 regions for

Patients CJ, GC, and ML. The average results across all

patients and all parcellation types are given in

Supplementary Fig. 2. The individual results are given

in Supplementary Table 2 and the abbreviations taxonomy

in Supplementary Table 3. In each case, the chance level

was found by computing the score for randomly selected

regions (see ‘Materials and methods’ section), and is shown

as a dashed line in Fig. 6 and Supplementary Fig. 2.

To compare our results with the surgical outcome, for

each patient, we estimated the number of regions, which

were found in the propagation zone by our model and not

explored by stereotactic EEG. These are the regions that

were not taken into account by the clinicians in the pre-

surgical evaluation (regions in green in Fig. 7A). We found

that a large extent of this propagation zone was signifi-

cantly correlated with poor seizure prognosis according to

the Engel classification (Engel, 1993), classifying postopera-

tive outcomes for epilepsy surgery (Kruskal-Wallis

P = 0.064, Mann-Whitney U-test class I versus class III

P< 0.05, class II versus class III P<0.1, Fig. 4B using clin-

ical prediction, 158 regions and the distance score).

Surrogate connectivities

To gain more confidence in our results we computed the fol-

lowing surrogate connectivities: structural and diffusion MRI

of five different control subjects were preprocessed to con-

struct five different control connectivity matrices. Using each

patient-specific epileptogenic zone, we computed iteratively

the average score obtained by these five control subject con-

nectivity matrices. Scores obtained for the individualized con-

nectivity matrices were higher than control subject

connectivities for nine patients (Fig. 6 and Supplementary

Fig. 3A), but the group level comparison did not show sig-

nificant differences of the medians (Mann-Whitney U-test,

Supplementary Fig. 2, control boxplot). With the same pro-

cedure, we examined the effects of shuffling the weights of the

connectivity matrix, i.e. rewiring differently the connectome

by changing the topology of the network. The shuffling con-

served the weight and degree distribution of the connectivity

matrices (Rubinov and Sporns, 2011). The scores were always

higher with the individualized connectivity matrices (Fig. 3E

and Supplementary Fig. 3B), and the group level comparison

showed significant differences of the medians (Kruskal-Wallis

P<0.01, Mann-Whitney U-test P< 0.01 for patients versus

shuffled, and controls versus shuffled, Supplementary Fig. 2,

shuffle boxplot). Other connectivities [random Erdös-Renyi

networks, Strogatz-Watts small-world networks (Watts and

Strogatz, 1998) performed very poorly (results not shown)]

compared to the patient connectivity matrices. We also exam-

ined the effect of randomly changing up to 20% and 40% of

the values of the weights with respect to the original values,

therefore respecting the topology of the network

(Supplementary Fig. 6, 20% and 40% boxplots). As expected
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Figure 1 Stereotactic EEG data and reconstruction of virtual Patient CJ. (A) Two examples of partial seizures recorded with

stereotactic EEG in this patient. Left, the seizure propagates from the epileptogenic zone (yellow) to the propagation zone (red). Right, the seizure

is limited to the epileptogenic zone. The normalized energy of each channel is shown in colour on the side, with below the corresponding colour

bar. Spatiotemporal activation patterns are shown at different time points of the seizures. lSPC = left superior parietal cortex; lIPC = left inferior

parietal cortex; lLgG = left lingual gyrus; lLOC1 = part 1 of the left lateral occipital cortex; lFuG = left fusiform gyrus; lLOC2 = part 2 of the left

lateral occipital cortex; lITG = left inferior temporal gyrus. (B) Coregistration of the T1 MRI (levels of grey), the parcellation with 157 regions

(colours) and the intracranial electrodes (red strips). (C) Connectivity matrix obtained from diffusion MRI for this parcellation. Ls = left sub-

cortical; Rs = right subcortical.

Figure 2 Simulations of the BNM for the Patient CJ. (A) A network of Epileptor models is build using the connectivity matrix. The nodes

in the epileptogenic zone are epileptogenic (�x0,i> 0, in yellow), the nodes in the propagation zone have different excitability values

(0.5>�x0,i>�0.5, shades of red), while all the other nodes are not epileptogenic (stable state, �x0,i< 0, in shades of blue). The blue links

represent the anatomical links of the connectivity matrix. (B) Example of time series generated by the simulated BNM with the connectome of

Patient CJ. Without changing any parameters, the propagation zone is not always recruited, reproducing the two seizures types of this patient as

shown in Fig. 1A.
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the results did not change significantly. The weights show a

truncated power-law distribution (Supplementary Fig. 7).

Other studies have used a rescaling of the distribution of

weights by compressing the range of edge weights

(Hagmann et al., 2007, 2008), but our results were degraded

by taking the logarithm of the weight matrices

(Supplementary Fig. 6, log boxplot).

These results suggest that the topology of the connectivity

matrix is significantly important to predict the recruited

network.

Surrogate models

We also tested alternative models and coupling functions.

First we show that recruited network, as predicted by the

BNM, is well approximated by a function of the excitabil-

ities and connection weights to the epileptogenic zone. The

reduced Epileptor is a slow-fast system that we further

reduced to a one-dimensional system by projecting the dy-

namics on the slow manifold. Since the permittivity cou-

pling leads to small terms at the first order approximation,

the fixed point solution of the system does not depend of

the coupling function. Furthermore, the linear stability ana-

lysis can be simplified by assuming weak couplings (which

is the case when normalizing the connectivity matrix to its

maximum weight), and is shown to be only a function of

the excitabilities and connection weights to the epilepto-

genic zone (see Supplementary material). In the case of

the linear stability analysis, since excitability of all the

nodes outside the epileptogenic zone is equal, the connec-

tions weights of the different regions from the epileptogenic

zone directly determine the propagation zone. Our analyt-

ical result is confirmed for a generic connectivity matrix

(Supplementary Fig. 8B) as well as for patient connectivity

matrices (Supplementary Fig. 6, topologic boxplot).

We checked the importance of our assumptions, i.e. time-

scale separation, permittivity coupling and weak coupling,

by using different surrogate models: without time scale sep-

aration, with fast coupling and with a normal form of a

saddle-node. In each case, the predictions based on generic

(Supplementary Fig. 8C–E) or patient-specific

(Supplementary Fig. 6, fast, time-scale, and saddle-node

boxplots) connectivity matrices were degraded. We, how-

ever, found that by normalizing our connectivity matrix to

smaller weights leads to results comparable to our model,

demonstrating that weak coupling is a crucial assumption

for the prediction of recruited networks.

Figure 3 Prediction of the propagation zone by linear

stability analysis for Patient CJ. (A) A network of Epileptor

models is built using the connectivity matrix. The nodes in the

epileptogenic zone (EZ) are epileptogenic (�x0,i< 0, in yellow),

while all the other nodes are equally far from the epileptogenicity

threshold (�x0,i<�0.5, in blue). Examples of the localization of the

epileptogenic zone (yellow) and the propagation zone (PZ) (shade of

red, as indicated by the colour bar) in Patient CJ such as found by:

(B) linear stability analysis using the patient connectome; (C)

stereotactic EEG clinician estimations; (D) stereotactic EEG signal

quantifications. The propagation zone values are all the same for the

stereotactic EEG clinician estimations. SEEG = stereotactic EEG.

Figure 4 Prediction of the propagation zone by linear

stability analysis for Patient GC. A network of Epileptor

models is built using the connectivity matrix. The nodes in the

epileptogenic zone (EZ) are epileptogenic (�x0,i< 0, in yellow),

while all the other nodes are equally far from the epileptogenicity

threshold (�x0,i<�0.5, in blue). Examples of the localization of the

epileptogenic zone (yellow) and the propagation zone (PZ) (shade of

red, as indicated by the colour bar) in Patient CJ such as found by:

(B) linear stability analysis using the patient connectome; (C)

stereotactic EEG clinician estimations; (D) stereotactic EEG signal

quantifications. The propagation zone values are all the same for the

stereotactic EEG clinician estimations. SEEG = stereotactic EEG.
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Discussion
The recruitment of distal brain regions in partial seizures is

a large-scale phenomenon spanning multiple time scales.

We predicted the recruitment of distant areas by seizures

originating from a focal epileptogenic network by con-

structing large-scale BNMs based on individualized connec-

tomes. We demonstrated that simulations and analytical

solutions approximating the BNM behaviour predict the

propagation zone as determined by stereotactic EEG

recordings and clinical expertise. The robustness of the

model predictions was examined by testing various surro-

gate models and connectivity matrices.

To predict the recruitment network we posited a slow

permittivity difference coupling function (Proix et al.,

2014), which approximates the effect of local and remote

fast neuronal discharges as a perturbation of the slow per-

mittivity variable from the local homeostatic equilibrium.

Such mechanisms do not exclude additional couplings on

faster time scales that could comprise spike-wave events

synchronization. Synaptic and electric coupling alone fail,

however, to explain the temporal delays up to tens of se-

conds long that can be observed using stereotactic EEG,

electrocorticography, or microelectrode arrays during

network recruitments (Bartolomei et al., 2008; Schevon

et al., 2012; Martinet et al., 2015). The slow permittivity

variable is supported by a variety of biophysical mechan-

isms that act on slow time scales such as tissue oxygenation

(Suh et al., 2006), extracellular level of ions (Heinemann

et al., 1986), and metabolism (Zhao et al., 2011), which

were found to vary in mouse (Jirsa et al., 2014), cat

(Moody et al., 1974) and baboon (Pumain et al., 1985)

models of epileptic seizures.

Most computational models of seizure propagation focus

on small continuous spatial scales (Ursino and La Cara,

2006; Kim et al., 2009; Hall and Kuhlmann, 2013) or

population of neurons (Miles et al., 1988; Golomb and

Amitai, 1997; Compte et al., 2003; Fröhlich et al., 2007;

Bazhenov et al., 2008). To our best knowledge, modelling

seizure propagation at a large-scale (i.e. based on diffusion

MRI) was to date only used to investigate absence seizures

(Taylor et al., 2013) or temporal lobe epilepsy (Hutchings

et al., 2015). Other modelling studies focused on small net-

works to investigate the role of the topology and localiza-

tion of the epileptogenic zone (Terry et al., 2012). We

proposed the large-scale connectome to be a major deter-

minant of recruitment networks, which can be investigated

in large-scale brain models based on patient-specific data.

Diffusion MRI has revealed a quantitative decrease of re-

gional connectivity around the epileptogenic zone that is

associated with a network reorganization (Ahmadi et al.,

2009; Bonilha et al., 2012; Bernhardt et al., 2013; Besson

et al., 2014; DeSalvo et al., 2014) and cognitive impair-

ments (Leyden et al., 2015). Histological studies provide

evidence of white matter alterations in temporal lobe epi-

lepsy (Thom et al., 2001; Blanc et al., 2011). Functional,

volumetric and electrographic data suggest a broad re-

organization of the networks in epileptic patients (Lieb

et al., 1987, 1991; Cassidy and Gale, 1998; Rosenberg

et al., 2006; Bettus et al., 2009). Hemispherectomy (Beier

and Rutka, 2013) or regional disconnection procedures

(Mohamed et al., 2011), by disrupting tracts have shown

the interest of cutting seizure propagation pathways.

Altogether, this evidence highlights the large-scale character

of partial seizure propagation in the human brain. On an

ad hoc basis, clinicians routinely factor knowledge of white

matter anatomy into the interpretation of stereotactic EEG

data and seizure spread but no framework exists to probe

the underlying mechanisms. In this article, we used patient-

specific diffusion MRI data to systematically test the rele-

vance of large-scale network modelling in predicting seizure

recruitment networks.

Estimating the weights of the connectivity matrix by

counting the streamlines among areas is controversial.

The number of streamlines may not directly reflect the

strength of signal transmission between two areas but

simply the probability that a streamline between two re-

gions is found by the tractography algorithm (Jbabdi and

Johansen-Berg, 2011; Jones et al., 2013). However, using

ACT (Smith et al., 2012) and SIFT (Smith et al., 2013)

methods for the tractography have been shown recently

Figure 5 Prediction of the propagation zone by linear

stability analysis for Patient ML. A network of Epileptor models

is build using the connectivity matrix. The nodes in the epileptogenic

zone (EZ) are epileptogenic (�x0,i< 0, in yellow), while all the other

nodes are equally far from the epileptogenicity threshold

(�x0,i<�0.5, in blue). Examples of the localization of the epi-

leptogenic zone (yellow) and the propagation zone (PZ) (shade of

red, as indicated by the colour bar) in Patient CJ such as found by:

(B) linear stability analysis using the patient connectome; (C)

stereotactic EEG clinician estimations; (D) stereotactic EEG signal

quantifications. The propagation zone values are all the same for the

stereotactic EEG clinician estimations. SEEG = stereotactic EEG.
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to robustly quantify the total cross-sectional area of the

white matter fibre bundles between areas and match

white matter statistics estimated from post-mortem studies

(Smith et al., 2015). Additionally, we have shown that

varying the weights of the connectivity matrix has less in-

fluence on the recruited network than the topology of the

connectivity matrix. As a consequence, tracks that have a

large weight in the connectivity matrix are crucial in deter-

mining the recruitment network.

The epileptogenic zone and propagation zone estimation

by the clinician is based not only on stereotactic EEG but

also on prior knowledge gathered throughout the patient’s

comprehensive presurgical evaluation (Bartolomei et al.,

2002), and the final estimated epileptogenic zone may

differ from the direct stereotactic EEG signal energy esti-

mation. Several biomarkers are used in the daily clinical

routine such as the Epileptogenicity Index (Bartolomei

et al., 2010), which is based on the appearance of fast

discharges (beta-gamma bands) and delays of recruitment,

or electrical stimulations to explore tissue excitability

(Valentı́n et al., 2005). Analyses of BNMs have shown

that such biomarkers depend on the coupling assessing

the threshold level separating ictal from interictal state

(Jirsa et al., 2014; Proix et al., 2014). For this reason,

Figure 7 Prediction of the surgical outcome. (A) Example for Patient CJ showing stereotactic EEG signal quantification of the propagation

zone (PZ) overlaid in green by the regions found in the propagation zone by the linear stability analysis but not explored by stereotactic EEG,

therefore not considered in the propagation zone by the clinical expertise. (B) Comparison for all patients of the size of the unexplored regions

predicted as in the propagation zone by the analytical model and the Engel classification (stereotactic EEG clinician estimation, 158 regions,

distance score). Significant P-values are indicated. **P< 0.05, *P< 0.1; Mann-Whitney U-test.

Figure 6 Prediction scores for patient, control subject and shuffled connectivity matrices. Results for Patients CJ, GC and ML,

compared to five control subjects and to shuffled connectivity matrix, for propagation zone (PZ) location according to (A) stereotactic EEG

clinician estimation, and (B) stereotactic EEG signal quantification. The dashed line indicates the level of chance. In box plots, boxes represent the

25th and 75th percentiles, centre line indicates the median and the whiskers extend to the most extreme data points not considered outliers.

SEEG = stereotactic EEG.

650 | BRAIN 2017: 140; 641–654 T. Proix et al.



any interpretation of these biomarkers as epileptogenicity

must be performed with caution, keeping the network char-

acter of the brain in mind. The extent of the epileptogenic

zone has been linked to the surgical prognosis but is diffi-

cult to estimate. Stereotactic EEG exploration uses only a

limited number of electrodes (10 to 15) and therefore is

sparse and can lead to poor surgical outcome if the epi-

leptogenic zone is underestimated or misidentified. This

study focused on validating the BNM methods as a tool

to predict the spatial propagation of partial seizure in the

human brain using personalized connectivity matrices. A

limitation of this study for practical clinical use is that

this method cannot directly estimate the epileptogenic

zone, but rather validates an epileptogenic zone hypothesis

by comparison of the predicted propagation zone with the

clinician estimation of the propagation zone. Indirect esti-

mates via data fitting of the BNM to brain imaging data

have been obtained previously (Jirsa et al., 2016); or alter-

natively epileptogenic zone estimates may be obtained

based on other metrics such as graph theoretical estimates

(Burns et al., 2014). Here, by helping to predict the propa-

gation zone based on the epileptogenic zone, our model can

aid the clinician throughout the decision-making process

regarding the localization of the epileptogenic regions in

the brain, for instance by discarding epileptogenic zone

hypotheses leading to spatial recruitment patterns in

contradiction with stereotactic EEG or EEG recordings,

hence improving stereotactic EEG electrode implantation

and delineation of surgical resection limits. For example,

if the propagation zone predicted by the BNM is larger

than the propagation zone assessed by the clinical expert,

larger extent of the epileptogenic zone and therefore of the

surgical resection are worth considering (Fig. 4B). The con-

tribution to epileptogenic zone of subcortical regions,

which are linked to loss of consciousness and surgical prog-

nosis (Arthuis et al., 2009), is notoriously difficult to esti-

mate and can be quantified through the probability of

recruitment of unexplored regions with the BNM. For gen-

eric connectivity, BNMs perform reasonably well in pre-

dicting the recruited network pattern as a first

approximation, establishing the possibility to compute a

catalogue of all possible propagation patterns, thus accel-

erating the presurgical evaluation process without resorting

to a diffusion MRI scan. Predictions based on the indivi-

dualized connectivity matrices were not significantly differ-

ent at the group level from predictions based on control

subjects’ connectivity matrices (Supplementary Fig. 2);

however, we do observe a trend towards better scores for

the individualized connectivity matrices. Diffusion MRI

images were acquired using a sequence compatible with a

clinical exam. However, although the sequence parameters

used are still of good standard in the clinical context, recent

advances in diffusion MRI acquisitions and processing (e.g.

higher b-weighting values, tractography methods for multi-

shell schemes, etc.) will help going towards better indivi-

dualized predictions. We therefore suggest that for a de-

tailed patient evaluation, the individual structural

connectivity is essential for predicting seizure spatial propa-

gation, paving the way for broader applications in perso-

nalized medicine (see Jirsa et al., 2016). More generally,

several previous studies have demonstrated a link between

anatomical networks and pathologies, in particular neuro-

degenerative diseases (Seeley et al., 2009). Therefore, our

personalized BNM approach, as it is driven by structural

data, establishes a novel way of thinking of how to study

structure–function alterations in neurological and psychi-

atric disorders in general.
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