
Research Article
Integration of SNP Disease Association, eQTL, and Enrichment
Analyses to Identify Risk SNPs and Susceptibility Genes in
Chronic Obstructive Pulmonary Disease

Yang Liu ,1 Kun Huang ,2 Yahui Wang ,1 Erqiang Hu ,1 Benliang Wei ,1

Zhaona Song ,1 Yuqing Zou ,1 Luanfeng Ge ,1 Lina Chen ,1 and Wan Li 1

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
2Department of Respiratory, The Second Affiliated Hospital, Harbin Medical University, Harbin, China

Correspondence should be addressed to Lina Chen; chenlina@ems.hrbmu.edu.cn and Wan Li; liwan@hrbmu.edu.cn

Received 27 July 2020; Revised 9 December 2020; Accepted 15 December 2020; Published 29 December 2020

Academic Editor: Ravesh Singh

Copyright © 2020 Yang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chronic obstructive pulmonary disease (COPD) is a complex disease caused by the disturbance of genetic and environmental
factors. Single-nucleotide polymorphisms (SNPs) play a vital role in the genetic dissection of complex diseases. In-depth analysis
of SNP-related information could recognize disease-associated biomarkers and further uncover the genetic mechanism of
complex diseases. Risk-related variants might act on the disease by affecting gene expression and gene function. Through
integrating SNP disease association study and expression quantitative trait loci (eQTL) analysis, as well as functional enrichment
of containing known causal genes, four risk SNPs and four corresponding susceptibility genes were identified utilizing next-
generation sequencing (NGS) data of COPD. Of the four risk SNPs, one could be found in the SNPedia database that stored
disease-related SNPs and has been linked to a disease in the literature. Four genes showed significant differences from the
perspective of normal/disease or variant/nonvariant samples, as well as the high performance of sample classification. It is
speculated that the four susceptibility genes could be used as biomarkers of COPD. Furthermore, three of our susceptibility
genes have been confirmed in the literature to be associated with COPD. Among them, two genes had an impact on the
significance of expression correlation of known causal genes they interact with, respectively. Overall, this research may present
novel insights into the diagnosis and pathogenesis of COPD and susceptibility gene identification of other complex diseases.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is an
inflammatory disease of the respiratory system, which is
one of the most important causes of death in most countries
[1]. A myriad of evidence has demonstrated that genetic fac-
tors are associated with the development and aggravation of
COPD [2]. To date, there are no ideal therapies that retard
the progression of disease or mortality [3]. The in-depth
study on the genetic mechanism of COPD and the screening
of related biomarkers could provide an important theoretical
basis for the treatment and prevention of COPD.

Usually, SNPs could be used as genetic markers to
explore the genetic mechanism of complex diseases [4]. In
recent years, great progress has been made in SNP research

on COPD-related diseases. Deng et al. demonstrated that
the SNP rs8004738 of SERPINA1 gene was linked to a high
risk of COPD by SNP genotyping [5]. A polymorphism
rs12068264 in the cathepsin S gene was identified as associ-
ated with susceptibility to COPD in the Chinese Han popula-
tion [6]. Based on luciferase assay, real-time polymerase
chain reaction (real-time PCR) and other methods, Li et al.
unraveled that the upstream functional SNP rs12654778 of
the ADRB2 gene specifically affected the expression of
ADRB2 in COPD [7]. Notably, these studies were performed
for an individual or some specific known genes or SNPs. In
hereditary complex diseases, SNP disease-associated test
method can detect the potential genetic association between
genetic variation on the genome and specific diseases or traits
and has emerged as an effective way to facilitate COPD
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research [8]. Using disease association analysis, numerous
SNPs identified on loci associated with lung function and
COPD from different studies showed a high consistency
[9]. The genetic variation rs7937 in COPD mined by associ-
ation study might influence the DNA methylation and
expression levels of corresponding genes in the blood, which
was associated with the progression of COPD [10]. The SNP
disease association study was able to identify a large number
of COPD-related risk sites, providing a basis for further
screening of disease mechanism research and clinical appli-
cation but failed to reflect the expression correlation of their
products. Expression quantitative trait loci (eQTLs) have
taken gene expression as a trait to explore the correlation
between genetic variation and gene expression and effectively
served as a biomarker for COPD research [11]. The eQTL
analysis elucidated that SNP rs793391 in the SUMF1 gene
was related to increased risk of COPD [12]. Sun et al. inte-
grated protein quantitative trait loci (pQTLs) identified by
meta-analysis with eQTLs reported in previous studies to
facilitate the discovery of pathogenesis of COPD [13]. Based
on the association study combined with the eQTL analysis,
new disease-associated biomarkers could be found. Four lung
eQTLs were uncovered on 4q31, 4q22, and 19q13 of suscep-
tible loci using Nguyen et al.’s association results [14]. Com-
bining genome-wide association study with lung eQTL
analysis, several disease-related SNPs were found to regulate
the lung mRNA expression levels of new asthma genes [15].
These genetic analyses based on eQTL usually build a single
mathematical model, and the datasets of eQTL and disease
association analysis were derived from different cohorts.
The correlation between the results need to be further
verified.

Nowadays, the next-generation sequencing (NGS) data
can provide SNP-related information and transcript expres-
sion information to explore the occurrence and development
of diseases from the genomic level and transcription level
[16]. It is a strong data support for the screening of COPD-
related biomarkers. Mayhew et al. studied COPD subtypes
based on high-throughput sequencing data of the 16S ribo-
somal RNA gene [17]. Combining the miRNA expression
profile obtained by NGS and qPCR, the pathogenesis of
miR-10a-5p and miR-146a-5p in asthma and COPD was
revealed [18]. Expression profiles of mRNA and miRNA in
bronchial epithelial cells generated by miRNA and tran-
scriptome sequencing confirmed that the PI3K-Akt signaling
pathway played a crucial role in COPD [19]. COPD candi-
date gene CHRNA5 and risk variant rs8040868 were mined
by exon sequencing of lung development-related genes [20].
However, up to now, there is no relevant report on the iden-
tification of COPD-related biomarkers by RNA-seq data.

Herein, a new integration strategy was proposed using
RNA-seq data of 98 COPD patients and 91 normal samples.
The susceptibility genes and risk SNPs of COPD were identi-
fied from the perspectives of SNP sequence variation and
expression quantitative trait locus (Figure 1). It is expected
to increase the understanding of the pathogenesis of COPD
at the genetic level, provide new biomarkers for the diagnosis
and treatment of COPD, and shine a light for studying the
intrinsic molecular mechanism of other complex diseases.

2. Materials and Methods

2.1. Data Source. COPD-related RNA-seq data in raw SRA
format compiled from 189 samples (accession number:
GSE57148) was downloaded from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) data-
base, including 98 COPD patients and 91 normal lung tissue
samples.

Human reference genome sequence in FASTA format
and GTF format data for gene annotation (version number:
release 38.89) were procured from the ENSEMBL (http://
asia.ensembl.org/index.html) database. The GTF data
involves the position information of the functional elements
of protein-coding genes and other nonprotein-coding genes
such as lncRNA and miRNA on chromosomes. A VCF for-
mat file encompassing known single-nucleotide polymor-
phisms, insertions, and deletion sites on the human
reference genome was gleaned from ENSEMBL.

We searched the Online Mendelian Inheritance in Man
(OMIM) (https://omim.org/downloads/), the Comparative
Toxicogenomics Database (CTD) (http://ctdbase.org/), the
Phenotype-Genotype Integrator (PheGenI) (https://www
.ncbi.nlm.nih.gov/gap/phegeni), and the Disease Ontology
(DO) (http://disease-ontology.org/) databases to obtain 32
genes that had been described in the databases as being
involved in COPD.

2.2. Processing of NGS Raw Data. The SRA format data of 189
samples was transformed into a paired-end sequencing
FASTQ format file using the SRA Toolkit (https://www
.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) and the transformed
file containing base information and corresponding sequenc-
ing quality information. The paired-end reads were aligned
to the human reference genome using the multisequence
alignment software HISAT2, and the reordering, deduplica-
tion, quality control, and SNP calling of the alignment results
were performed using SAMtools (http://samtools
.sourceforge.net) and BCFtools (https://samtools.github.io/
bcftools/bcftools.html). SNPs with a mapping quality score
less than 30 were removed to reduce noise and to control
the quality. SNPs identified by different sequencing depths
were analyzed to determine the depth that would stabilize
the number of SNP mutations, and the Hardy-Weinberg
equilibrium test was executed to obtain candidate SNPs.
The COPD-related SNPs were mapped to functional ele-
ments of the corresponding genes using SnpEff v4.0 (http://
snpeff.sourceforge.net/index.html) based on the position
information of the SNP.

For a given SNP, the genotype that is in the human refer-
ence genome sequence is considered the reference against
which all other forms are compared. This reference genotype
is called the wild-type genotype, while others are variant
genotypes. In our manuscript, variant samples were samples
with variant SNP genotypes, and nonvariant samples were
samples with wild-type SNP genotypes.

Transcript splicing and quantification of transcripts and
genes were carried out using StringTie v1.3.3 (https://ccb
.jhu.edu/software/stringtie/index.shtml) combined with
HISAT2 alignment results and gene-annotated GTF files.
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Genes with FPKM values greater than 0.5 in at least 30% of
the samples were included in downstream analysis.

2.3. Integration Method for Identification of Potential
Biomarkers. To identify potential biomarkers of COPD, the
SNP association analysis was performed based on genotype
data derived from variant calling results. Concurrently, the
correlation analysis between genetic mutation and gene
expression was also carried out. The results of these two steps
were integrated after exploring the biological functions of the
relevant genes. The detailed process is as follows.

2.4. SNP Association Study for COPD. Association between
variants and disease phenotype (disease/normal data) was
evaluated based on genotypes of candidate SNPs, and the
genetic variants most likely to affect traits were selected by
p value. PLINK, a powerful analysis toolset containing many

functional modules for SNP disease association study or
other genetic studies [21] was used. Using PLINK v1.90 beta
(http://www.cog-genomics.org/plink2/) software, all SNPs
identified in the cohort were involved in the association
study, and the significant p value of the Chi-square test of
each SNP was calculated. Level of 0.001 was considered
the significant threshold of Hardy-Weinberg equilibrium
(HWE), and the standard of 0.1 was set as minor allele fre-
quency (MAF). SNPs that did not meet the thresholds for
HWE and MAF were filtered out.

2.5. eQTL Analysis. For each SNP, we adopted two computa-
tional algorithms for eQTL analysis. (1) For each risk SNP,
according to its mutation, the COPD samples and the normal
samples were divided into three mutant sample groups: non-
mutation, homozygous mutation, and heterozygous muta-
tion. To investigate the differences in the expression levels
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Figure 1: Overall study design. Abbreviations: COPD: chronic obstructive pulmonary disease; NGS: next-generation sequencing; eQTL:
expression quantitative trait loci. Linear regression and ANOVA are two models applied in eQTL analysis.
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of variant SNPs between normal and disease samples as well
as variant and wild-type SNP genotypes in disease samples,
the analysis process was implemented by employing the
ANOVA:

F = SAð Þ s‐1ð Þ
SEð Þ n − sð Þ , ð1Þ

where s is the number of groups divided based onmutation; n
is the total number of samples; SA is the efficacy sum of
squares between mutation types, that is, it is the between-
group variation caused by mutation; and SE is the error
sum of squares, also known as within-group variation. The
calculated p value (FDR < 0:05) was to measure statistical
significance.

(2) In addition, we proposed a linear regression model
that simulated genotypes as additive linear effects to analyze
the association between the genotype and gene expression.
The eQTL analysis was performed by calculating the rela-
tionship of the transcript-SNP, that is, survey SNP was corre-
lated with gene expression. Here, we assumed that the
association between gene expression and genotype is linear:

g = α + γk + βx + ε, ð2Þ

where x is the genotype, g is the value of gene expression, k is
the covariate of disease phenotype, α is the intercept, β is the
slope coefficient, γ is the weight of covariate, and ε indicates
deviation. The Student t-test for analyzing gene-SNP associ-
ation was executed, and statistical significance after FDR was
required (FDR < 1 × 10−6).

The SNPs identified by both the above algorithms were
termed as candidate risk SNPs, and the corresponding
mapped genes were defined as COPD candidate genes.

2.6. Enrichment Analysis. The clusterProfiler R package is
presented within the Bioconductor project and automated
the process of biological-term classification and the enrich-
ment analysis of gene clusters [22]. Here, gene classification
and enrichment analysis of combining COPD candidate
genes with known causal genes were performed based on
the annotation package http://org.Hs.eg.db [23]. The statisti-
cally significant (FDR adjusted p value < 0:05) functional cat-
egory containing both candidate genes and known causal
genes were treated as a disease-related functional category.

Whereafter, we regarded COPD candidate genes that
were significantly enriched in disease-related functional cate-
gories and also mapped to significant COPD-related SNPs in
an association study as disease susceptibility genes, and the
corresponding candidate risk SNPs were defined as disease
risk SNPs.

3. Results

3.1. Candidate SNPs. SNPs identified by different sequencing
depths (6, 7, 8, 9, and 10) were analyzed to determine the
depth that would stabilize the number of SNPs. There were
no significant differences in the distribution of variant sites
obtained for different sequencing depths after sequencing

depth reached 10. Moreover, It was suggested that only
>10× coverage was required to ensure 89% accuracy and
92% sensitivity for single-nucleotide variations [24, 25].
Therefore, the subsequent analysis was conducted on SNPs
with a sequencing depth of 10 for SNP calling. VCF format
files were merged using VCFtools, and the Hardy-Weinberg
equilibrium test was further performed. As a result, 16,357
candidate SNPs were identified after setting a significance
threshold of 0.05.

3.2. COPD-Related SNPs. SNP disease association study
was implemented on SNPs with a sequencing depth of 10
using PLINK, revealing the significant differences between
disease-affected individuals versus normal individuals. Here,
a total of 190 COPD-related candidate risk SNPs achieved
the 5 × 10−08 level of significance (Table 1), and their chro-
mosomal positions on each autosome are represented in
Figure 2.

3.3. Candidate Genes of COPD. Using the ANOVA algo-
rithm, 558 SNPs with significant differences ðFDR < 0:05Þ
related to expression level were mined for variant SNPs in
disease and normal samples, which were annotated to 428
genes. For variant and wild-type SNP genotypes in COPD
samples 1,162 SNPs were detected (FDR < 0:05) to be corre-
lated with the expression level in these samples, and 737
genes were annotated. After merging, 1,428 SNPs and their
corresponding 895 genes linked to expression were finally
singled out.

850 SNPs in 561 genes were associated with expression
level in all samples using linear regression models (FDR <
1 × 10−6). Combining the results of the above two methods,
a total of 198 COPD candidate genes with 318 candidate risk
SNPs involved in the expression were mined.

3.4. COPD Susceptibility Genes. Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) functional
enrichment analyses were performed for the candidate genes
and known causal genes using R software, and the statistically
significant threshold of 0.05 was set. The two sets of genes
were significantly enriched in 21 KEGG pathways and 6
functional categories, including protease binding and mono-
oxygenase activity (Figure 3). These processes were verified
to be related to COPD in the literature [26, 27]. Combining
38 candidate genes that synergized with known causal genes
in the disease-related functional categories with COPD-
related SNPs in the association results, our method finally
recognized 4 risk SNPs and 4 susceptibility genes (Table 2).

3.5. The Validation of Susceptibility Genes

3.5.1. COPD Susceptibility Genes Differences. Differential
expression analysis was implemented to investigate the dif-
ferences of the four susceptibility genes for the following sit-
uations: (i) between normal and disease samples, (ii) between
variant and nonvariant samples, (iii) between variant and
nonvariant normal samples, and (iv) between variant and
nonvariant disease samples. Significantly different genes
between normal and disease samples indicated their relation-
ship to the disease. Significantly different genes between
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variant and nonvariant (all/disease/normal) samples indi-
cated the change between variant and wild-type SNP
genotypes.

For each group, differential expression analysis was exe-
cuted using the R-package limma with core function lmFit
(p < 0:05) (Figure 4). It turned out that the four susceptibility
genes were significantly different not only between normal
and disease samples (p < 0:001) but also between variant
and nonvariant samples as well as variant and nonvariant
disease samples (p < 1 × 10−5). Of note, there was also a sig-
nificant trend for DYNC1H1 and CR1 between the variant
and nonvariant normal samples. However, COL6A5 and
TNFAIP3 variants were absent in normal samples.

3.5.2. Correlation between COPD Susceptibility Genes and
Known Causal Genes. The functional properties of proteins
are usually clarified by protein interactions in protein-
protein interaction (PPI) networks [28]. Therefore, TNFAIP3
and TNF, COL6A5, and ITGB6 were mined as known causal
genes interacting with susceptibility genes from the String
(https://string-db.org/), menthe (http://mentha.uniroma2
.it/), and MINT (https://mint.bio.uniroma2.it/) databases.
Coexpression analysis of each COPD susceptibility gene
and its interactive known causal gene was performed for
variant and nonvariant samples using the Kendall, Pear-
son, and Spearman methods, respectively (Figure 5). The
results exhibited that there was no significant correlation
between each pair in the variant samples while a significant
correlation in the nonvariant samples. In other words, the
extent of the correlation of each pair showed a dramatic
change between the variant and nonvariant samples. It
implied that the variant SNPs in COPD susceptibility genes
were likely to have an underlying impact on the correlation
between their corresponding genes and the interactive
known causal ones.

3.5.3. Classification Performance of COPD Susceptibility
Genes. To further verify the validity of susceptibility genes
as potential biomarkers for COPD, a classifier was con-
structed using an SVMmodel with a linear kernel [29], char-
acterized by FPKM values of each COPD susceptibility gene.

We evaluated the leave-one-out cross-validation perfor-
mance using an average ROC area under the curve (AUC)
metrics, which is a common way to overcome the overfitting
problem. In classifying variant/nonvariant samples, three of
the four susceptibility genes have an AUC value of more than
0.75 (Figure 6). Besides, the AUC value of each susceptibility
gene classifying variant/nonvariant disease samples was
above 0.83, indicating that their classification performances
were excellent. The vast majority of genetic variation
occurred in disease samples. Therefore, the polymorphisms
of the four susceptibility genes showed significant expression
differences in the disease status. They also reflect the consis-
tency between the variation and expression level.

4. Discussion

Chronic obstructive pulmonary disease is chronic bronchitis
or emphysema characterized by airflow obstruction that can
further develop into a common chronic disease of pulmonary
heart disease. Based on RNA-seq data for COPD, we pro-
posed a strategy for identifying disease risk SNPs and suscep-
tibility genes. SNP disease association study was performed
on candidate SNP genotype information with a sequencing
depth of 10. Additionally, eQTL analysis of these candidate
SNPs was implemented using two algorithms to detect
COPD candidate genes. The COPD susceptibility genes and
their corresponding risk SNPs were finally obtained by func-
tional enrichment analysis containing known causal genes.

We selected sequencing depth with stable identification
of SNP mutation sites to conduct SNP calling. No significant
differences were detected in the distribution of variant sites
obtained for different sequencing depths. Therefore, geno-
type information of SNP with a sequencing depth of 10 could
be used as a reliable basis for our subsequent research, which
was also suggested by other researchers. Furthermore, we
examined our risk SNPs in the SNPedia database that stored
disease-associated SNPs. One of our four risk SNPs,
rs2296160 located on CR1, could be found to be associated
with COPD or lung function in the database.

In the eQTL analysis, the overlapping genes of two eQTL
algorithms were considered accurate candidate genes. One
algorithm was to analyze the variance of three mutation
forms for corresponding sample types to obtain candidate
eQTL genes. The other was a simple linear regression model
constructed on putting the genotype as the additive linear
effects to calculate the transcript-SNP relationship and
picked out cis-eQTL genes.

Moreover, susceptibility genes for COPD were identified
by integrating SNP disease association, eQTLs, and the
results of enrichment analysis. Among them, the obtained
COPD candidate genes accounted for 22% and 35% of two
eQTL analysis algorithms, respectively. These genes showed
the correlation between SNP and gene expression from mul-
tiple perspectives. Thus, they are reliable and effective for
exhibiting strong disease susceptibility both in the functions
and in the extent of SNP mutation. The susceptibility genes
and known causal genes were enriched together in many
disease-related functional categories. In the function of pro-
tease binding, the multifunctional glycoprotein osteopontin,

Table 1: Part of significant SNPs from SNP disease association
study.

Chr SNP Position Ref Alt p value

1 snv14 630211 C T 1:789e − 17
1 rs9283154 633714 A G 3:193e − 17
1 rs172933 7784620 T C 1:272e − 08
1 rs2295079 11262508 C G 1:938e − 09
1 rs1571982 16625221 A T 2:667e − 10
1 rs3738097 21568323 T C 1:998e − 09
1 rs11263839 35929124 A C 1:035e − 08
1 rs2937378 36305205 G C 2:273e − 25
1 rs2275188 39283249 G A 4:364e − 09
1 rs1056438 53214206 T C 2:219e − 09
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which was highly upregulated in the airways of patients with
COPD, protected the bacteria by binding to the bacterial sur-
face, resulting in OPN reducing lysozyme-induced death of
streptococcus pneumoniae [30]. As for hematopoietic cell
lineage pathway, analysis of whole-genome lncRNA expres-
sion in the lung tissue of COPD smokers indicated that
smoking was associated with activation of metabolic path-
ways, whereas COPD transcripts were related to hematopoi-
etic lineages, intermediate metabolism, and immune system
processes [31]. Similarly, the focal adhesion pathway was
closely related to COPD. Bufei Yishen Formulation (BYF)
has been shown to have a short-term therapeutic effect in
COPD rats. Due to oxidoreductase-antioxidant activity, focal
adhesions, tight junctions, or lipid metabolism, genes regu-
lated in COPD and lung tissue of BYF-treated rats were dis-
cerned in relevant omics analysis [32].

The four susceptibility genes were significantly different
between disease/normal samples or variant/nonvariant dis-
ease samples, especially in the latter which suggested more
significant differences. The extent of expression correlation
of our susceptibility genes and the known causal genes had
varied dramatically between the variant and nonvariant sam-
ples. One risk SNP (rs2296160) and three susceptibility genes
were confirmed to be linked to the disease in the literature.

SNP rs2296160 was observed to be statistically associated
with increased risk of idiopathic pulmonary fibrosis [33].
The susceptibility gene TNFAIP3 was an endogenous nega-
tive regulator of the transcription factor κB (NF-κB) signal-
ing, and NF-κB was central to the pathogenesis of many
inflammatory diseases, such as COPD [34]. Validation of
the susceptibility gene CR1 unveiled that cigarette smoke
might prevent COPD-related cardiovascular disease [35].
COL6A5 gene was a novel collagen VI gene identified at
a single locus on human chromosome 3q22.1, and its
mRNA expression was restricted to a few tissues such as
the lung [36].

In addition, for all samples according to disease and
normal classification, known causal gene TNF acted synergis-
tically on a functional category with susceptibility genes
COL6A5, CR1, and TNFAIP3, respectively. Figure 7 showed
that the AUC value of TNF was 0.529, which was lower than
the classification performance of four susceptibility genes
between disease and normal samples. Meanwhile, compared
with the classification performance of 12 known causal genes
in the same functional category, our susceptibility genes were
higher than most known causal genes. The classification per-
formance of four susceptibility genes for variant/nonvariant
disease samples was better than that for disease/normal
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Table 2: Susceptibility genes and risk SNPs.

Gene SNP Chr Position Variant (Nnormal = 91) Variant (Ndisease = 98)
DYNC1H1 rs3818188 chr14 101979824 1 44

COL6A5 rs16845861 chr3 130379506 0 27

CR1 rs2296160 chr1 207621975 23 56

TNFAIP3 rs583522 chr6 137868747 0 14
∗Nnormal is the number of normal samples. Ndisease the number of disease samples. Variant represents the number of variants in the sample type.
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samples because the samples with variation were almost
derived from disease samples. Taken together, the four genes
could effectively serve as susceptibility genes for COPD.

There are several limitations to our study. Firstly, a cer-
tain amount of noise exists in RNA-seq data, which might

have a slight impact on our results. Secondly, it is very diffi-
cult for just several genes or SNPs to capture all the features
due to the complexity of COPD. Machine learning has been
launched to predict disease outcomes using distinct types of
data including images and clinical records. Thus, combining
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Figure 4: Boxplot of expression levels of four susceptibility genes. Four groups of samples were used for differential analysis in each gene (i.e.,
DYNC1H1, COL6A5, CR1, and TNFAIP3), and the boxplot with similar colors indicates that each sample type is internally divided into two
groups. The significant difference is measured according to p value (∗∗ < 10−5, ∗10−5 − 0:05).
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other types of data with large amounts of genomics or omics
data for the advanced analysis to answer clinical questions is
the direction of future studies.

5. Conclusions

In this study, based on the high-throughput sequencing data
of COPD, we proposed an integrated strategy to identify risk
SNPs and susceptibility genes from the perspectives of
expression-related SNPs and SNP association. Besides, func-
tional characteristics, interaction correlation, classification
performance, and differences between groups were consid-
ered to evaluate the accuracy and robustness of our methods
and results. Especially, among our results, three genes were
associated with COPD in the literature and one risk SNPs
was characterized as related to COPD in the SNPedia data-
base. Conclusively, COPD susceptibility genes identified by
our method are credible and may be taken as biomarkers of
disease. Considering that COPD is a chronic complex disease
that can develop into respiratory failure, SARS-CoV-2,
which is currently raging around the world, is also a pul-
monary disease that mainly causes severe lung damage to
infected patients. With the in-depth research and the
acquisition of large-scale data, the risk SNPs and suscepti-
bility genes identified based on our method using the
related SARS-CoV-2 data might provide directions to the
research investigations on the prevention and treatment
strategies of the disease. In addition, our framework might
be also applied to identify susceptibility genes of other
genetically related complex diseases, such as cardiovascular
diseases and diabetes.
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