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Abstract
In this paper, we detected space–time clusters using data on coronavirus disease 2019
(COVID-19) collected daily by each prefecture in Japan. COVID-19 has spread glob-
ally since the first confirmed case in China, in December 2019. Several people have
to date been infected in Japan since the first confirmed case in January 2020. The out-
break of COVID-19 has had a significant impact on many people’s lives. Studies are
being conducted to detect regions, called clusters, which pose a significantly higher
risk of infection than their surrounding areas, based on a spatial scan statistics of
COVID-19 infections. Among these studies, space–time cluster detection has to date
been actively performed to gain knowledge regarding infection status. Based on the
spatial scan statistic, the cylindrical scan method is a widely used space–time cluster
detectionmethod. Thismethod enables concurrent detection of the location and time of
a cluster occurrence. However, this method cannot capture spatial changes in a cluster
over time. When applying the existing method to a cluster whose shape changes over
time, the number of calculations required becomes extremely large, and the analysis
may become difficult. In this study, we focused on the hierarchical structure of the
data obtained by conducting an echelon analysis and applied the space–time cluster
detection method based on this structure to enable the capture of changes in a cluster’s
shape. Furthermore, we visualized the location and period of a cluster’s occurrence
and considered the cause of the cluster.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus known as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus has spread
worldwide, since it was first reported in Wuhan, Hubei Province, China, in December
2019. In Japan, the number of infected people has seen a sustained increase since the
first confirmed case of COVID-19 in January 2020. The country’s infection status is
reported in various media, and information is actively disclosed in each prefecture. As
such, interest in COVID-19 is very high.

Studies on COVID-19 have been advanced globally in various fields, including
research into detecting regions that have a significantly higher risk of infection than
the surrounding areas. Detection of spatial clusters is very important for understanding
the current status of infections and the factors involved in the spread of infection.
To date, as methods for evaluating the presence or absence of a cluster, evaluation
from the perspective of spatial autocorrelation (Moran 1948; Cliff and Ord 1973;
Anselin 1995) and identification of the cluster position (Kulldorff 1997; Tango and
Takahashi 2005; Ishioka et al. 2019) have been proposed. In particular, the spatial scan
statistic (Kulldorff 1997) has beenwidely used for the detection of clusters of infectious
diseases such as childhood pneumonia (Andrade et al. 2004), tuberculosis (Oeltmann
et al. 2008; Kammerer et al. 2013), and influenza (Manabe et al. 2016). Furthermore,
Cordes and Castro (2020) used it to detect clusters of COVID-19 infections in New
York City.

Clusters are often detected from the cumulative number of observations made in
a specific period within the study area. It is important to simultaneously detect the
location and duration of clusters from the number of observations that span multiple
periods, such as the daily number of people infected with COVID-19. Kulldorff et
al. (1998) proposed a method for detecting a space–time cluster based on the spatial
scan statistic. The SaTScanTM software (the latest version is 10.0; Kulldorff 2021) can
perform this method. Research to detect space–time clusters of COVID-19 infections
using Kulldorff’s method is currently underway (Hohl et al. 2020; Kim and Castro
2020; Martines et al. 2021).

The detection of a space–time cluster can be used to capture information regarding
the status and the spread of infection up to a specific date. However, Kulldorff’smethod
can only detect a cluster comprising the same regional area that spansmultiple periods.
Accordingly, this method cannot capture changes in a cluster’s shape over time (Patil
and Taillie 2004). Furthermore, when considering changes in the shape of a cluster,
analysis using any of the existing methods becomes difficult because of an increase in
the number of calculations required.

In this paper, we detect space–time clusters using the scanning method proposed
by Takemura et al. (2021) using the data on COVID-19-infected people data collected
daily by each prefecture in Japan. Additionally, we consider the factors that caused
the detected clusters and the changes in a cluster’s shape.
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Fig. 1 Number of daily COVID-19 cases from March 11, 2020, to January 30, 2021

Section 2 introduces the data used to analyze and the spatial scan statistic. We then
describe two types of methods for detecting space–time clusters. Section 3 shows
Japan’s space–time cluster detection results, as obtained by the methods described
here. In Sect. 4, we discuss these results. Section 5 provides conclusions to this paper.

2 Data andmethods

2.1 Data on COVID-19-infected people in Japan

We obtained the dataset created by ESRI Japan Co., Ltd (2021) based on the sta-
tus of test-positive individuals in each prefecture (domestic cases, excluding airport
quarantine and charter flight cases) announced by the Ministry of Health, Labor,
and Welfare. This dataset is available on a dedicated ESRI Japan Co., Ltd. web-
site (https://coronavirus-esrijapan-ej.hub.arcgis.com/). We used the number of people
newly infected per day, aggregated for 326 days from March 11, 2020, to January 30,
2021. However, since these numbers were calculated based on the difference from
the cumulative number of infected people reported on a preceding day, the number of
newly infected people may have a negative value if there was a data correction at the
time. There were 22 such cases; we replaced these numbers with 0. Figure 1 features a
graph showing the number of newly infected people in Japan and the moving average
for this number over the preceding 7 days during the study period. As of January 30,
2021, the total number of infected people was 384,014, and the number of infected
people per day had the highest value, at 7863 on January 08, 2021.
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2.2 The spatial scan statistic

The spatial scan statistic is a likelihood ratio test statistic for evaluating the presence
or absence of clusters in a study area. Let us assume that a study area is divided intom
regions. It is also assumed that the random variables, Oi , which represent the observed
number in region i , follow the Poisson distribution independently of one another. At
this time, if there is no cluster in the study area, the random variable Oi with the
observed value oi can be stated as follows:

Oi ∼Poisson(ξi ), i = 1, 2, . . . ,m,

where ξi is the expected number of cases region i . A subset of regions adjacent to each
other in the study area is called a window and represented by Z. Let O(Z) and ξ(Z)

be the random variable for the number of cases and the expected number of cases,
respectively, within window Z. The presence or absence of a cluster can then be given
as the following hypothesis testing:

H0 : E(O(Z)) = ξ(Z), ∀Z ∈ Z
H1 : E(O(Z)) > ξ(Z), ∃Z ∈ Z,

where Z is the universal set of Z. At this time, performing the test for each Z gives
rise to the problem of conducting multiple testing. Consequently, the likelihood ratio
test statistic is given as follows:

λK (Z) =

⎧
⎪⎨

⎪⎩

(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

, (o(Z) > ξ(Z))

1, (otherwise),
(1)

where o(Z) denotes the observed number of cases in window Z, and Zc is the com-
plement of Z. Typically, log λK (Z) is used to simplify the calculation. The window
Z that maximizes the value of log λK (Z) is defined as the most likely cluster (MLC).
The significance of the MLC is evaluated using the Monte Carlo method.

Let oi be the number of cases observed in region i ; it is desirable that a region
included in the cluster be a high-risk region that satisfies oi > ξi when the cluster
detection is performed using infectious disease data (e.g., COVID-19 data). However,
since the spatial scan statistic is calculated based on Z, which is a set that includes
region i , unrealistic results sometimes occur, such as detecting Z including region i
where oi < ξi . For such a problem, Tango (2008) proposed the spatial scan statistic
with a restricted likelihood ratio given by

λT (Z) =

⎧
⎪⎨

⎪⎩

(
o(Z)

ξ(Z)

)o(Z) (
o(Zc)

ξ(Zc)

)o(Zc)

, (o(Z) > ξ(Z), pi < α, ∀i ∈ Z)

1, (otherwise),
(2)
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Fig. 2 Scanning process of the circular scan method

where pi is the one-tailed p value of the test for null hypothesis given by the mid-p
value

pi = Pr{Oi ≥ oi + 1 | Oi ∼ Pois(ξi )} + 1

2
Pr{Oi = oi | Oi ∼ Pois(ξi )} (3)

and α is the prespecified significance level for the individual region. For the signifi-
cance level is 0.05, Tango (2008) defined the setting of α as follows:

1. α = 0.10 − 0.20 to detect small clusters with a sharp increase in risk;
2. α = 0.20− 0.30 to detect small to mid-sized clusters with a moderate increase in

risk;
3. α = 0.30 − 0.40 to detect larger clusters with a slight increase in risk.

Tango’s statistic considers each region’s risk rate, thereby including only the regions
that satisfy oi > ξi into the MLC.

2.3 Space–time cluster detection using the cylindrical scanmethod

The circular scan method (Kulldorff 1997) is widely used to scan Z. In this method, as
shown in Fig. 2, a circular window expands from the representative point of the region
to a user-defined limit. The regions within this range are sequentially included in Z.
Based on this approach, the cylindrical scanmethod (Kulldorff et al. 1998)was used for
detecting space–time clusters using a cylindrical window with a circular geographic
base where the height corresponds to time. By scanning while changing the radius
and height of the window, it is possible to concurrently detect the location and time
interval of the space–time cluster. However, since this method applies a cylinder with
a precise circular surface, only clusters with the same regional group are detectable.
Accordingly (see Fig. 3), detection becomes difficult when the cluster’s shape changes
over time (Patil and Taillie 2004).

2.4 Space–time cluster detection based on the Echelon scanmethod

In the case of infectious diseases such as COVID-19, the disease may spread to the
area surrounding the initial cluster. Therefore, it is important to capture changes in the
cluster’s shape over time to identify the nature of the infection’s spread and the factors
involved therein. The Echelon scan method (Ishioka et al. 2007, 2019) searches for a
cluster using the hierarchical structure of the spatial data obtained by conducting an
Echelon analysis (Myers et al. 1997; Kurihara 2004; Kurihara et al. 2020). Echelon
analysis is a method that systematically and objectively visualizes the topological
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Fig. 3 Example of an expanding cluster (upper) and a dividing cluster (lower). The red indicates the regions
included in the true space–time cluster. In real data, the true cluster may change over time, for example,
when the number of regions included in a true cluster increases and its scale expands or when the cluster
is divided into multiple clusters that move. However, the regions with blue dots, those detected by the
cylindrical scan method, do not change over time. Therefore, because it cannot capture changes in these
clusters, the true cluster is only partially detected, or regions not included in the true cluster are mistakenly
detected by this method

Fig. 4 Flow in the Echelon dendrogram created using the Echelon analysis method

structure of spatial data by dividing the spatial position based on the height of the
surface for the univariate value of each region. Figure 4 shows the flow of the Echelon
analysis; the structure of the spatial data obtainedby theEchelon analysis is represented
by a graph called the Echelon dendrogram. With the Echelon scan method, scanning
is preferentially performed from the regions that constitute the upper hierarchies of
the Echelon dendrogram, called the peak. In this way, it is possible to detect clusters
with arbitrary shapes.

Echelon analysis can create a dendrogram using the neighboring information of
each value (region), even in spatiotemporal data. As an example, 5 × 5 grid data at
three different time points are shown in Fig. 5. Here, the attribute value of each region
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Fig. 5 Sample of spatiotemporal data

in the grid data is in the area (the attribute value of the region in row A and the first
column at t = 1 is 11). Figure 5d shows the location ID for each region. These data
can be considered the spatial data of 75 regions (25 regions × 3 time points). When
each region is denoted by l(i, t) (i = 1, 2, . . . , 25; t = 1, 2, 3), the simplest example
defining neighbors N B(l(i, t)) of l(i, t) is given by

N B(l(i, t)) =

⎧
⎪⎨

⎪⎩

{l(k, t) | region i and k are neighbors} ∪ l(i, t + 1), t = 1

{l(k, t) | region i and k are neighbors} ∪ l(i, t + 1) ∪ l(i, t − 1), t = 2

{l(k, t) | region i and k are neighbors} ∪ l(i, t − 1), t = 3,

(4)

where l(k, t) (k = 1, 2, . . . , 25; k �= i) is the region adjacent to l(i, t) at time point
t . Figure 6 shows the Echelon dendrogram for the data when the spatial adjacency
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Fig. 6 Echelon dendrogram for the sample data
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at the given time point is defined as four neighborhoods (up, down, left, and right).
The dendrogram’s vertical axis represents the attribute value of the data, and the
symbols in the dendrogram denote the position of each region on the dendrogram
(where “C4(3)” refers to the region in row C and the fourth column at t = 3). It
is possible to detect space–time clusters by scanning based on the structure of this
dendrogram. Accordingly, it can capture changes over time of the cluster, such as
expansion, contraction, and movement.

Echelon analysis makes it possible to represent the spatiotemporal data as a two-
dimensional Echelon dendrogram. However, when data are collected over a long
period, the scale of the data will range from thousands to tens of thousands of values,
even if the number of regions within the scanned space is small. Hence, the number
of calculations required when the Echelon scan method is applied becomes vast, dra-
matically increasing the analysis time. Additionally, the method scans down to the
lower hierarchies of the dendrogram, which include the regions that satisfy oi < ξi .
The regions that should be detectable as a cluster are generally included in the upper
hierarchies. For this problem, Takemura et al. (2021) proposed an improved technique
(hereafter called the adjusted Echelon scan method [AESM]) for the Echelon scan
method using pi -value and Tango’s α. This paper applied the AESM to the spatiotem-
poral data to detect clusters. First, pi,t , which is given to each region at time point t ,
is defined as follows:

pi,t = Pr{Oi,t ≥ oi,t + 1 | Oi,t ∼ Pois(ξi,t )} + 1

2
Pr{Oi,t = oi,t | Oi,t ∼ Pois(ξi,t )},

(5)
where Oi,t and oi,t are the random variable of cases and the observed number of cases,
respectively, in region i at time point t , and ξi,t is the expected number of cases in
region i at time point t . In the AESM, the upper hierarchies of the spatiotemporal data
are extracted using pi,t and Tango’s α, and the Echelon scan method is applied to the
extracted data. Specifically, the steps followed in this process are:

Step 1. Extract the data of region i at time point t that satisfies pi,t < α from the
analysis data.

Step 2. ApplyEchelon analysis to the extracted data to create anEchelondendrogram.
Step 3. The region included in the upper hierarchy of the dendrogram is taken into Z

in order, and Z, which maximizes log λK (Z), is the MLC.

Figure 7 shows the application of the AESM to spatiotemporal data. By extracting the
regions that satisfy pi,t < α, it is possible to detect clusters comprising only high-
risk regions accurately. Additionally, since the region to be scanned is reduced, the
calculation cost is inhibited, even for large-scale data.

3 COVID-19 data analysis

3.1 Space–time clusters based on population

We applied both the cylindrical scan method and the AESM to the data regarding
COVID-19-infected people in Japan described in Sect. 2 to detect space–time clusters
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Fig. 7 Flowof space–time cluster detection using theAESM.The upper left figure represents spatiotemporal
data, where red-colored regions are high-risk and satisfy pi,t < α and blue-colored regions do not satisfy
pi,t < α. In step 1, only the red-colored regions are extracted from the original data. A dendrogram is
created from the extracted data by Echelon analysis in step 2. Finally, in step 3, the cluster is detected by
scanning from the upper hierarchy of the dendrogram

based on population. We collected the data of residents in each prefecture as the
population data. We first used the SaTScanTM software to apply the cylindrical scan
method. We then created a new function in R for applying the AESM based on the
function implemented in the existing echelon package (Ishioka 2020), which is R
package.

The setting of each method is described as follows. In the cylindrical scan method,
we restricted the spatial window size to include 20% or less of the population. This
setting is necessary, because about 10% of the population in Japan is concentrated in
Tokyo, so if it were set to 10% or less, Tokyomight not be detected. The second reason
is that the population of each district is about 10–20% of the total population, which
made it easy to interpret the results. In addition, we restricted the temporal window
size for the cylindrical scan method to 180 days or fewer. In this study, we aimed to
capture the shape change of clusters by detecting long-term clusters with the AESM.
Therefore, to allow comparison with the AESM results, we felt that it was necessary to
detect long-term clusters with the Cylindrical scan method. This guided our selection
of the settings described above.

For the AESM, we restricted the maximum window size to include 20% or less
of the population and set the criterion α at 0.01. Tango’s index was shown based
on a simulation of data consisting of about 100 regions regarding the setting of α.
However, in the case of large-scale data such as spatiotemporal data, the number of
regions included in the detected clusters may be larger than expected even if α is set
at 0.05. This is because, unlike existing methods, the AESM has no restrictions on the
cluster’s shape that can be detected. Therefore, in analyzing this study, we determined
that it was necessary to set the value of α to be more restrictive than the values of
Tango’s index and set α to 0.01.

We used the standardized morbidity ratio (SMR) as the attribute value for each
prefecture (i = 1, 2, . . . , 47) at a time t (= 1, 2, . . . , 326) for the Echelon analysis.
Let oi,t and ξi,t be the number of cases and the expected number of cases in each
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Fig. 8 Geographical location of each prefecture in Japan; Okinawa (No.47), shown in the upper left of the
figure, is actually located in the southwestern part of Japan

prefecture at time t , respectively. We calculated SMR using the following formula:

θi,t = oi,t
ξi,t

. (6)

As the simplest expected number of cases, without considering covariates, such as age
and gender, we defined ξi,t as follows:

ξi,t = wi,t ×
∑47

i=1 oi,t
∑47

i=1 wi,t
, (7)

where wi,t is the population of region i at time t . We used the estimated population
published monthly by each prefecture for the population in the study area. Further-
more, as the neighboring information for each area,we used the data regarding adjacent
prefectures that determines the eligible area for coupons distributed by the regional
tourism support project implemented by the Japanese government. We obtained these
data from the following URL (https://goto.jata-net.or.jp/coupon/area.html). Besides
the geographical adjacencies, this information includes adjacencies between prefec-
tures that can be traveled by a sea route as a day trip. These data were included, because
that Okinawa does not have geographically adjacent prefectures. Figure 8 shows the
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geographical location of each prefecture in Japan, and Table 1 provides the numbers
of the areas adjacent to each prefecture. We considered that θi,t of region i at time t
was affected by θi,t−1 of the previous day, and θi,t+1 of the next day was affected by
θi,t ; we considered region i at time t adjacent to the same region on the previous and
subsequent days as temporal adjacency information. Thus, when each prefecture is
denoted by l(i, t) (i = 1, 2, . . . , 47; t = 1, 2, . . . , 326), the neighboring information,
N B(l(i, t)), is defined as follows:

N B(l(i, t))

=

⎧
⎪⎨

⎪⎩

{l(k, t) | region i and k are neighbor} ∪ l(i, t + 1), t = 1

{l(k, t) | region i and k are neighbor} ∪ l(i, t + 1) ∪ l(i, t − 1), 1< t< 326

{l(k, t) | region i and k are neighbor} ∪ l(i, t − 1), t = 326,

(8)

where l(k, t) (k = 1, 2, . . . , 47; k �= i) is the prefecture adjacent to l(i, t) at time
point t .

The analytical results using the cylindrical scan method with the above settings are
shown in Table 2 and Fig. 9a, and the results from the AESM are shown in Table 3
and Fig. 9b. Figure 9 shows the five clusters with the highest log λK (Z) values among
the clusters; these were judged to be significant at p = 0.001, based on the results of
999 Monte Carlo simulations for each method. Each region’s SMR height included in
the clusters was expressed using a color gradient; darker colors indicate higher values.
The seventh column in Tables 2 and 3 lists the relative risk (RR), which is calculated
as follows:

RR = o(Z)/ξ(Z)

o(Zc)/ξ(Zc)
. (9)

Figure 10 visualizes each prefecture; the numbered areas in the figure are the prefec-
tures that were included as a cluster, even if only for 1 day, in either method.

When the cylindrical scanmethodwas applied, Tokyo andKanagawawere detected
as MLC, and Osaka, Hokkaido, Okinawa, and Fukuoka were detected as secondary
clusters. “Secondary clusters” refers to clusters other than the MLC that were judged
to have a significantly high value of log λK (Z). Table 2 and Fig. 9a show that clusters
(excluding cluster 5) were detected for an extended period, and the MLCwas a cluster
that lasted approximately 5 months. In cluster 4, which was detected in Okinawa,
RR = 3.79 (see Table 2), indicating that it was a high-risk cluster, but, as seen in
Fig. 9a, there was also a day when θi,t < 1 within the cluster period.

Next, when considering the results of the AESM, besides Tokyo and Kanagawa,
prefectures around Tokyo, such as Chiba and Saitama, were also detected as MLC and
cluster 2. From Fig. 9b, the Tokyo vicinity was repeatedly included in the clusters for
short durations, and the expansion and contraction of the clusters could be observed.
Furthermore, an additional cluster was detected in the early part of the target period,
fromMarch 31 toMay 12, which had not been detected by the cylindrical scanmethod.
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Table 1 Neighboring
information for each prefecture

No. Location Neighbors

1 Hokkaido 2

2 Aomori 1, 3, 5

3 Iwate 2, 4, 5

4 Miyagi 3, 5, 6, 7

5 Akita 2, 3, 4, 6

6 Yamagata 4, 5, 7, 15

7 Fukushima 4, 6, 8, 9, 10, 15

8 Ibaraki 7, 9, 11, 12

9 Tochigi 7, 8, 10, 11

10 Gunma 7, 9, 11, 15, 20

11 Saitama 8, 9, 10, 12, 13, 19, 20

12 Chiba 8, 11, 13, 14

13 Tokyo 11, 12, 14, 19, 22

14 Kanagawa 12, 13, 19, 22

15 Niigata 6, 7, 10, 16, 20

16 Toyama 15, 17, 20, 21

17 Ishikawa 16, 18, 21

18 Fukui 17, 21, 25, 26

19 Yamanashi 11, 13, 14, 20, 22

20 Nagano 10, 11, 15, 16, 19, 21, 22, 23

21 Gifu 16, 17, 18, 20, 23, 24, 25

22 Shizuoka 13, 14, 19, 20, 23

23 Aichi 20, 21, 22, 24

24 Mie 21, 23, 25, 26, 29, 30

25 Shiga 18, 21, 24, 26

26 Kyoto 18, 24, 25, 27, 28, 29

27 Osaka 26, 28, 29, 30

28 Hyogo 26, 27, 31, 33, 36, 37

29 Nara 24, 26, 27, 30

30 Wakayama 24, 27, 29, 36

31 Tottori 28, 32, 33, 34

32 Shimane 31, 34, 35

33 Okayama 28, 31, 34, 37

34 Hiroshima 31, 32, 33, 35, 38

35 Yamaguchi 32, 34, 38, 40, 44

36 Tokushima 28, 30, 37, 38, 39

37 Kagawa 28, 33, 36, 38

38 Ehime 34, 35, 36, 37, 39, 44

39 Kochi 36, 38
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Table 1 continued No. Location Neighbors

40 Fukuoka 35, 41, 42, 43, 44

41 Saga 40, 42

42 Nagasaki 40, 41, 43

43 Kumamoto 40, 42, 44, 45, 46

44 Oita 35, 38, 40, 43, 45

45 Miyazaki 43, 44, 46

46 Kagoshima 43, 45, 47

47 Okinawa 46

Table 2 Details of the clusters detected using the cylindrical scan method

Location Time frame log λK (Z) o(Z) ξ(Z) RR

MLC Tokyo 8/4−1/30 27742.61 123208 63641.36 2.38

Kanagawa

Cluster 2 Osaka 7/15−12/19 5296.81 24722 12064.27 2.12

Cluster 3 Hokkaido 10/23−12/10 2748.90 8153 3171.65 2.60

Cluster 4 Okinawa 7/29−11/8 1951.70 3288 873.41 3.79

Cluster 5 Fukuoka 1/18 775.30 1071 238.99 4.49

3.2 Space–time clusters based on number of PCR tests

The spread of infectious diseases such as COVID-19 may be centered within areas
where people are actively moving. Attempts to slow the spread of infection include
conducting sufficient tests on individuals suspected of being infected, such as the

Fig. 9 Population-based space–time clusters detected using the cylindrical scan method and the AESM—
Although the cylindrical scan method does not use SMR for analysis, in this paper, we performed
visualization using SMR to confirm whether prefectures included in clusters have a high risk. The col-
ored parts in the figure show the prefectures and periods included in the cluster detected by each method,
and the high and low of SMR are shown by shades of color
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Table 3 Details of the clusters detected using the AESM

Location Time frame log λK (Z) o(Z) ξ(Z) RR

MLC Tochigi 11/25−1/30 22387.54 100244 50951.99 2.31

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka

Aichi

Cluster 2 Saitama 6/1−11/23 12257.88 41911 18037.33 2.49

Chiba

Tokyo

Kanagawa

Yamanashi

Gifu

Shizuoka

Aichi

Cluster 3 Kyoto 11/17−12/23 2911.54 15722 8105.49 1.99

Osaka

Hyogo

Nara

Cluster 4 Hokkaido 10/30−12/10 2724.22 7819 2986.19 2.65

Cluster 5 Saitama 3/31−5/12 2033.73 4766 1607.84 2.99

Chiba

Tokyo

Kanagawa

close contacts of those who have already been identified as infected. However, in
some circumstances, potentially infected individuals could not be sufficiently tested
in regions where the number of observed cases was large compared to the number
of tests that could be performed. Thus, we assumed that these potentially undetected
infected people would impact the development and expansion of the clusters. To detect
space–time clusters resulting from such risks, we also conducted an analysis using the
number of polymerase chain reaction (PCR) tests performed per day in each prefecture
rather than using the population in each prefecture. According to the Johns Hopkins
CoronavirusResourceCenter, a PCR test is a viral test that aims to identify the presence
of a virus’s genetic material, as well as evidence of an active viral infection, using an
oral or nasal swab or a saliva test. We obtained data on the number of PCR tests
performed in each prefecture from the website noted in Sect. 2. The number of PCR
tests performed per day was calculated using the difference between the cumulative
number of tests performed up to the current and the preceding day. However, there
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Fig. 10 Geographical location of prefectures detected as population-based clusters—red-colored prefec-
tures were detected by both the cylindrical scan method and the AESM. Light blue and green-colored
prefectures were detected only by the cylindrical method and only by the AESM, respectively

were days when some prefectures did not report the cumulative number of tests. In
such cases, the number of tests per day was set to 0. In this paper, the number of tests
per day was calculated by dividing the increased number if the cumulative number of
tests was updated by the required update period. For example, if a prefecture showed
zero new tests for 11 days, and there was an increase in the cumulative number of tests
of 3564 on day 12, then by calculating 3564/12 = 297, the number of new tests on
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each day during this period was set to 297. This process yielded 281 cases in which
the number of newly infected persons per day was larger than the number of new tests.
Accordingly, we processed these data as missing values. The AESM can be applied to
the data even with the missing values, because the regions with missing values are not
used when creating the Echelon dendrogram. The analysis settings were the same as
in Sect. 3.1, and ξi,t was calculated with wi,t as the number of PCR tests performed
in region i at time t .

The results of the AESM are shown in Table 4 and Fig. 11. The numbered prefec-
tures shown in Fig. 12 are the newly detected locations as clusters in this analysis. In
cluster 2, 17 prefectures were detected as clusters, demonstrating that infections were
widespread during this period. Additionally, Fig. 11 shows that Ibaraki was continu-
ously detected for an extended period in both the MLC and cluster 2, and its SMRwas
higher than that of other prefectures during this period. Clusters 3 and 5 were detected
as clusters at the start of the target period, and an expansion centered on Tokyo was
observed. Furthermore, cluster 3 was detected as a high-risk cluster with RR = 4.34.

4 Discussion

We began by considering the results of detecting space–time clusters based on pop-
ulation. Human movement is one of factors that impact the spread of COVID-19
infections. We considered how this aspect how this influenced the generation of clus-
ters. Tokyo, Kanagawa, Osaka, and Fukuoka, which were detected as clusters by the
cylindrical scan method, have large populations and are prefectures where many peo-
ple move for business purposes. Hokkaido and Okinawa are prefectures that many
people visit for tourism. Specifically, we considered that the number of tourists had
increased compared in late July when Okinawa began to be detected as a cluster; the
summer holiday had begun in Japan, and the government’s tourism support measures
had been implemented. In contrast, the AESMdid not detect Okinawa as one of the top
five clusters. Considering cluster 4, as shown in Fig. 9a, detected in Okinawa, the SMR
exhibited a low value on some days during the detected periods, presumably because
multiple clusters that occurred in a short time had been detected as a single cluster.
Thus, when the AESM was applied the short-term clusters had a lower log λK (Z)

than the long-term cluster, and, consequently, they were undetected as a high-ranking
cluster.

The cylindrical scan method and the AESM identified the cluster in the Tokyo
metropolitan area as the MLC. The AESM detected similar areas in clusters 2 and
5. Approximately 10% of the Japanese population lives in Tokyo; thus, many people
enter and leave the surrounding areas when commuting to work and school. Based on
the spread of infection in Tokyo, the surrounding area was also detected as a cluster.
Thus, we assume that the cluster expansion and contraction would be reflected in
the areas surrounding Tokyo. Figure 1 shows the number of infected people rapidly
increasing in late December 2020. Figure 9b shows that the MLC expanded in these
areas for the same period. In Japan, many people return home during the New Year
holidays or attend events such as Christmas parties with their friends and family.
However, during this period, we assume that most people restricted their travel to
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Table 4 Details of the clusters detected using the AESM

Location Time frame log λK (Z) o(Z) ξ(Z) RR

MLC Ibaraki 12/22–1/29 13,308.03 83,852 47,578.69 1.97

Tochigi

Gunma

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka

Cluster 2 Ibaraki 11/10–12/21 3581.24 28,432 16,710.80 1.75

Tochigi

Gunma

Saitama

Chiba

Tokyo

Kanagawa

Yamanashi

Shizuoka

Aichi

Mie

Kyoto

Osaka

Hyogo

Nara

Wakayama

Tokushima

Cluster 3 Saitama 4/15–5/7 2069.27 2970 687.80 4.34

Chiba

Tokyo

Kanagawa

Cluster 4 Shizuoka 12/2–12/10 1145.93 1902 498.52 3.83

Aichi

Cluster 5 Ibaraki 3/23–4/11 940.47 2213 746.89 2.97

Tochigi

Saitama

Chiba

Tokyo

Kanagawa

Shizuoka
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Fig. 11 Space–time clusters based on the number of PCR tests

Fig. 12 Geographical location of prefectures detected by the AESM as clusters based on the number of
PCR tests—orange-colored prefectures were detected in both analyses based on population and the number
of PCR tests. Blue- and yellow-colored prefectures were detected only in analysis based on population and
only in analysis based on the number of PCR tests, respectively

distant areas due to the influence of COVID-19. As a result, we considered that the
movement of people increased in the area around Tokyo, compared to other areas, and
this spread infection. Figure 9b shows that cluster 2 included Tokyo in late June, and
Fig. 13 shows the number of newly infected people in Japan and Tokyo. The number
of infected people was small nationwide; however, the proportion for Tokyo was very
high during this period. We assume that Tokyo was detected as cluster 2, because the
risk was relatively high compared to other prefectures.
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Fig. 13 Number of daily cases throughout Japan and in Tokyo from June 1 to July 1, 2020

Next, we considered the space–time clusters based on the number of PCR tests.
Figure 11 shows that the clusters detected based on these tests lasted for approximately
1 month. It is also shown that cluster 2 expanded to an extremely wide area, including
the regions surrounding Osaka and Tokyo. Figure 1 shows that the number of infected
people increased during the period close to November when cluster 2 was detected.
We assume that this occurred, because the number of prefectures in which the ratio
of infected persons to the number of PCR tests performed was high had increased
during this period. Ibaraki, in particular, exhibited a high SMR value. Figure 14 shows
the positive rate of the PCR testing in Ibaraki during the period when the MLC and
cluster 2 were detected, which reflected high values, e.g., 60–70%. On April 15, 2021,
the Subcommittee on Novel Coronavirus Disease Control, which is an organization of
the Japanese government, designated a positive test rate of 5% or more as one of the
criteria identifying prefectures where measures are required to avoid a rapid increase
in the number of infected people and occurrence of major obstacles to the medical care
provision system. Ibaraki shows a sufficiently high value compared to this criterion.
Additionally, Fig. 15 shows the positive test rate in Tokyo during the period when
cluster 3 and 5 were detected. Tokyo also had a high positive test rate when infections
first began to spread in Japan. In this study, we used the data described in Sect. 2.1 and
calculated the positive test rate. However, the values may differ from those published
by each prefecture due to the base date of the data and the processing for the number
of PCR tests described in Sect. 3.2. For example, in the case of Tokyo, we calculated
the positive test rate using positive cases based on the day of notification from the pub-
lic health center. On the other hand, Tokyo Metropolitan Government’s monitoring
site (https://stopcovid19.metro.tokyo.lg.jp/en/cards/positive-rate/) publishes the val-
ues using positive cases based on the daywhen the test resultwas confirmed. Therefore,
it should be noted that there is a difference between the positive test rate in this paper
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Fig. 14 Changes in the rate of positive PCR tests in Ibaraki within the period it was included in MLC and
cluster 2

Fig. 15 Changes in the rate of positive PCR tests in Tokyo within the period it was included in cluster 3
and 5

and on this site. Like Tokyo and Ibaraki, high positive test rates can make it difficult
to provide tests for potentially infected people who have not yet developed symptoms.
We considered that these potentially infected individuals eventually contributed to the
expansion of the cluster.
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5 Conclusion

In this study, we applied the cylindrical scan method and the AESM to detect space–
time clusters in COVID-19 infection data in Japan. The results of the analysis show
population-based clusters in densely populated and well-traveled areas such as Tokyo,
suggesting that a large amount of human movement in these areas is one of the factors
influencing the spread of infection. Furthermore, results of an analysis based on the
number of PCR tests conducted showed detected clusters during the period when
the positive test rate was high. The clusters expanded to a wide range when there
were more infected persons. Therefore, we emphasize that it is important to secure
a sufficient number of tests to be prepared for the increase in the number of infected
people, which can be achieved by establishing cooperative relationships between the
medical systems of each prefecture. However, the properties of each of the clusters
may differ. Therefore, it is necessary to analyze each prefecture in more detail.

We detected space–time clusters based on the retrospective method (Kulldorff et al.
1998), which also detects clusters that had already ended at the time of the analysis.
In the case of people infected with COVID-19, where the data are updated daily,
it is important to identify ongoing clusters. These are referred to as “alive cluster.”
Kulldorff (2001) proposed the prospective method for detecting such clusters. This
method can be performed with the same software as the retrospective method. It
is extremely important to capture the shape change of alive clusters; however, this
is currently difficult to do using the AESM. Therefore, a new detection method is
required. We consider this to be a worthwhile direction for future work.
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