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Artificial neural network‑boosted 
Cardiac Arrest Survival 
Post‑Resuscitation In‑hospital 
(CASPRI) score accurately predicts 
outcome in cardiac arrest patients 
treated with targeted temperature 
management
Szu‑Yi Chou1,2,10, Oluwaseun Adebayo Bamodu3,4,5,10, Wei‑Ting Chiu6,7,8, Chien‑Tai Hong6,7, 
Lung Chan6,7* & Chen‑Chih Chung6,7,9*

Existing prognostic models to predict the neurological recovery in patients with cardiac arrest 
receiving targeted temperature management (TTM) either exhibit moderate accuracy or are too 
complicated for clinical application. This necessitates the development of a simple and generalizable 
prediction model to inform clinical decision-making for patients receiving TTM. The present study 
explores the predictive validity of the Cardiac Arrest Survival Post-resuscitation In-hospital (CASPRI) 
score in cardiac arrest patients receiving TTM, regardless of cardiac event location, and uses 
artificial neural network (ANN) algorithms to boost the prediction performance. This retrospective 
observational study evaluated the prognostic relevance of the CASPRI score and applied ANN to 
develop outcome prediction models in a cohort of 570 patients with cardiac arrest and treated with 
TTM between 2014 and 2019 in a nationwide multicenter registry in Taiwan. In univariate logistic 
regression analysis, the CASPRI score was significantly associated with neurological outcome, with 
the area under the receiver operating characteristics curve (AUC) of 0.811. The generated ANN 
model, based on 10 items of the CASPRI score, achieved a training AUC of 0.976 and validation 
AUC of 0.921, with the accuracy, precision, sensitivity, and specificity of 89.2%, 91.6%, 87.6%, and 
91.2%, respectively, for the validation set. CASPRI score has prognostic relevance in patients who 
received TTM after cardiac arrest. The generated ANN-boosted, CASPRI-based model exhibited good 
performance for predicting TTM neurological outcome, thus, we propose its clinical application to 
improve outcome prediction, facilitate decision-making, and formulate individualized therapeutic 
plans for patients receiving TTM.
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Cardiac arrest is implicated in a notable proportion of premature deaths and disabilities worldwide1–3. A sub-
stantial proportion of patients treated for out-of-hospital cardiac arrest (OHCA) die before emergency depart-
ment arrival, and a significant proportion of in-hospital cardiac arrest (IHCA) patients-associated deaths occur 
during the initial resuscitation. Of those who have restoration of spontaneous circulation (ROSC) after initial 
resuscitation, a large proportion die before discharge, and only a minority of patients with cardiac arrest achieve 
favorable functional outcome at discharge1,4. However, it is noteworthy that several factors, including patients’ 
age, pre-arrest neurological condition, functional status, rhythm type (shockable vs non-shockable) play vital 
role in the outcome of OHCA5,6. In context of these outcome predictors, we note that of the minority of patients 
who are discharged alive with favorable functional status, the proportion sdischarged with favorable neurological 
status is relatively high6, and this may explain the attribution of majority of OHCA post-resuscitation deaths to 
brain injury7, howbeit without accounting for deaths due to early withdrawal of life-sustaining treatment which 
in itself frequently truncates the opportunity for brain recovery8.

To prevent or reduce the poor outcomes associated with cardiac arrest, targeted temperature management 
(TTM) has been introduced and touted to reduce mortality and improve the neurological recovery in patients 
with cardiac arrest9–12.

Several prognostic factors associated with the outcome in cardiac arrest patients treated with TTM have been 
identified, and a number of tools have been proposed for outcome prognostication13–17. So far, these prognostic 
and/or predictive models either exhibit moderately acceptable accuracy, are designed exclusively for OHCA 
patients, or are too complicated with multiple clinical variables for the clinical applications13–16. This necessitates 
the development of a simple and yet generalizable prediction model to inform clinical decision-making and 
formulation of therapeutic strategies for patients receiving or indicated for TTM with different clinical status.

The Cardiac Arrest Survival Post-resuscitation In-hospital (CASPRI) score consisting of eleven items, was 
designed to predict clinical outcome of patients who achieve ROSC after experiencing IHCA18, and has been 
validated in different cohorts with good discrimination power reported18,19. However, its predictive performance 
in a non-selective patient cohort who received TTM regardless of place of cardiac arrest (IHCA and OHCA) 
has not been validated. In the present study, we hypothesized that the CASPRI score is clinically applicable in 
predicting the outcome in cardiac arrest patients treated with TTM, regardless of place of event.

Advances in machine learning algorithms coupled with increased computational power continue to enable 
enhanced diagnostic and prognostic capabilities in various medical fields. Recently published reports suggest the 
capability of artificial neural networks (ANN), a supervised machine learning algorithm, to accurately predict 
neurological outcomes, including survival, for patients with OHCA or IHCA15,33,34.

The present study explored the clinical validity of the CASPRI score in patients with cardiac arrest, regardless 
of place of event, who received TTM, and proffered improvement of the predictive accuracy of the CASPRI score 
by applying ANN-based prediction models.

Materials and methods
Participants.  This retrospective cohort study used clinical data from medical records obtained from the Tai-
wan Network of Targeted Temperature Management for Cardiac Arrest (TIMECARD) registry14. TIMECARD 
registry is a nationwide multicenter registry project conducted from January 2014 and September 2019 in 9 
medical centers in Taiwan. An on-line case report form was built for every participating hospital to report their 
patient-level data. All electronic medical data was decoupled from patient identifying information.

The inclusion criteria for the TIMECARD registry were: (1) participants aged 18 years or older, (2) a cardiac 
event occurring inside or outside the hospital, (3) receipt of cardiopulmonary resuscitation (CPR) with ROSC, 
(4) Glasgow coma scale (GCS) less than 8 or inability to obey commands after ROSC, and (5) receipt of TTM 
less than 12 h after ROSC.

The exclusion criteria were as follows: patients with (1) uncontrollable bleeding, (2) impaired consciousness 
before cardiac arrest or pre-cardiac arrest, indicated by cerebral performance category (CPC) score ≤ 3, regard-
less of etiology, (3) fatal ventricular arrhythmia (tachycardia or fibrillation), (4) intracranial hemorrhage, or (5) 
life expectancy less than 6 months.

All eligible patients were treated using the TTM protocol consistent with the consensus of scientific statement 
from the Taiwan Society of Emergency & Critical Care Medicine12. The variables were retrieved from archived 
patients’ registry data based on the updated Utstein Resuscitation Registry template, and included baseline 
characteristics, comorbidities, coupled with information on the cardiac arrest event, etiology, post-arrest care, 
and the outcomes12,14,20. Modeled after the CASPRI score development and validation studies, which to the best 
of our knowledge, employed retrospective determination of pre- and post-arrest CPC score for predicting neu-
rological outcomes for patients with cardiac arrest, the CPC score in our study was retrospectively determined 
from patients’ information garnered from family members and/or medical records by the research investigator, 
who is also consultant neurologist in each medical center14,19–22.

A favorable neurological outcome was defined as CPC score of 1–2 (conscious and alert with good or moder-
ate cerebral performance) at the time of discharge, while poor outcome was defined as CPC score of 3–5 (severe 
neurological disability, persistent vegetative state, or death)12,14,20–22.

Ethical approval.  The study was approved by the Joint Institutional Review Board of Taipei Medical Uni-
versity (TMU-JIRB Approval No. N201711046). Waiver of informed consent were approved by the TMU-JIRB 
for this retrospective study involving the secondary analysis of existing anonymized data. All methods were 
performed in accordance with the relevant guidelines and regulations.
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Statistical analyses.  All analyses were performed using JMP® version14.2.0 (SAS Institute Inc., Cary, 
NC, USA). Variables were summarized using descriptive statistics. Continuous variables are presented as 
mean ± standard deviation, and categorical variables are expressed as counts and percentages. One-way ANOVA 
was used to determine the statistical significance of differences between means of ≥ 3 independent variables and 
Fisher’s exact test to determine non-random associations between 2 categorical variables. A two-tailed p-value 
of < 0.05 was considered statistically significant.

Application of CASPRI score.  The CASPRI score (Table  S1) was calculated for each patient as earlier 
described by Chan et al. in the original development and internal validation study18. In TIMECARD registry, all 
clinical information of interventions prior to the time of cardiac arrest were excluded14, thus, mechanical ventila-
tion, indicated as one variable of the CASPRI score18, was not included in the analysis. To calculate the CASPRI 
score for OHCA patients, arrest location was scored 3 points, being the score for patients from non-monitored 
unit18. Overall, 10 out of the 11 items of the CASPRI score were incorporated into our logistic regression and 
ANN models (Table 1, Fig. 1).

Univariate logistic regression analysis, with the CASPRI score considered a continuous variable, was per-
formed to determine probable association between the total score and the outcome. We assessed our regression 
model using area under the receiver operating characteristics curve (AUC), with the accuracy, precision, sensi-
tivity, and specificity of the univariate logistic regression model indicated.

Development and validation of ANN models.  The ANN model was developed using STATISTICA ver. 
13.3 (TIBCO Software Inc., Tulsa, Oklahoma, USA). The applied ANN architecture was a multilayer perceptron, 

Table 1.   Baseline demographic characteristics of patients according to neurological outcomes at hospital 
discharge. CASPRI Cardiac Arrest Survival Postresuscitation In-hospital, CI confidence interval, COPD 
chronic obstructive pulmonary disease, CPC cerebral performance category, IHCA in-hospital cardiac arrest, 
MAP mean arterial pressure, OHCA out-of-hospital cardiac arrest, OR odds ratio, ROSC return of spontaneous 
circulation, VF ventricular fibrillation, VT ventricular tachycardia. a Variables used to calculate CASPRI score. 
b Odds ratio of per unit changes.

Variables Whole cohort (n = 570)
Favorable outcome 
(n = 117)

Unfavorable outcome 
(n = 453) p-value OR (95% CI)

Age (years)a 64.6 ± 15.9 58.1 ± 16.6 66.3 ± 15.3 < 0.0001 1.03 (1.02–1.05)b

Female, n (%) 194 (34.0) 30 (25.6) 164 (36.2) 0.037 0.61 (0.38–0.96)

Initial cardiac arrest 
rhythm, n (%)a < 0.0001

VF/Pulseless VT 209 (36.7) 79 (67.5) 130 (28.7)

Pulseless electrical 
activity 137 (24.0) 30 (26.6) 107 (23.6)

Asystole 224 (39.3) 8 (6.8) 216 (47.7)

Pre-arrest CPC scorea 1.29 ± 0.60 1.04 ± 0.20 1.36 ± 0.65 < 0.0001 6.46 (2.7–15.4)b

Arrest location, n (%)a

OHCA 463 (81.2) 97 (82.9) 366 (80.8) 0.691 1.15 (0.68–1.97)

IHCA 107 (18.8) 20 (17.1) 87 (19.2) 0.250

 Telemetry unit 57 (10.0) 14 (12.0) 43 (9.5)

 Intensive care unit 9 (1.6) 1 (0.9) 8 (1.8)

 Non-monitored unit 41 (7.2) 5 (4.3) 36 (8.0)

Duration of resuscitation 
(min)a 24.0 ± 17.7 21.5 ± 21.0 24.7 ± 16.7 0.132 1.01 (1.0–1.02)b

MAP at ROSC (mmHg)a 94.6 ± 31.0 104.3 ± 29.8 92.2 ± 30.8 0.0001 0.99 (0.98–0.99)b

Comorbidities, n (%)

Renal insufficiencya 144 (25.3) 18 (15.4) 126 (27.8) 0.006 0.47 (0.27–0.81)

Hepatic insufficiencya 18 (3.2) 1 (0.9) 17 (3.8) 0.142 0.22 (0.03–1.68)

Sepsisa 59 (10.4) 3 (2.6) 56 (12.4) 0.001 0.19 (0.06–0.61)

Malignancya 72 (12.6) 7 (6.0) 65 (14.3) 0.013 0.38 (0.17–0.85)

Diabetes mellitus 236 (41.4) 33 (28.2) 203 (44.8) 0.001 0.48 (0.31–0.75)

Hypertension 322 (56.5) 62 (53.0) 260 (57.4) 0.404 0.84 (0.56–1.26)

Coronary artery disease 152 (26.7) 30 (25.6) 122 (26.9) 0.816 0.94 (0.59–1.49)

Heart failure 109 (19.1) 17 (14.5) 92 (20.3) 0.187 0.66 (0.38–1.17)

Arrhythmia 71 (12.5) 16 (13.7) 55 (12.1) 0.640 1.15 (0.63–2.08)

COPD or asthma 62 (10.9) 6 (5.1) 56 (12.4) 0.029 0.38 (0.16–0.91)

Previous cerebral vascu-
lar disease 74 (13.0) 6 (5.1) 68 (15.0) 0.003 0.31 (0.13–0.72)

CASPRI score 17.8 ± 5.6 13.2 ± 3.8 18.9 ± 5.5 < 0.0001 1.28 (1.21–1.36)b
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containing an input layer, one hidden layer, and an output layer (Fig. 1). Continuous variables included age, pre-
arrest CPC score, duration of resuscitation, and mean arterial pressure (MAP) at ROSC. Categorical variables 
included initial arrest rhythm, arrest location, renal or hepatic insufficiency, sepsis, and malignancy. The arrest 
locations were indicated as four independent input neurons in the ANN model, namely, OHCA, telemetry unit, 
intensive care unit, and non-monitored unit. The numbers of neurons in the hidden layer were set empirically, 
ranging from 1 to 50.

Oversampling of the minority classes.  To reduce the disproportionate ratio of patients with favorable 
neurological outcomes to those with unfavorable outcomes in the dataset, we applied the Synthetic Minor-
ity Over-sampling Technique (SMOTE) to the minority class, namely the subset of favorable neurological 
outcomes23. By analyzing samples in minority class and synthesizing new samples based on them, SMOTE can 
improve classification performance and help circumvent limitations associated with overly skewed or imbal-
anced data, thus enhancing the accuracy and generalizability of the prediction model23. By the SMOTE, 336 
samples of favorable neurological outcomes were synthetically oversampled to re-balance the class distribution 
(Table S2). After oversampling, 453 samples each of favorable and unfavorable neurological outcomes were ran-
domly partitioned into 80% training and 20% validation sets in the ANN models while maintaining an identical 
proportion of favorable and unfavorable outcomes.

Model evaluation.  The generalizability of the analysis was assessed using five-fold cross-validation. The 
model performance was evaluated using five independent validation sets. The mean AUC of the five training 
and validation sets and the mean accuracy, precision, sensitivity, and specificity of the five validation sets are 
reported.

Results
Cohort demographics and baseline characteristics.  A total of 580 patients were registered in the 
TIMECARD database. Ten patients without documented CPC score at discharge were excluded from the analy-
sis. Overall, 570 patients (194 female and 376 male; mean age 64.6 ± 15.9 years) who received TTM treatment 
were eligible and enrolled into this study. Among them, there were 463 (81.2%) patients with OHCA and 107 
(18.8%) with IHCA. At hospital discharge, 117 (20.5%) patients had favorable neurological outcomes, and 453 
(79.5%) patients had unfavorable neurological outcomes. The mortality rate was 59.1% (n = 337). Compared 
to those with unfavorable outcomes, patients with favorable neurological outcomes at hospital discharge were 
younger, had lower CPC score 24 h before cardiac arrest, and higher MAP at ROSC. More so, patients with 
favorable neurological outcomes were more prone to ventricular fibrillation/pulseless ventricular tachycardia, 

Figure 1.   Artificial neural network (ANN) model in the present study. Schema showing the input, hidden, and 
output layers of the ANN model. The number of neurons in the hidden layer were set empirically and ranged 
from 1 to 50. The output layer contains two neurons—the favorable and unfavorable neurological outcome 
at hospital discharge. ANN artificial neural network, CPC cerebral performance category, MAP mean arterial 
pressure, ROSC restoration of spontaneous circulation.
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less likely in asystole during initial cardiac arrest, or exhibit renal insufficiency, sepsis, malignant disease, or 
other systemic/chronic diseases (Table 1).

The association between CASPRI score and the outcomes.  The mean CASPRI score was 17.8 ± 5.6 
points for the whole cohort, and the score was significantly higher in patients with unfavorable neurological 
status at hospital discharge (18.9 ± 5.5 vs 13.2 ± 3.8) (Table 1). Unadjusted binary regression analysis showed that 
every point increase in the CASPRI score was associated with 1.28-fold (95% CI 1.21–1.36; p < 0.0001) or 1.14-
fold (95% CI 1.10–1.18; p < 0.0001) increase in the likelihood of an unfavorable outcome or mortality outcome, 
respectively, for cardiac arrest patients who received TTM.

For the patients with CASPRI score < 10, there was a 56.7% probability of favorable neurological outcome and 
80.0% probability of survival at discharge, while patients with CASPRI score ≥ 25 had no chance of a favorable 
neurological outcome (Fig. 2A). As shown in Fig. 2B, the AUC of CASPRI score to predict favorable outcome was 
0.811; 95% CI 0.779–0.843, with the accuracy, precision, sensitivity, and specificity of 79.8%, 52.5%, 17.9%, and 
95.8%, respectively. The results indicated that the original CASPRI score exhibits good specificity but relatively 
low sensitivity in the prediction of neurological outcomes for the patients with cardiac arrest who received TTM.

Boosting the predictive performance of CASPRI score by using ANN.  As alluded earlier, ten base-
line characteristics from the items of CASPRI score were used as the input attributes to develop the ANN model 
for predicting neurological outcomes. After adequate training, the ANN-boosted CASPRI models containing 8, 
27, 45, 46, and 47 hidden neurons achieved the best prediction performance for the fivefold cross-validation sets, 
with a mean training accuracy of 93.5 ± 3.8% and validation accuracy of 89.2 ± 2.5%. The precision of the valida-
tion set was 91.6 ± 1.3%, sensitivity was 87.6 ± 4.2%, and specificity was 91.2 ± 1.1%. The AUC was 0.976 ± 0.024 
for the training set (Fig. 3A) and 0.921 ± 0.033 for the validation set (Fig. 3B).

A comparative analysis of the predictive performance of the original CASPRI score and ANN-boosted mod-
els were performed. As shown in Table 2, the results indicate that the ANN models achieved relatively higher 
accuracy, precision, sensitivity, and AUC values in predicting favorable neurological outcomes, with improved 
accuracy when predicting the clinical outcomes of patients with cardiac arrest who received TTM.

Relative significance of predictors.  A sensitivity analysis was performed to assess the predictive value 
of each parameter in the ANN model, and evaluated the relative contribution of that parameter alone and in 
combination with other factors in the model. The relative significance of each factor was indicated by its mean 
importance value through five repetitions during five-fold cross-validation. Among all parameters of the CAS-
PRI score, sepsis, malignancy, hepatic insufficiency, initial cardiac arrest rhythm, and arrest location were the 
strongest predictors of neurological outcomes (Fig. 4). These results provide some insight into the significance of 
the parameters that contribute to neurological prognosis of cardiac arrest patients who were treated with TTM.

Discussion
The present study validates the CASPRI score and the application of ANN-based models to predict or boost 
prediction of clinical outcomes in patients who received TTM. The CASPRI score exhibited prognostic relevance 
with an AUC of 0.811 to predict favorable neurological outcomes in patients who received TTM after cardiac 
arrest. Interestingly, the established ANN-boosted CASPRI score model achieved better predictive performance 
with an AUC of 0.921 for predicting the neurological outcomes in the validation set. This is of relevance for pre-
cision medicine, because the AUC measures the degree of discriminability between groups, thus, the relatively 

Figure 2.   Predictive performance of the CASPRI score. (A) Graphical visualization of the corresponding 
percentage of cardiac arrest patients who received TTM in current cohort who survived to hospital discharge 
and who had favorable neurological outcomes for every 5-points increases of CASPRI score. (B) ROC curve 
with indicated AUC of the CASPRI score univariable logistic regression model to predict favorable neurological 
outcomes in cardiac arrest patients who received TTM. AUC​ area under the curve, ROC receiver operating 
characteristic, CASPRI Cardiac Arrest Survival Post-resuscitation In-hospital, TTM targeted temperature 
management.
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Figure 3.   Predictive performance of ANN models. ROC curves with AUCs of the (A) training and (B) 
validation sets of ANN model to predict favorable neurological outcomes in cardiac arrest patients who received 
TTM using baseline parameters of CASPRI score. AUC values are presented as mean ± SD of the five training 
and validation sets during five-fold cross-validation. ANN artificial neural network, AUC​ area under the curve, 
ROC receiver operating characteristic, CASPRI Cardiac Arrest Survival Post-resuscitation In-hospital, TTM 
targeted temperature management, SD standard deviation.

Table 2.   Comparison of the performance of CASPRI score and ANN-boosted CASPRI model for predicting 
functional outcomes of patients received TTM. Univariate logistic regression analysis was performed using 
the CASPRI score as a continuous variable to calculated the AUC. The higher value among the two models 
is shown in bold. ANN artificial neural network, AUC​ area under the receiver operating characteristic curve, 
CASPRI Cardiac Arrest Survival Postresuscitation In-hospital.

Model Accuracy Precision Sensitivity Specificity AUC​

CASPRI score 0.798 0.525 0.179 0.958 0.811

ANN-boosted CASPRI model 0.892 0.916 0.876 0.912 0.921

Figure 4.   Significance of variables in the ANN model. Graphical representation of the relative significance 
of the individual parameters in the ANN model. The numbers in each color-coded bar indicate the calculated 
indices of the total effect of the predicting factors, with a higher value representing a greater significance 
attributed to the model. ANN artificial neural network, CPC cerebral performance category, MAP mean arterial 
pressure, ROSC restoration of spontaneous circulation.
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higher AUC values indicate that the ANN-boosted models bode well for patient stratification, and can distinguish 
the groups of interest, namely favorable versus unfavorable neurological outcomes in cardiac arrest patients who 
received TTM.

The CASPRI score was initially developed using successfully resuscitated IHCA patients—a population in 
which prognostication is particularly helpful in making decisions regarding the intensity of life support and 
associated management strategy18. Chan et al. in their study, reported CASPRI score with an AUC of 0.802 for 
predicting favorable neurological outcomes18. This score has been validated using patients of East Asian descent, 
wherein the AUC for CASPRI score was 0.77–0.7919,24 and was recommended as a good tool for categorizing 
patients with varying chances of hospital survival25. Consistent with the findings of these studies, in the present 
study, we report CASPRI score with an AUC of 0.811 for predicting favorable neurological outcomes in cardiac 
arrest patients who are treated with TTM.

Though the original CASPRI score was developed exclusively for IHCA patients, individual components of the 
CASPRI score have been associated with the outcomes of TTM, including age14–16,26, initial arrest rhythm14,16,26, 
pre-arrest CPC score14, arrest location15,16, duration of resuscitation26, and comorbidities.14,15, however, to the 
best of our knowledge, this is the first study that evaluated the predictive validity of the CASPRI score for patients 
receiving TTM with concomitant application of ANN algorithms to boost its predictive performance. Our 
results demonstrate that CASPRI score is also of clinical relevance for patients who received TTM after cardiac 
arrest. We are cognizant of several other documented models for predicting neurological outcomes for patients 
receiving or who have received TTM, however, most of them exhibit inferior discrimination power or predic-
tive potential. One such model, the Acute Physiology and Chronic Health Evaluation (APACHE) II score for 
predicting favorable neurological outcome for patients with OHCA who received TTM exhibited an acceptable 
discrimination power with an AUC of 0.69727. Another model called the Mild Therapeutic Hypothermia score 
for predicting in-hospital mortality among OHCA patients treated with TTM, reported an AUC of 0.7428, while 
the risk score proposed by Martinell et al. for patients with OHCA receiving TTM yielded AUCs of 0.818–0.84216. 
These scoring systems only demonstrated moderate accuracy, thus, limiting their clinical applications for precise 
outcome prediction or patient stratification.

More so, understanding the multifactorial nature and complex interplay between baseline conditions, char-
acteristics at the time of cardiac arrest, and the outcomes after TTM, coupled with the challenges associated 
with obtaining accurate predictions using conventional scoring systems, we exploited the benefits of ANN, a 
supervised learning algorithm which through emulation of the biological neural architecture, aids identification 
of relevant predictive markers in the diagnostic task, determines nonlinear data relationships, enhances data 
interpretation, and informs the design of more efficient diagnostic and predictive models29–32. Against this back-
ground, our generated ANN-boosted predictive model exhibited high AUC with good accuracy, precision, sensi-
tivity, and specificity, highlighting the applicability of machine learning algorithms to improve the performance 
and accuracy of CASPRI-based predictive models. Our finding is particularly interesting and clinically relevant 
because literature review reveals that only few studies have explored the use of machine-learning algorithms 
to predict the prognoses of patients treated with TTM. Correspondingly, AUCs of 0.82–0.95 were reported by 
Andersson et al. who included several clinical variables, clinically accessible, and research-grade biomarkers, as 
predictors of clinical outcomes for patients with OHCA33. Johnsson et al. using a cohort of 932 OHCA patients 
from 36 medical centers, who were treated with TTM, reported an AUC of 0.891 based on 54 clinical variables, 
and an AUC of 0.852 when three variables, namely, age, time to ROSC, and first monitored rhythm, were used15. 
More so, a previous study by our team using five clinical predictors in the ANN model demonstrated a good 
predictive performance and notable discrimination power with an AUC of 0.906 for IHCA patients who received 
TTM34. Our current study demonstrates the ANN-boosted technique can accurately predict the neurological 
outcomes for cardiac arrest patients who received TTM with an AUC of 0.921.

Compared to earlier mentioned studies that focused exclusively on IHCA or OHCA patients, or used com-
plex clinical and serum biomarkers15,33,34, our current findings, taking advantage of the simplicity of the widely 
known CASPRI score, and using readily accessible patient information, highlight the all-inclusive capability of 
our ANN-boosted model to stratify patients into prognostic groups (favorable outcome vs unfavorable outcome), 
regardless of cardiac arrest location (IHCA and OHCA). The high AUC value of current study connotes enhanced 
capability and feasibility of the ANN-boosted CASPRI model with generic predictors to predict the outcome in 
cardiac arrest patients treated with TTM. The accuracy of clinical predictions can be critical in assisting clinical 
decision-making for rapid implementation of post-resuscitation therapies. Based on the sensitivity analysis of 
our ANN model, we also ranked the predictive variables according to their prognostic relevance in patients with 
cardiac attack who were treated with TTM. Thus, we proffer an ANN-based predictive model with improved 
predictive performance, that is relatively superior to other conventional statistical approaches or preexisting 
predictive scoring systems. This ANN-based model is clinically feasible and might further provide the informa-
tion on the selection of patients who would potentially benefit from TTM treatments.

As with studies of this nature, the present study has some limitations. First, this is a retrospective observational 
study comprising a relatively small sample of patients who received TTM after successful resuscitation from a 
cardiac arrest. The limited sample size may restrict the generalizability of current model to a broader population 
with variable characteristics and prevent complete exclusion of the possibility of model overfitting. Therefore, 
a large multicenter multi-ethnic cohort with a wide range of clinical and molecular characteristics is required 
to represent the disease population and validate our results. Second, there was a lack of randomization into 
TTM or non-TTM groups in current study. The restriction of enrollment to those who received TTM limits the 
application and generalizability of the current model. Third, the dataset used in the current study did not include 
the information on interventions in place at the time of cardiac arrest, such as mechanical ventilation, thus, the 
generated models consisting of 10 predictor variables does not completely represent the CASPRI score that 
comprised 11 variables. Fourth, previous studies have demonstrated that the time to cooling initiation, time to 
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target temperature, and different cooling methods are associated with neurological outcomes34–38. Our proposed 
CASPRI score-derived ANN-based model, incorporating patients’ clinical characteristics, did not contain data 
from the resuscitation attempt period, or about the different cooling methods. While this may be considered a 
limitation to the generalizability of the current neurological outcome predictive model, such consideration must 
be rightly contextualized in the conclusion of Aitor Uribarri et al.35, that “although the speed of cooling initiation 
and the time to reach target temperature may play a role, its influence on prognosis seems to be less important”. 
Lastly, there is currently no published data on the validity and reliability of retrospectively determined pre-arrest 
CPC scores. Further study is required to evaluate pre-arrest CPC measurement characteristics and help interpret 
the potential limitations or biases of assessments of neurologic status before cardiac arrest.

Conclusions
Our study further validates the CASPRI score as a prognosticator of functional neurological outcomes for patients 
who receive TTM after cardiac arrest. The predictive accuracy was significantly improved after applying ANN 
algorithm. The generated ANN-boosted, CASPRI-based model exhibits good outcome prediction performance. 
Results documented herein are potentially applicable in clinical settings to facilitate outcome prediction and 
decision-making to formulate individualized post-resuscitation therapeutic plans.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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