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Abstract: The objective of this review is to give an overview of the synthetic methods to prepare
different indolo[3,2-b]carbazoles and similar systems with a potential use in electro-optical devices
such as OLEDs (organic light emitting diode), OPVs (organic photovoltaic) and OFETs (organic field
effect transistor). Some further modifications to the core units and their implications for specific
applications are also discussed.
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1. Introduction

Polycyclic compounds containing two pyrrole rings have been widely studied because they
possess many interesting properties. One of them is the good charge transfer properties these type of
products possess [1,2], a second one is the feasibility to tune the electronic levels of these compounds
for different applications. This causes these compounds to be excellent candidates for applications
such as OPVs (organic photovoltaics) [3,4], DSSCs (dye-sensitized solar cell) [5], OLEDs (organic light
emitting diodes) [6,7], and OFETs (organic field effect transistor, including thin film transistors) [8–10].
Advantages of organic materials for these applications are potentially low cost [11], lightweight
and flexibility.

The main focus of this review will be the indolo[3,2-b]carbazoles, but also smaller benzodipyrrole
systems like pyrrolo[2,3-f ]indoles and pyrrolo[3,2-b]carbazoles (Figure 1), larger systems, and
heterocyclic analogs of indolo[3,2-b]carbazole will be discussed.
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for different applications. This causes these compounds to be excellent candidates for applications 
such as OPVs (organic photovoltaics) [3,4], DSSCs (dye-sensitized solar cell) [5], OLEDs (organic light 
emitting diodes) [6,7], and OFETs (organic field effect transistor, including thin film transistors) [8–10]. 
Advantages of organic materials for these applications are potentially low cost [11], lightweight and 
flexibility. 

The main focus of this review will be the indolo[3,2-b]carbazoles, but also smaller benzodipyrrole 
systems like pyrrolo[2,3-f]indoles and pyrrolo[3,2-b]carbazoles (Figure 1), larger systems, and 
heterocyclic analogs of indolo[3,2-b]carbazole will be discussed.  

 
Figure 1. Structure of indolo[3,2-b]carbazole, pyrrolo[2,3-f]indole and pyrrolo[3,2-b]carbazole. 

The smaller systems can be considered as indolo[3,2-b]carbazoles with one or two of the outer 
benzo-rings missing. The larger systems have one or more extra rings compared to indolo[3,2-b] 
carbazole. We will only focus on the linear indolo[3,2-b]carbazole isomer, and its smaller and larger 
analogs in this review due to the more interesting spectroscopic properties [12]. 
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Figure 1. Structure of indolo[3,2-b]carbazole, pyrrolo[2,3-f ]indole and pyrrolo[3,2-b]carbazole.

The smaller systems can be considered as indolo[3,2-b]carbazoles with one or two of the
outer benzo-rings missing. The larger systems have one or more extra rings compared to
indolo[3,2-b]carbazole. We will only focus on the linear indolo[3,2-b]carbazole isomer, and its smaller
and larger analogs in this review due to the more interesting spectroscopic properties [12].
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In this review, we will discuss the synthesis of the parent indolo[3,2-b]carbazole scaffold and
further functionalization and polymerization of this compound for applications such as OPVs, OLEDs
and OFETs. However, the focus of the review is synthetic and we will not go in the details of
the applications.

Another interesting application is the use of indolo[3,2-b]carbazole as anion sensor in aqueous
environment [13] and the biological activity of indolo[3,2-b]carbazole [14–16]. In Figure 2, some
examples of indolo[3,2-b]carbazoles tested in the above-mentioned applications are given.
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2. Indolo[3,2-b]carbazoles: Synthesis 

2.1. Oxidative and Transition Metal Catalyzed Synthesis 

The first synthesis of indolo[3,2-b]carbazole was reported by Grotta et al. They used  
N,N′-diphenyl-p-phenylenediamine 1 and platinum to perform a cyclodehydrogenation to obtain 
unsubstituted indolo[3,2-b]carbazole 2 in 10% yield (Scheme 1) [17]. Lamm et al. performed the same 
reaction on the dimethylated precursor, which was closed photochemical to indolo[3,2-b]carbazole 
in 10% yield. The electrochemical properties of this material were investigated [18,19]. Chakrabarty 
et al. used a similar method, but they started from 3-aminocarbazole to perform one photochemical 
cyclization to obtain indolo[3,2-b]carbazole [20]. 

Bergman et al. used palladium acetate as an oxidizing agent to perform a similar ring closure to 
obtain indolo[3,2-b]carbazole 4 in much higher yield (83%) starting from disubstituted N,N′-diphenyl- 
p-phenylenediamine 3. The ester groups on indolo[3,2-b]carbazole 4 were further converted to  
di-aldehyde 5 in very good yield (Scheme 1) [21]. 
  

 
R
N

N
R

S

Oct

2

NS
N

S

Oct

2 n

OPV

OFET

N

N

OLED

N

N

N

N

N

N

F3C

CF3

HN

NH

OH

OH

HO

HO
Anion sensor

Oct

Oct

Oct

Oct

Oct

Oct

Figure 2. Some examples of indolo[3,2-b]carbazole and their applications.

2. Indolo[3,2-b]carbazoles: Synthesis

2.1. Oxidative and Transition Metal Catalyzed Synthesis

The first synthesis of indolo[3,2-b]carbazole was reported by Grotta et al. They used
N,N1-diphenyl-p-phenylenediamine 1 and platinum to perform a cyclodehydrogenation to obtain
unsubstituted indolo[3,2-b]carbazole 2 in 10% yield (Scheme 1) [17]. Lamm et al. performed the same
reaction on the dimethylated precursor, which was closed photochemical to indolo[3,2-b]carbazole in
10% yield. The electrochemical properties of this material were investigated [18,19]. Chakrabarty et al.
used a similar method, but they started from 3-aminocarbazole to perform one photochemical
cyclization to obtain indolo[3,2-b]carbazole [20].
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Scheme 1. Cyclodehydrogenation of N,N′-diphenyl-p-phenylenediamine. 

Nakano et al. started with 1,4-diiodo-2,5-methoxy-benzene 6 to perform a double Suzuki coupling 
with 2-chlorophenylboronic acid 7. The obtained product was demethylated and converted to the 
nonaflate ester 8 in two steps. This compound underwent two double Buchwald–Hartwig aminations 
with aniline to ultimately give the indolo[3,2-b]carbazole 9. It has also been proven possible to 
synthesize asymmetrical indolo[3,2-b]carbazoles by performing the Suzuki couplings in a stepwise 
manner (Scheme 2) [22]. 

 
Scheme 2. Pd-catalyzed quadruple N-arylation. 

Chang et al. developed a general oxidative method starting from N-substituted amidobiphenyls 
to prepare carbazoles. In order to obtain a high yield, electron withdrawing groups such as acetyl or 
phenylsulfonyl should be placed on the amines. Alkyl substituted analogs seem to be disfavorable 
for the reaction. 

PhI(OAc)2 was shown to be the stoichiometric oxidant with the best results for the carbazole 
synthesis. Copper triflate was used as a catalyst and this improved the yield of the reaction going from 
75% up to 93%. The optimized reaction conditions (for carbazole) were used on 2,2″-bis(sulfonamide)-
p-terphenyl 10 to afford indolo[3,2-b]carbazole 11 in 40% yield after a double cyclization (Scheme 3) [23]. 
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Scheme 1. Cyclodehydrogenation of N,N1-diphenyl-p-phenylenediamine.

Bergman et al. used palladium acetate as an oxidizing agent to perform a similar ring
closure to obtain indolo[3,2-b]carbazole 4 in much higher yield (83%) starting from disubstituted
N,N1-diphenyl-p-phenylenediamine 3. The ester groups on indolo[3,2-b]carbazole 4 were further
converted to di-aldehyde 5 in very good yield (Scheme 1) [21].

Nakano et al. started with 1,4-diiodo-2,5-methoxy-benzene 6 to perform a double Suzuki coupling
with 2-chlorophenylboronic acid 7. The obtained product was demethylated and converted to the
nonaflate ester 8 in two steps. This compound underwent two double Buchwald–Hartwig aminations
with aniline to ultimately give the indolo[3,2-b]carbazole 9. It has also been proven possible to
synthesize asymmetrical indolo[3,2-b]carbazoles by performing the Suzuki couplings in a stepwise
manner (Scheme 2) [22].
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Scheme 2. Pd-catalyzed quadruple N-arylation.

Chang et al. developed a general oxidative method starting from N-substituted amidobiphenyls
to prepare carbazoles. In order to obtain a high yield, electron withdrawing groups such as acetyl or
phenylsulfonyl should be placed on the amines. Alkyl substituted analogs seem to be disfavorable for
the reaction.

PhI(OAc)2 was shown to be the stoichiometric oxidant with the best results for the carbazole
synthesis. Copper triflate was used as a catalyst and this improved the yield of the reaction
going from 75% up to 93%. The optimized reaction conditions (for carbazole) were used on
2,2”-bis(sulfonamide)-p-terphenyl 10 to afford indolo[3,2-b]carbazole 11 in 40% yield after a double
cyclization (Scheme 3) [23].
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2.2. Synthesis Starting from Indoles

Ishii et al. investigated the oligomerization of indole in acidic conditions. One of the compounds
the authors found in the mixture obtained by combining indole 12 with p-toluenesulfonic acid in
Dowtherm A (mixture of biphenyl (26.5%) and diphenyl ether (73.5%)) was indolo[3,2-b]carbazole
13, but only 6% yield was obtained under these conditions (Scheme 4) [24]. The generality of this
method was not investigated. Korolev et al. treated 3-formylindole with acid and they detected several
indolocarbazoles [25].
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Cheng et al. started their synthesis from N-benzenesulfonylindole-2-carbaldehyde 14, which
was subjected to a Horner–Wadsworth–Emmons reaction to obtain the corresponding cinnamate
ester 15. This compound was then reacted with an excess of methylmagnesium iodide to obtain
the tertiairy alcohol 16. The protecting benzenesulfonyl group was removed and then the obtained
compound 17 was treated with a catalytic amount of acid, which generated a stabilized cation that
dimerized head-to-tail in acidic conditions. The resulting tetrahydro compound (structure not shown)
was further oxidized with air oxygen to obtain the indolo[3,2-b]carbazole 18 (Scheme 5) [26].
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Katritzky et al. prepared indolo[3,2-b]carbazoles starting from 2-[(benzotriazol-1-yl)methyl]indole 19,
which was lithiated twice to form intermediate 20 and then C,N-dialkylated with 1-bromo-3-chloro-
propane. The resulting tricyclic compound 21 was then converted using ZnBr2 as a catalyst into a
cationic intermediate which dimerizes. The intermediate tetrahydroindolocarbazole (not shown)
was oxidized with ambient oxygen to obtain the doubly fused indolo[3,2-b]carbazole 22 in 50% yield
(Scheme 6) [27]. This synthesis is based on earlier work by Katritzky et al. in which benzotriazole
was also used as a leaving group to perform a coupling reaction between indole and heteroaromatic
structures. The overall yield of these reactions is however lower (22% starting from the corresponding
benzotriazole compound) [28].Molecules 2016, 21, 785 5 of 35 
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Scheme 6. Katritzky indolocarbazole synthesis.

Bergman et al. prepared 6-formyl-indolo[3,2-b]carbazole 25 starting from 2,31-diindolylmethane 23,
which was prepared in several steps. This compound was then condensed with dichloroacetylchloride
in THF using pyridine as a base (84%) to form acylated compound 24. Acid catalyzed
ring closure and hydrolysis of the dichloromethyl function at the meso position afforded the
6-formyl-indolo[3,2-b]carbazole 25 (80%) (Scheme 7) [29].
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Ivonin and coworkers used indole and phenylglyoxal to prepare 2-hydroxy-2-indol-3-yl-
acetophenone 26, which was then heated up to 200 ˝C. When the non-alkylated indole is used,
only 10% of the dibenzoylated indolo[3,2-b]carbazole 27 is obtained. By using N-methylated indole for
this reaction, the yield is increased up to 91% (Scheme 8) [30].
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Scheme 8. Thermal synthesis of indolo[3,2-b]carbazole from indole-3-carbinols.

Dehaen et al. developed a strategy to prepare indolo[3,2-b]carbazoles starting from
3,31-diindolylmethane 29. This diindolylmethane was obtained in situ by Bronsted- or Lewis
acid-catalyzed condensation of indole 12 and an aliphatic aldehyde 28. The weak Lewis acid iodine
was used in this case. In the second step, an orthoester and a strong Bronsted acid have been used to
perform the ring closure (20%–50%). Previous to the ring closure, the 3,31-connected diindolylmethane
rearranged to a 2,31-connected isomer to ultimately give indolo[3,2-b]carbazole 30 (Scheme 9) [31].
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Scheme 9. Condensation of indole with aldehydes.

Another related method is the direct condensation of indole 12 with benzaldehyde 31 in the
presence of hydrogen iodide to obtain 6,12-diphenyl-5,6,11,12-tetrahydroindolo[3,2-b]carbazole 32 in
excellent yield in a single step. This compound then can further be functionalized and converted to
the fully aromatic indolo[3,2-b]carbazole 33 (Scheme 9) [32].

Bhuyan et al. started their synthesis from isolated 3,31-diindolylmethanes 29. The starting material
was dimerized with iodine as a catalyst to achieve a symmetrical indolo[3,2-b]carbazole 34 in 50%–85%
yield after 35 min. One equivalent of indole was left unreacted after elimination from the starting
material. The final compound is symmetrical because the use of orthoformates is not required. The
reaction however does not work with aliphatic and strong electron withdrawing aromatic R groups
(Scheme 10) [33]. Another method by Bhuyan et al. is the three component reaction of indole with
an aldehyde and N,N-dimethylbarbituric acid, which affords a 3-alkylindole that can dimerize to a
symmetrical indolo[3,2-b]carbazole [34].
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Scheme 10. Dimerization of 3,31-bisindolylmethanes.

Mohanakrishnan et al. developed a method where 2-methyl-indole-3-carboxaldehyde 35 has
been used as a starting material. The aldehyde group was condensed with diethyl malonate and the
2-methyl group was brominated to obtain 36. This biselectrophilic compound can then be condensed
with various electon rich (hetero)aromatic systems under the influence of a Lewis acid. N-alkyl-indole 37
has thus been used to obtain indolo[3,2-b]carbazole 38 in 55% yield after elimination of diethyl
malonate [35].

Later, the aldehyde was converted to an acetal as an alternative to the condensation with
diethylmalonate. Again, the methyl group was brominated. The obtained bis-electrophile 39 can be
condensed with various aryl- and heteroaryl rings to get a polycyclic system. When an N-alkyl-indole 37
was used, in combination with ZnBr2 as a Lewis acid catalyst, indolo[3,2-b]carbazole 38 was formed
in 67%–69% yield. The bromide leaving group can also be replaced by an acetate [36]. The yield is
however lower in this case (54%) (Scheme 11).
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Reddy et al. prepared funtionalized indoles starting from N-Boc protected 2-aminobenzaldehyde 40.
Nucleophilic attack of lithiated alkyne 41 and successive oxidation gave compound 42, which was
converted by combination with 1-lithio-2-ethoxyethyne 43, acidic deprotection and cyclization to
3-alkynylindole-2-carboxaldehyde 44. This compound was then condensed with 1-methyl-indole 45
in oxidative conditions, using copper(II)triflate, to obtain indolo[3,2-b]carbazole 46 in 60% yield
(Scheme 12) [37].



Molecules 2016, 21, 785 8 of 38

Molecules 2016, 21, 785 7 of 35 

 

Later, the aldehyde was converted to an acetal as an alternative to the condensation with 
diethylmalonate. Again, the methyl group was brominated. The obtained bis-electrophile 39 can be 
condensed with various aryl- and heteroaryl rings to get a polycyclic system. When an N-alkyl-indole 
37 was used, in combination with ZnBr2 as a Lewis acid catalyst, indolo[3,2-b]carbazole 38 was 
formed in 67%–69% yield. The bromide leaving group can also be replaced by an acetate [36]. The 
yield is however lower in this case (54%) (Scheme 11). 

 
Scheme 11. Lewis acid catalyzed condensation. 

Reddy et al. prepared funtionalized indoles starting from N-Boc protected 2-aminobenzaldehyde 
40. Nucleophilic attack of lithiated alkyne 41 and successive oxidation gave compound 42, which was 
converted by combination with 1-lithio-2-ethoxyethyne 43, acidic deprotection and cyclization to  
3-alkynylindole-2-carboxaldehyde 44. This compound was then condensed with 1-methyl-indole 45 
in oxidative conditions, using copper(II)triflate, to obtain indolo[3,2-b]carbazole 46 in 60% yield 
(Scheme 12) [37]. 

 
Scheme 12. Condensation of indole with 3-alkynyl-indole-2-carboxaldehyde. 

2.3. Fischer Indole Synthesis 

Robinson was the first to prepare the indolo[3,2-b]carbazole scaffold by performing a double 
Fischer indolization. He started from bishydrazone 47 to obtain the indolo[3,2-b]carbazole 2 in 27% 
yield, using a mixture of sulfuric acid and acetic acid (Scheme 13) [38].  

 

 

Scheme 12. Condensation of indole with 3-alkynyl-indole-2-carboxaldehyde.

2.3. Fischer Indole Synthesis

Robinson was the first to prepare the indolo[3,2-b]carbazole scaffold by performing a double
Fischer indolization. He started from bishydrazone 47 to obtain the indolo[3,2-b]carbazole 2 in 27%
yield, using a mixture of sulfuric acid and acetic acid (Scheme 13) [38].Molecules 2016, 21, 785 8 of 35 
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Bergman et al. also exploited the Fischer indole synthesis to prepare functionalized
indolo[3,2-b]carbazoles starting from 1,4-cyclohexanedione 48 and functionalized phenylhydrazines 49
(Scheme 14). The indolo[3,2-b]carbazoles 50 were prepared in 20%–50% yield, which is an improvement
compared to the other synthesis described in the same paper using functionalized arylamines and
Pd(OAc)2 (10%) [39]. See Ong et al. for extra examples [40].
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2.4. Cadogan Synthesis

Müllen et al. were the first to prepare indolo[3,2-b]carbazole via a Cadogan ring closure.
First, they prepared terphenyl compound 53 by performing a double Suzuki coupling on
1,4-dibromo-2,5-dinitrobenzene 51 and phenylboronic acid 52 in 61% yield. Then, the double Cadogan
ring closure was performed to obtain the final compound 54 (Scheme 15) [41]. For another example
see Leclerc et al. [42].
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2.5. Oxidation of Indolo[3,2-b]carbazole

5,11-Dihydro-indolo[3,2-b]carbazole 2 can be oxidized to indolo[3,2-b]carbazole 57. This
compound however is reactive towards nucleophiles and the reduction product of DDQ will do
an addition on the oxidized indolo[3,2-b]carbazole to obtain the meso substituted compound 58
(Scheme 17) [44]. By putting t-butyl groups on the structure of 57, the oxidized molecule is stable and
could be isolated and characterized by X-ray crystallography [45].

The Bergman group prepared the indolo[3,2-b]carbazole-6,12-dione 59 in fair yield by oxidizing
indolo[3,2-b]carbazole 2 at the meso-positions with CrO3 (34%) or H2O2 (30%).

The same compound 59 can be obtained by reaction of anhydride 60 with metallated indole 12,
followed by acid-catalyzed ring closure of the bisindole ketoacid 61 in a polar solvent and deprotection
of 62 (30% overall yield) (Scheme 17) [46]. Substituted derivates of 59 were prepared by Youssef et al.
by reacting substituted anilines and tetrabromo-p-benzoquinone in a three step reaction. Also similar
ring expanded systems were prepared by this method [47].
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3. Indolo[3,2-b]carbazoles: Functionalization and Polymerization

Dehaen et al. functionalized non-alkylated indolo[3,2-b]carbazole 63 using FeCl3. When using
anhydrous FeCl3, indolo[3,2-b]carbazole 63 was chlorinated at the 12 position to obtain 64. Another
objective was to form dimer 65, which was also detected in the previous reaction (<5%). When the
hydrated form, FeCl3‚H2O, was used, dimer 65 was formed in 47% yield (Scheme 18) [48].

The indolo[3,2-b]carbazoles 63 obtained by Dehaen et al. with a free meso-position can be
N-alkylated (83%) or -arylated (53%–70%) twice to obtain 66. Sulfonation only occurs one time,
at the nitrogen next to the free meso-position (60%). The free nitrogen can then be arylated in 70%
yield to form indolo[3,2-b]carbazole 67 [48].

A similar double N arylation was also performed by Hu et al. using 1-iodonaphtalene and
substituted iodobenzenes, using even more drastic conditions [49,50].

When using non-alkylated indolo[3,2-b]carbazole 63, the free meso-position has been found to
be the most reactive one for formylation (50%), bromination (96%), and diazotation (28%–42%) to
get indolo[3,2-b]carbazole 68 (Scheme 19) [31,51]. Brominated compound 68 was alkylated and then
converted to 6-(41-formylphenyl)-5,11-dimethyl-12-pentyl-indolo[3,2-b]carbazole, which was then used
by Maes et al. to prepare meso-substituted porphyrins [52].

The tetrahydroindolocarbazole 69 which was obtained when benzaldehyde and indole were
used for the condensation, has phenyl groups as substituents at both meso position. The compound
is however not yet fully aromatic. The tetrahydroindolo[3,2-b]carbazole is first alkylated twice in
50%–67% yield to the more soluble indolo[3,2-b]carbazole 70 and then brominated with an excess of
NBS, which at the same time aromatizes the middle ring, to obtain dihydroindolocarbazole 71. These
bromine atoms can be converted to aldehydes and further to alkynes (Scheme 20) [32].
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Grazulevicius et al. prepared indolo[3,2-b]carbazole polymers to be used as hole transporting
materials and as emitting layer in OLEDs. The active material was prepared by alkylation of
nitrogen and Buchwald–Hartwig amination of dibrominated indolo[3,2-b]carbazole 72 to prepare
indolo[3,2-b]carbazole 73 which then was polymerized with acid catalysts.
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Irgashev et al. developed methods to introduce formyl and acyl groups on the 2- and 8-position
of indolo[3,2-b]carbazole 76. The best results for the formylation reaction were obtained by using
the “Rieche method”, using SnCl4 and dichloromethylpentyl ether in excess. The di-formylated
compound 77 was obtained in 80% yield [58].

Diacetylation of indolo[3,2-b]carbazole 76 was performed in 67%–90% yield, using BF3‚OEt2 to
obtain indolo[3,2-b]carbazole 79 [59]. The prepared aldehydes and acetyl groups were further used
to couple indolo[3,2-b]carbazole with various electron withdrawing groups to get donor–acceptor
systems 78 and 81 (Scheme 22). Compounds 78 showed a red shift in the absorption spectrum (onset
around 470–550 nm) compared to the parent indolo[3,2-b]carbazole 76 (onset around 430–440 nm with
low absorption). The (benzo[g])quinoxalinyl substituted compounds 81, obtained after condensation
with 80, showed an onset around 500–550 nm.
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Khodorkovsky and coworkers prepared a new fused indolocarbazole donor system 83, by two
different approaches. The first is starting from 6,12-bis(2-chlorophenyl)-5,11- dihydroindolo[3,2-
b]carbazole 82, which twice undergoes an intramolecular Buchwald–Hartwig amination. The second
method begins with 5,11-bis(2-nitrophenyl)-5,11-dihydroindolo[3,2-b]carbazole 84, also obtained
through Buchwald–Hartwig amination of the parent indolo[3,2-b]carbazole. Reduction, diazotation to
85 and insertion at the meso position gives the same ring closed product 83. The yield of the compound
via this approach is however lower than for the previous method due to formation of other isomers
(Scheme 23) [60,61].
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Curiel et al. performed the condensation of indole with pyridine-2-carboxaldehyde to obtain
indolo[3,2-b]carbazole 86. This indolo[3,2-b]carbazole has then been converted into a complex
with triphenylborane to obtain products 87 and 88 (Scheme 24). The maximum absorption peak
in DCM shifted from 441 nm (no complexation), over 545 (once complexed) to 643 nm (double
complexation) [62].
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Shi et al. prepared a series of donor–acceptor systems starting from indolo[3,2-b]carbazole-2,8-
dicarbaldehyde 89. This compound was coupled with benzo[d]thiazole 90 to form 91, either directly
or using various π-spacers (Scheme 25). The compound without spacer showed an onset in the
absorption spectrum at 425 nm and a single peak at 352 nm in different solvents. For the compounds
with the spacers the onset was around 475 nm and peaks at 370–420 nm (low energy) and 300–370 nm
(high energy) [63].
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Shi et al. introduced dimesitylboron-groups at various positions of the indolo[3,2-b]carbazole 92
to obtain compounds 93 with an absorption onset around 410–420 nm (Scheme 26). These compounds
show quite high fluorescence quantum yields (up to 0.76) [64,65]. Shi et al. also prepared a combination
of the above-mentioned systems, i.e., a benzothiazole moiety at one side and a dimesitylboron group
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Ong and coworkers converted indolo[3,2-b]carbazoles to homopolymers. When they used
N-alkylated parent indolo[3,2-b]carbazole 94 to undergo oxidative FeCl3-mediated polymerization,
they obtained the “para-polymer” 95. This means the indolo[3,2-b]carbazole is polymerized at the
position para to the nitrogen atoms (2,8-positions).

They also performed a dehalogenative polymerisation on chlorinated indolo[3,2-b]carbazoles
96 and 97. The 2,8-dichloro-indolo[3,2-b]carbazole 96 gave the “para-polymer” 95; however the
polydispersity index was lower with this method (1.16–1.20 instead of 2.08–2.63 for oxidative
polymerization). The 3,9-dichloro-indolo[3,2-b]carbazole 97 on the other hand yielded the
“meta-polymer” 98.
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The absorption spectrum of the para-polymer was almost similar to the spectrum of the free
indolo[3,2-b]carbazole (absorption onset at 370 nm in THF) . The meta-polymer on the other hand
showed an onset of absorption in THF at 450 nm. This shift in absorption is ascribed to the
π-conjugation along the indolo[3,2-b]carbazole backbone (Scheme 27) [67]. Leclerc et al. prepared
polyindolo[3,2-b]carbazoles with and without bithiophene spacers [68,69] by performing palladium
catalyzed couplings.Molecules 2016, 21, 785 15 of 35 
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Tao et al. prepared some indolo[3,2-b]carbazoles 100 and 102 with substitutions at the
meso-positions, and at the 2,8-positions The former have been obtained by Suzuki coupling of
brominated indolo[3,2-b]carbazole 99 with the different boronic acids to obtain 100 (Scheme 28).
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The latter have been obtained by incorporating the substitutent in the starting aldehyde 101,
which is condensed with indole 12 to form indolo[3,2-b]carbazole 102.

The absorption spectrum of these compounds showed peaks at 288–354 nm (dichloromethane
solution) and 302–356 nm (in films). The compounds showed emission peaks (in dichloromethane)
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at 435–444 nm and at 436–450 nm (in films) [6,70]. Some other interesting similar structures of this
kind were prepared by Leclerc et al. Here the indolo[3,2-b]carbazoles were end-capped with thiophene,
benzene and styrene moieties [71]. Grazulevicius et al. expanded the scope of the reaction with various
aromatic systems [72]. Liu et al. performed a double Heck reaction on dibromoindolo[3,2-b]carbazole
to connect triphenylamine with the use of an alkene spacer [73].

Chen et al. copolymerized both 2,8-dibromo-indolo[3,2-b]carbazole 103 and 3,9-dibromoindolo[3,2-
b]carbazole 103 with 9,9-dibutyl-fluorene 104 to obtain copolymers 105 (Scheme 29) with absorption
peaks (in THF) at 357 nm (2,8-isomer) and 392 nm (3,9-isomer). Photoluminescence was at 437 nm and
457 nm respectively (in THF) [74].
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Chen et al. prepared several donor–acceptor alternating copolymers 116 starting from 2,8- and
3,9-diboronate esters 111 as the indolo[3,2-b]carbazole donorsystem. These indolo[3,2-b]carbazoles
are coupled with four different dibrominated acceptorsystems 112, 113, 114 and 115 by performing a
Suzuki coupling (Scheme 31) [78].Molecules 2016, 21, 785 17 of 35 
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Peng et al. prepared copolymers of indolo[3,2-b]carbazole 117 with pyrazino[2,3-g]quinoxaline 118
by realizing a Stille coupling with the dibrominated compounds mentioned above and
bis-(tributylstannyl)thiophene 119 (Scheme 32). The polymers 120 showed an absorption onset from
800 nm (in THF) [79].
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Grigoras et al. prepared polymers starting from brominated indolo[3,2-b]carbazoles 121 and
1,4-diethynylbenzene 122 by performing a Sonogashira coupling (Scheme 33). All polymers 123 show
an absorption onset around 470 nm (in chloroform and thin film). The peaks of the absorption spectrum
are located at 350 nm for the para- and the meso-polymer. The meta-polymer had a peak at 400 nm.
We can again conclude that polymerization is best performed at the 3,9-positions and that the spacer
used will cause a higher effective conjugation length [80].
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Dehaen et al. prepared polymers 127 by performing Sonogashira couplings on 2,8-dialkynyl-
indolo[3,2-b]carbazole 124 and halogenated acceptor systems like BODIPY 125 or DPP
(diketopyrrolo[3,4-c]pyrrole) 126 (Scheme 34). The polymer with the DPP functionality shows a
peak in the absorption spectrum at 505 nm and an onset around 600 nm. The polymer with the
BODIPY core on the other hand has a peak at 536 nm and an onset around 700 nm (all in chloroform
solution) [81]. Yagai et al. synthesized similar indolo[3,2-b]carbazoles, end-capped with a DPP
functionality connected to the indolo[3,2-b]carbazole without an alkyn spacer. These molecules
showed an onset in the absorption spectrum at 650 nm (in chloroform) [82].
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4. Smaller Organic Donor Systems

4.1. Pyrrolo[2,3-f]indole

The earliest synthesis of pyrrolo[2,3-f ]indole was reported by Kingsley and Plant by condensing
benzoin 128 with either 1,4-phenylenediamine 129 or 5-amino-indole 130 in a two-step procedure
(Scheme 35). The synthesis starting from 1,4-phenylenediamine 129 gave the desired compound 131 in
20% yield. Starting from 5-aminoindole 130, the yield was only 6%.
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The angular isomer (pyrrolo[3,2-e]indole) was also formed during the reaction, the yield
however was even lower for this compound. They showed an onset in the absorption spectrum
at lower wavelengths, which makes the linear systems (pyrrolo[2,3-f ]indole) more interesting for long
wavelength absorption [12].

Samsoniya et al. reported the synthesis of the parent pyrrolo[2,3-f ]indole 137 in 1977, starting
from 5-amino-indoline 132 which first undergoes diazo coupling, reduction and condensation
with ethylpyruvate to form intermediate 133. Fischer indolization in acidic medium affords
tetrahydropyrrolo[2,3-f ]indole 134, followed by oxidation to afford pyrrolo[2,3-f ]indole 135.
Deprotection and saponification of 135 gives compound 136, which is decarboxylated to the parent
pyrrolo[2,3-f ]indole 137 (Scheme 36) [83,84].
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diethylacetal and successive reduction of the obtained compound 139 gave pyrrolo[2,3-f ]indole 140 in
40% overall yield (Scheme 37) [85].Molecules 2016, 21, 785 20 of 35 
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Scheme 37. Berlin pyrrolo[2,3-f ]indole synthesis.

Dmitrienko et al. condensed 5-amino-indoline 141 with 3-bromo-2-butanone 142 to get the linear
substituted tetrahydropyrrolo[2,3-f ]indole 143, which is oxidized with DDQ to pyrrolo[2,3-f ]indole 144
(42% overall), whereas the angular isomer was obtained when using 5-amino-indole. The same
researchers also demonstrated that it was possible to get the unsubstituted pyrrolo[2,3-f ]indole 148 in
a multistep procedure by condensing indoline 141 with bromoacetaldehyde diethyl acetal to form 145.
This compound was ring closed to 146, oxidized to 147 and deprotected to 148 in 25% overall yield
(Scheme 38) [86].
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Chunchatprasert et al. have prepared pyrrolo[2,3-f ]indole 151 (24%) by condensing
biselectrophilic 5-acetoxy-4-acetylpyrrole 149 with 2,3-unsubstituted pyrrole 150 under the influence
of montmorillonite clay in 1,2-dichloroethane solvent (Scheme 39) [87].
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Both Field et al. and Tsuji et al. have prepared pyrrolo[2,3-f ]indoles from 2,5-dialkynyl-1,4-
phenylenediamine 152 via transition metal catalyzed reactions. Tsuji used phenyl substituted alkynes
and benzyl substituted amines to afford the pyrrolo[2,3-f ]indole 153 in 79% yield [88]. Field however
employed substituted alkynes and unprotected amine groups on the starting material to get around 20%
yield of the non-substituted pyrrolo[2,3-f ]indole 153 by using a rhodium catalyst 154 (Scheme 40) [89].
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In 2011, Miura et al. improved the method of Field by carrying out a one pot double
cyclisation-N-arylation on 155 to obtain pyrrolo[2,3-f ]indole 156 in 43% yield [90].

Sperry et al. have shown that it was possible to further improve the reaction by using a gold
catalyst 157 to realize the double cyclisation starting from free amino groups and substituted alkynes
on starting material 155 in 76% yield (Scheme 41) [91].
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Cho et al. started their synthesis from 1,4-phenylene bishydrazide 158 to perform a double
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product of this reaction (up to 60%), accompanied by the angular by-product which is not shown here
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Yoshikai et al. optimized the reaction of anilines with ketones to oxidatively form indoles via
an N-aryl imine intermediate. These optimized conditions were used to perform a double indole
formation starting from 1,4-phenylenediamine 129 and acetophenone 161. Pyrrolo[2,3-f ]indole 163 is
formed in 29% yield via intermediate 162 (Scheme 43) [93].
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Liotta et al. prepared the pyrrolo[2,3-f ]indole scaffold starting from terephthaldehyde 164. This
compound is condensed with two equivalents of ethyl-2-azidoacetate 165, after which the obtained
compound 166 is thermally closed by nitrene insertion to obtain the final pyrrolo[2,3-f ]indole 167 in
72% yield (Scheme 44) [94].
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Tokoro et al. developed a transition metal-catalyzed C-H activation to convert N,N1-(1,4-
phenylene)diacetamide 168 and an arylalkyne 169 into substituted pyrrolo[2,3-f ]indole 170 (Scheme 45).
The reaction works well with simple aryls (8%–63%) as well with electron deficient systems
(benzothiadiazole (76%), fluorenone (80%)) and electron rich systems (carbazole (64%)) [95].
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4.2. Pyrrolo[3,2-b]carbazole

Chunchatprasert et al. used the method as described earlier to prepare pyrrolo[3,2-b]carbazoles
starting from the same biselectrophilic pyrrole 149. In this case, 2,3-unsubstituted indole 12 was used
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5. Heterocyclic Analogs

Wang et al. prepared several tetracyclic indolonaphthyridines 190 starting from methyl
2-iodobenzoate 186. The first step is a Sonogashira coupling (88%–99%), followed by a saponification
of the ester to get the corresponding carboxylic acid (61%–94%). Then a Curtius rearrangement is
performed (73%–78%) and the obtained isocyanate 187 is subjected to an aza-Wittig reaction with 188,
immediately followed by thermal ring closure of the carbodiimide intermediate 189 to form the final
product 190 (Scheme 50). When a pyridine analog of 188 is used, multiple isomers are possible [101].

Donaghey et al. obtained a heterocyclic analog of indolo[3,2-b]carbazole where the
outer benzo rings are replaced by thieno rings. The reaction starts from tetrabrominated
2,21-(2,5-dibromo-1,4-phenylene)-bis-(3-bromothiophene) 191, which undergoes a quadruple
Buchwald-Hartwig amination to obtain the pentacyclic pyrroloindacenodithiophene
(thieno[21,31:4,5]pyrrolo[2,3-f ]thieno[3,2-b]indole) 192 (40%) (Scheme 51) [102]. This building
block will be used further on in the section about polymers and properties (vide intra).
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Mo et al. synthesized an indolo[3,2-b]carbazole analog in which the middle aromatic ring is
replaced by a pyrrole ring to form a pyrrolo[3,2-b:4,5-b1]diindole 197. The synthesis starts from
N-alkylated or N-arylated pyrrole 193 that is coupled with two molecules of 2-bromo-nitrobenzene
194 to form 195 in moderate yield (38%–50%). Then, a double Cadogan ring closure (48%–53%) is
performed to obtain 196, which is alkylated twice in 65%–87% yield to obtain the final compound 197
(Scheme 52) [103].
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The reaction is also possible starting from 2,4-dibromo-nitrobenzene or 2,5-dibromo-nitrobenzene 198
(38%–61%) to obtain dibrominated compounds 199. These compounds are further functionalized by
Suzuki, Stille and Yamamoto coupling. The non-functionalized compound shows an absorption onset
at 385–390 nm. The compounds with functionalization at the 2- and 9-position (X1 = Ar or CN) do not
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show different properties. The 3,8-functionalized isomer (X2 = Ar or CN) show a slight red-shift in the
absorption spectrum (30–50 nm).

6. Larger Systems

Earlier we mentioned a method to prepare indolonaphthyridines from methyl 2-iodo-benzoate
(Scheme 50) [67]. The authors started from diethyl 2,5-dihydroxyterephthalate 200 to quantitatively
convert this compound to diethyl 2,5-dialkynylterephthalate 201 in two steps, which now was used
as a substrate for a double cyclization reaction. After saponification to 202, Curtius rearrangement
to 203, aza-Wittig reaction with 204 and heating for 15 h, a heptacyclic polyheteroaromatic system
205 was obtained. The final step of the reaction however only worked with phenyl substituted
iminophosphoranes 204 and not with the pyridine analogs (Scheme 53) [101].
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Turner et al. prepared dibenzoindolo[3,2-b]carbazoles 209 in 10%–17% overall yield using a
multistep procedure involving the condensation of pyrroloindole intermediate 207 and ortho-xylylene
derivative 208. The intermediate 207 was prepared from a 1,4-disubstituted benzenebisamide 206
(Scheme 54) [104].
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Yorimitsu et al. started from dibenzothiophene, which was oxidized to sulfone 210 by using
aqueous hydrogen peroxide. In the next step, an aniline 211 is used to perform a nucleophilic aromatic
substitution to obtain the corresponding carbazole 212 in 94% yield (Scheme 55).
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Scheme 55. Dibenzoindolo[3,2-b]carbazole synthesis starting from benzodithiophenedisulfone.

On yet another substrate, benzothiophenesulfone, the authors first performed a Diels–Alder
reaction with isobenzofuran 214 to afford the expanded benzonaphthothiophene sulfone, which can
be converted to benzo[b]carbazole (not shown, 62%).

When using the bifunctional benzodithiophenedisulfone 213, and applying the same methodology,
dibenzoindolo[3,2-b]carbazole 215 can be obtained in 22%–38% overall yield (Scheme 55) [105].

Sung et al. performed a double Fischer indolization on 1,4-phenylene bishydrazide 147 and
3,4-dihydronaphthalen-1(2H)-one to obtain another isomer of dibenzoindolo[3,2-b]carbazole [106]
(not shown).

Hsu et al. prepared three heptacyclic carbazole derivatives 219, 222 and 223 by different annelation
reactions to a carbazole precursor 216. The first one contains an sp3 center between the carbazole
moieties and the two thiophene rings. The two thiophene rings 217 were linked by a Suzuki reaction
with carbazole 216, followed by Grignard addition of four aryl groups to the two ester groups to
obtain 218. Acid catalyzed ring closure of the intermediate biscarbinol gave the final heptacyclic
compound 219 (Scheme 56) [107].

For the two other analogs, the ester functionality in the thiophene starting material 220 was
replaced by a bromine atom and additionally carbazole was dibrominated after protection of the
α-positions of thiophene to get 221.

To obtain the bis(silacyclopentadiene) compound, the four bromine atoms are lithiated and the
end product 222 is formed by addition of SiCl2Oct2 (94%).

The pyrrole analog did not require protection of thiophene. The tetrabrominated product
was subjected to Buchwald–Hartwig amination to obtain the heptacyclic pyrrole analog 223 (90%)
(Scheme 56) [108].
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7. Polymerization and Applications

The pyrroloindacenodithiophenes 192 (thieno[21,31:4,5]pyrrolo[2,3-f ]thieno[3,2-b]indole) prepared
by Donaghey et al. (Scheme 51) were connected with different acceptors by Stille coupling with
the stannylated compound 224 to obtain an alternating copolymer (Scheme 57). When using
benzothiadiazole 225 or difluorbenzothiadiazole 226, absorption spectra (in chloroform) showed
peaks up to 900 and 850 nm for polymers 227 and 228, respectively.

The authors also used two different acceptors to copolymerize with their donor
systems: 1,3-dibromo-5-octylthieno[3,4-c]pyrrole-4,6-dione 229 and 3,31-dibromo-5,51-di-2-ethylhexyl
1,1’-bi(thieno[3,4-c]pyrrole)-4,4’,6,6’(5H,51H)-tetrone 230.

These polymers (231 and 232 respectively) showed less red shifted absorption (up to 750 nm) in
comparison to the two previous systems [102].

The silicon 222, carbon 219 and nitrogen 223 bridged heptacyclic systems described by Hsu
(Scheme 56) were co-polymerized with benzothiadiazole 225 or 233 (Scheme 58). An alternating
co-polymer was obtained after Stille or Suzuki coupling [107,108].

While the monomers show absorption up to 400 and 460 nm in toluene, the polymers show
absorption up to 700 nm (carbon 234 and silicon 235 bridge) and 840 nm (nitrogen 236 bridge) [108].

Tokoro et al. prepared interesting alternating co-polymers 238 with pyrrolo[2,3-f ]indole and
aryl building blocks. The one-step reaction starts from N,N1-diacetyl-p-phenylenediamine 168 and
1,4-dialkynyl-benzene 237 (Scheme 59). It was also proven that the benzene core of the di-alkynyl
could be replaced by either electron-rich as electron-poor aryls to obtain various donor–acceptor



Molecules 2016, 21, 785 30 of 38

systems. The absorption spectrum of the polymer with a benzene moiety in the backbone showed
a maximum at 365 nm (in DCM solution). When electron withdrawing systems like benzothiadiazole 239
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Abbreviations

The following abbreviations are used in this manuscript:

Ac Acetyl
Ac2O Acetic anhydride
AcOH Acetic acid
BHT 3,5-dibutyl-4-hydroxytoluene
BINAP 2,21-bis(diphenylphosphino)-1,11-binaphtyl
Bz Benzoyl
Cbz Carboxybenzyl
dba dibenzylideneacetone
DCE 1,2-dichloroethane
DCM dichloromethane
DDQ 2,3-dichloro-5,6-dicyano-1,4-benquinone
DMA Dimethylacetamide
DMF Dimethylformamide
DMFDEA Dimethylformamidediethylacetal
DMSO Dimethylsulphoxide
DPP Diketopyrrolo[3,4-c]pyrrole
DSSC Dye sensitized solar cell
EtOH Ethanol
HMPA Hexamethylphosphoramide
LDA Lithium diisopropylamide
MeOH Methanol
NBS N-bromo-succinimide
Nf Nonaflyl
NMP N-methyl-2-pyrrolidone
OFET Organic field effect transistor
OLED Organic light emitting diode
OPV Organic photovoltaic
Ph Phenyl
PPA Polyphosphoric acid
PPSE Polyphosphoric acid trimethylsilyl ester
p-TSA Para toluenesulphonic acid
t-AmOH tertiary amylalcohol
TEA Triethylamine
TFAA Trifluoroacetic anhydride
Tf Triflate
THF Tetrahydrofuran
THP Tetrahydropyran
TIPS Triisopropylsilyl
TMSCl Trimethylsilylchloride
Ts Tosyl
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