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ABSTRACT

A defining feature of the basal ganglia is their anatomical organization into multiple cortico-striatal loops. A central tenet of this architecture is the idea that local
striatal function is determined by its precise connectivity with cortex, creating a functional topography that is mirrored within cortex and striatum. Here we formally
test this idea using both human anatomical and functional imaging, specifically asking whether within striatal subregions one can predict between-voxel differences in
functional signals based on between-voxel differences in corticostriatal connectivity. We show that corticostriatal connectivity profiles predict local variation in reward
signals in bilateral caudate nucleus and putamen, expected value signals in bilateral caudate nucleus, and response effector activity in bilateral putamen. These data

reveal that, even within individual striatal regions, local variability in corticostriatal anatomical connectivity predicts functional differentiation.

1. Introduction

The basal ganglia, the central structures in reward-guided action se-
lection, exhibit a remarkably intricate architecture whereby inputs from
cortex are topographically organized into multiple cortico-striatal loops
(Alexander et al., 1986). Rather than a division into neatly segregated
pathways, axons from multiple cortical regions converge in overlapping
parts of the striatum (Averbeck et al., 2014; Haber, 2010). This places the
striatum at a crossroads of information processing thought to drive,
amongst other functions, reward-guided behaviors (Averbeck et al.,
2014; Haber and Behrens, 2014). This arrangement is somewhat at odds
with an otherwise rigid anatomical parcellation of the striatum into nu-
cleus accumbens, caudate nucleus and putamen (Voorn et al., 2004).
Here we ask whether knowing the corticostriatal inputs to each voxel of
the striatum allows us to predict functional activity within that voxel. If
we can do so even within classical subregions of the striatum — the caudate
nucleus and the putamen - then this suggests that a detailed knowledge
of structural connectivity can provide a more detailed guide to local
function than does anatomy alone.

We tested our hypothesis using a methodology first reported in a
study within the visual domain (Saygin et al., 2012). This previous study
reported an accurate prediction of functional responses to faces versus
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scenes for individual voxels in the fusiform gyrus based on structural
connectivity fingerprints of these very same voxels. Although this
approach has been extended to visual responses in other regions of cortex
(Osher et al., 2015), to the best of our knowledge it has not been applied
to higher cognitive functions or to an examination of subcortical struc-
tures. Given the great diversity of inputs into the striatum—spanning
most of cortex (Alexander et al., 1986)—its subregions are particularly
well-suited for an examination of such structure-function relationships.
Specifically, we examined the caudate nucleus and putamen during an
instrumental reinforcement learning task using functional and diffusion-
weighted magnetic resonance imaging (MRI). To validate our approach
we examined motor effector activity related to hand and foot actions. We
then used this method to predict individual intra-region variability in the
expression of reward and expected value signals from individual corti-
costriatal connectivity profiles, finding a dependence of function on each
voxel's distinct pattern of cortical connectivity.

2. Materials and methods
2.1. Participants

Twenty-four adults participated in the experiment (14 female, 10
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male; age range 18-36 years; mean + SD = 22.5 + 4.5 years). All par-
ticipants were right hand dominant, had no history of psychiatric or
neurological disorder, were not taking any medication known to affect
neural or cognitive function, had normal or corrected-to-normal vision
and passed the safety requirements to enter a MRI scanner. All subjects
provided written informed consent prior to the start of the experiment,
which was approved by the Research Ethics Committee at University
College London (UK). One further subject was excluded due to excessive
movement (images could not be realigned successfully).

2.2. Overview of the approach

We tested the hypothesis that corticostriatal input into the caudate
nucleus and putamen reliably predicts functional responses during
instrumental learning. To do so we estimated, for each voxel in bilateral
caudate nucleus and putamen, functional activation to motor responses,
reward and expected value activations during a 2-armed bandit task.
These same voxels were also characterized in terms of their structural
connectivity to 148 cortical regions using diffusion imaging and proba-
bilistic tractography. We could then predict functional activation from
corticostriatal structural connectivity using a leave-one-out cross-vali-
dation (LOOCV) procedure (Saygin et al., 2012). All these analyses were
performed in subject space, with only summary statistics for each
participant taken to the group level. All reported p-values are two-tailed.

2.3. Task

The task required participants track stimulus-specific action values
and this enabled us to probe how these action values are represented and
updated in neural structures during feedback. Participants had to learn
two separate two-armed bandits which were distinguished by their color

anticipation (1.25-3s)

50% trials end

green light Go cue (1.5 s)
(choice lights up)

feedback (1's)

| IT(0.75-1.55)

next trial

_ foot
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0-155 728 0 128
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Fig. 1. Reinforcement learning task involving right hand and right foot responses. (a)
Task design. On half the trials (‘abort’ trials) the slot machine disappeared before the Go
signal and the next trial started; on the other half (‘response’ trials) lights on the slot
machine would turn green, serving as a Go signal; participants responded by pressing
force-sensitive buttons with either their right hand or foot. Feedback was then presented
consisting of either “+ £2.00” in green, or “+ £0.00” in red. (b) The probability of
obtaining the reward varied over time per response, and per slot machine. This meant
participants were required to track 4 random walks that varied between p (reward) of 0.15
and 0.85.
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(red or blue; see Fig. 1). On each trial, one of these two slot machines was
presented to the participant, and on half the trials a response was
required using either right index finger or right ball of the foot on a force-
sensitive sensor. Binomial feedback was then presented which indicated
a reward or no-reward. The probability of reward given a bandit s and
action a, p(r|s;,a;) where i € {1,2} and j € {1,2}, changed slowly over
trials, forcing participants to continue to explore throughout the exper-
iment so as to maximise the total reward obtained.

Participants came to the laboratory for a practice session before the
scanning session. The interval between practice and scanning session
ranged between 1 and 20 days (mean + SD = 7 + 4.4 days). At the
practice session, participants performed a full set of 512 trials to
accustom themselves with the task and force buttons. A different set of
reward probabilities was used each day but otherwise the parameters of
the experiment were identical. In the experiment proper, participants
performed 512 trials (approximately 42 min) consisting of 128 red-abort,
red-response, blue-abort, and blue-response trials each (Fig. 1). The order
of these four trial types was randomly determined and only constrained
such that no trial type occurred for more than 3 trials in a row.

2.3.1. Reward probabilities
The p.(r|s;, a;), where t indicates trial number, was generated by a
Gaussian random walk for each action a and stimulus s as follows:

P (Plsiva) = pi(rlsi ;) + N(0,0.01)

where for the first trial the probability was randomly drawn from
U(0.15,0.85). The walks were not generated anew for each partic-
ipant—rather, one set of two pairs was used for each participant's prac-
tice, and one set was used for each participant's scanning session.
However, the assignment of these two pairs to the red and blue slot
machine was randomized, and the subsequent assignment of random
walk to the two available actions was also randomized. This meant that
volatility and availability of reward were matched between participants.
The walks were constrained in their upper (0.85) and lower (0.15) values
and in their mean value (between 0.4 and 0.6). The highest correlation
between any two of the four walks was 0.38, forcing participants to learn
about the value of each option through trial-and-error rather than
inferring the value of one option based on changes in the other.

2.3.2. Trial design

Examining value representations in the BOLD signal at both choice
and outcome phase is challenging due to the sluggishness of the BOLD
response. We considered two trial designs to alleviate this issue: a slow
design where choice and feedback events are separated by at least 8 s
(Behrens et al., 2008), and a fast design in which half the trials are
cancelled at any point between choice and feedback phase (Guitart-
Masip et al., 2012). Pilot data with both designs (data not shown) sug-
gested participants were more accurate at learning reward probabilities
in the fast design, possibly due to task disengagement when participants
are faced with long pauses. Also, a slow design might lead to non-striatal
learning mechanisms dominating behavior, whereas we were specifically
interested in such striatal mechanisms (Foerde et al., 2012). We thus
opted for the fast design. In this paper we do not report correlates of
action values during choice as we were unable to reliably observe its
neural correlates in the striatal regions; we only examine motor re-
sponses, expected value at outcome and reward responses.

2.4. Reinforcement learning models

We used temporal difference (TD) reinforcement learning models to
model participants’ behavior and estimate quantities that might be rep-
resented in the BOLD signal in the striatum, most notably rewards and
action values. Each slot machine i defines a state s; where two actions g;
are available. The reward r on trial t can be either 0 or 1. The value of
action j in state i is updated after feedback by:
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O (1 +1) = Oy, (1) + a*0(2)

where o = O for all states and actions that did not occur on trial t-1. As the
reward probabilities change independently for each state and action, the
participant only learns about the chosen action in the current state, rather
than inferring changes in value for non-chosen state-action pairs in a
‘model-based’ way (except for value decay—see below). d(t) represents
the RPE at trial t, defined as

a(t) = r(t) — Oy (1)

The probability of each action given these cached values d(t) are then
given by the softmax equation with inverse temperature f:

plas) = &0 570 &

We used an expectation maximization (EM) approach to simulta-
neously fit parameters at the level of participants and population (Gui-
tart-Masip et al., 2012).

In addition to this basic model with a learning rate and inverse
temperature we examined a number of more complex models that might
provide a better explanation for the data. For each of these models we
estimated the negative log-likelihood and Bayesian Information Criterion
(BIC) to select the model that optimally described the participant's
behavior on this task. The additional parameters are described in Table 1.
All parameter combinations were tested.

2.5. Magnetic resonance imaging

All imaging was performed at 3 T. For each participant we acquired
1.5 mm isotropic restricted volume T2*-weighted echo-planar imaging
(EPI) data during task performance, 0.8 mm isotropic whole-brain multi-
parameter maps (MPMs) consisting of a T1-, proton density- and
magnetization transfer-weighted (MT) volume, 1.5 mm isotropic whole-
brain diffusion weighted images, and BO field maps to correct for field
inhomogeneity for the EPI data. The MPMs were acquired to allow for
manual segmentation of subcortical structures, though the work pre-
sented here makes no use of these manually segmented regions (more
details below). The parameters of these scans are detailed in Table 2. We
also acquired a single whole-brain volume using otherwise identical
settings for the EPI sequence. Cardiac rate was recorded using an MRI-
compatible pulse oximeter (Model 8600 FO, Nonin Medical), and respi-
ration was monitored using a pneumatic belt positioned around the
abdomen. We processed these cardiorespiratory data as described in the
literature (Hutton et al., 2011) and included them as regressors of no
interest in the first-level general linear models (see below).

2.5.1. Multi-parameter maps processing

Fully quantitative maps of the MR parameters MT, R1, PD and R2*
were extracted from the acquired data as described previously (Helms
et al., 2008; Weiskopf et al., 2013). We extracted a brain mask in struc-
tural space from the Tlw image using BET implemented in FSL

Table 1
Additional parameters for the reinforcement learning model.

Parameter name Description

Negative
learning rate
Effector bias

Separate learning rate for negative and positive feedback

A fixed bias towards hand or foot responses

Lapse rate A value that constrains the softmax between ¢ and 1-¢ rather than
0 and 1 to account for occasional lapses

Decay Implements the notion that unsampled actions do not maintain their
value but decay back to 0.5. The parameter describes the time
constant of exponential decay.

Perseverance A tendency to stick with the same action for a given stimulus,

irrespective of value.
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Table 2
MRI acquisition parameters.
Sequence Parameters
BO field map Double echo FLASH sequence (matrix size = 64 x 64; 64 slices;

spatial resolution = 3 x 3 x 3 mm°, gap = 1 mm; short

TE = 10 ms; long TE = 12.46 ms; TR = 1020 ms) to correct EPI
images for distortion in the BO field (Weiskopf et al., 2006).
Restricted volume, 44 slices (40 in slab with 10%
oversampling), FoV read 192 mm, transverse slices tilted 20°,
anterior-posterior phase encoding, 12% phase oversampling,
10% slice oversampling, 40 slices per slab, voxel size 1.5 mm
isotropic, TR = 78 ms (volume TR = 3432 ms, i.e. 44 slices *
78 ms), TE = 37.3, GRAPPA2 along phase encoding (full set of
external reference scans with 144 PE ref. lines, 44 3D ref.
lines), 180-185 vol per block depending on duration of block
over 4-10 min blocks in total (Lutti et al., 2012).

Proton density (PD)-weighted, T1-weighted, and
magnetization transfer (MT)-weighted images at 0.8 mm
isotropic resolution for each participant using multi-echo 3D
FLASH, TR = 25 ms, TE = [2.34, 4.64, 6.94, 9.24, 11.54,13.84,
16.14, 18.44] ms, FOV read 256 mm, FOV phase 87.5%, slice
partial Fourier 6/8, GRAPPA acceleration 2 (Dick et al., 2012;
Helms et al., 2008). Flip angle for PD and MT was 6°, for T1
21°. A Bl-map was acquired using a 3D SE/STE EPI method to
correct for the effects of inhomogeneous radio-frequency
excitation on the quantitative maps (Lutti et al., 2012). Total
time of acquisition was ~40 min.

Whole-brain 1.5 x 1.5 x 1.5 mm® resolution diffusion-
weighted images with settings similar to the Human
Connectome Project (Sotiropoulos et al., 2013; Van Essen et al.,
2012). Three shells (b = 900/1800/2700) for both right-left
and left-right phase-encoding directions. Each of these 6 scans
contained 10 images with no diffusion weighting (b = 0) and
100 directions spread out over a full sphere. We used
multiband 3 but no further acceleration. Acquisition time was
10 min 20 s for each of the 6 scans. No phase oversampling, 75
transverse slices, FoV read 192 mm, FoV phase 100%, slice
thickness 1.5 mm with 0 distance between slices, TR 5440, TE
130 ms. We additionally acquired two b0 images with identical
settings, but phase encoding along anterior-posterior and along
posterior-anterior respectively. These additional phase
encoding directions were included in estimating distortions
along the phase encoding direction.

Functional, EPI

Multi-parameter
maps

Diffusion-weighted,
whole-brain

(Smith, 2002).

2.5.2. Semi-automatic segmentation of basal ganglia substructures

Whereas the striatum can be reasonably defined using automated
algorithms, other parts of the basal ganglia require manual segmentation.
These regions comprised the globus pallidus pars interna (GPi) and
externa (GPe), subthalamic nucleus (STN) and substantia nigra and
ventral tegmental area (SN/VTA). We used FSL FIRST to automatically
segment the bilateral caudate and putamen (Patenaude et al., 2011), and
ITK-SNAP to correct the automatic segmentation as well as segment the
remaining regions (Yushkevich et al., 2006). Note that segmentation was
performed bilaterally for each participant as it is unclear to what extent
basal ganglia function is lateralized (Scholz et al., 2000). The current
paper only used the putamen and caudate nucleus maps, excluding the
nucleus accumbens as probabilistic tractography from this region of in-
terest was found to be challenging. The main reason is that the nucleus
accumbens is relatively small and does not have the same spatial extent
as the other two striatal regions. This provides fewer opportunities for
true variance in structural connectivity patterns. All segmented regions
are available as probability maps in MNI space at 0.8 mm isotropic res-
olution (http://neurovault.org/collections/1380/).

2.5.3. Automatic segmentation of cortex using FreeSurfer

To obtain cortical targets for tractography we used FreeSurfer's
RECON-ALL pipeline to generate 148 cortical labels in structural
(participant) space following the Destrieux atlas (Destrieux et al., 2010;
Fischl, 2012). These were transformed into volumetric ROIs. Two par-
ticipants lacked 1 and 3 labels, respectively, so these were added as
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empty ROIs for tractography (see below). The FreeSurfer segmentation
pipeline has been described in detail elsewhere (Fischl et al., 2004).

2.5.4. FMRI preprocessing

We analyzed the fMRI data in SPM8 (Wellcome Trust Centre for
Neuroimaging, UCL, London; www.fil.ion.ucl.ac.uk/spm). The images
were corrected for signal bias at low spatial frequencies (due to the 32
channel radio-frequency receive coil), realigned to the first functional
image and distortion corrected using the BO field maps. We did not apply
slice time correction as we used a 3D EPI sequence. The first functional
image was coregistered to the MT image for its superior subcortical
performance in white- and grey-matter segmentation compared to T1-
weighted images (Helms et al., 2009) and these transformation param-
eters were then applied to all restricted-volume functional images to
bring them into structural space. Notably, SPM's coregistration of the
restricted-volume EPI to the MT image worked well, obviating the need
for an intermediate step involving the whole-brain EPI images. For
additional analyses of group-level responses we applied normalization
parameters to the functional images to bring them into MNI space and
applied a 6 mm full-width-half-maximum (FWHM) smoothing kernel. All
participant-level statistics were performed on voxels within an explicit
mask (rather than the more commonly used implicit mask) to prevent
brain voxels with low signal from being excluded. The explicit mask for
structural (i.e. subject) space was constructed by restricting the whole-
brain mask (see multi-parameter maps) to the volume of the EPI
sequence using SPM's IMCALC.

2.5.5. FMRI general linear model

The preprocessed images were analyzed in an event-related design
using a general linear model (GLM). The first model contained 8
explanatory variables of interest (EVs) defined at the onset of the visual
stimulus (2 identical EVs), the ‘go’ cue when choosing hand (1 EV) or foot
(1 EV), the onset of feedback after choosing hand (2 identical EVs), and
the onset of feedback after choosing foot (2 identical EVs). A number of
identical EVs were entered to be able to add multiple, non-
orthogonalized parametric modulators to specific events. These para-
metric modulators were the Q-value for the hand and foot at visual
stimulus; the Q-value for the hand and foot on the respective response
EVs, and whether reward was received for the respective feedback EVs.

We added the following nuisance regressors: 1 regressor for trials
where no response was recorded in the 1500 ms response window, 1
regressor when the trial was aborted, 6 movement regressors produced
by the realignment procedure, 14 physiological regressors for cardiac
and respiratory variables (Hutton et al., 2011), and 3 block regressors
covering run 1 to 3, respectively. The 4th block was subsumed in the
constant of the design matrix. The GLM was estimated separately for each
participant. All EVs (but not physiological regressors) were convolved
with a canonical hemodynamic response function (Friston et al., 1995).

2.5.6. Diffusion weighted imaging preprocessing

The diffusion data was preprocessed using FSL (Smith et al., 2004).
We estimated the distortions along phase-encoding directions by
entering 8 b0 images into TOPUP (Andersson et al., 2003). The field
coefficients were then supplied to EDDY, which corrects for the phase-
encoding distortion, movement, and eddy currents in all 660 vol (3
shells * 2 phase-encoding directions * 110 images each). The corrected
b0 volume from TOPUP was entered into BET to obtain a brain mask. We
used DTIFIT to estimate fractional anisotropy (FA) maps and BEDPOSTX
to estimate up to three fibers per voxel using custom settings for multi-
shell data (Behrens et al., 2007; Jbabdi et al., 2012).

2.5.7. Probabilistic tractography

We used PROBTRACKX2 implemented in FSL to estimate connectivity
profiles for each 0.8 mm isotropic voxel in the striatum (Behrens et al.,
2003b, 2007). Each voxel was seeded with 10 k streamlines and standard
parameter settings. We then extracted connectivity profiles for voxels at
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coordinates specified by the anatomical masks. This connectivity matrix
contained one row for each voxel in the region of interest (e.g. the left
caudate nucleus), and one column for each cortical region. As such, this
connectivity matrix for a single participant for a single striatal region of
interest has dimensions of nVoxels * nTargetRegions. We did not perform
more targeted connectivity analysis based on known corticostriatal
pathways. The locations of the seed voxels used in probabilistic trac-
tography were recorded and used later to extract functional signals from
identical locations.

2.6. Regressing functional signals on connectivity profiles

In order to predict function from structure we used a linear regression
model. For each of the four separate regions (bilateral caudate nucleus
and putamen) we extracted functional signals for foot > hand, reward
and expected value contrasts at voxel locations identical to the seed co-
ordinates of the diffusion data. We then used LOOCV to predict func-
tional activation in voxels in participant n based upon the measured
relationship between structure and function in the remaining n-1 par-
ticipants (Fig. 3). All functional data were smoothed at 6 mm FWHM and
z-scored within-region before entering the regression, though leaving the
data unsmoothed did not drastically alter results in a similar study
(Saygin et al., 2012). Similarly, although we collected the dataset at high-
resolution, the connectivity profiles are inherently smooth, and some
smoothing was appropriate to account for misalignments of the diffusion-
weighted and functional images.

The design matrix for each participant contained 149 columns (1
intercept and 148 target regions) and the number of rows corresponded
to the number of voxels in the seed region. Each value in the design
matrix indicated the number of samples that reached the target region, z-
scored across striatal voxels for each target region separately. The
dependent variable was each voxel's functional response (expressed as
beta coefficient) to a contrast, also z-scored within-subject and within-
subregion. The regression coefficients for n-1 participants were aver-
aged and used to predict each voxel's functional response in participant n
based on its connectivity profile. This is subtly different from previous
applications of this technique whereby data from all voxels from n-1
participants were concatenated into a single predictor matrix (Saygin
et al., 2012). Our method for calculating the structure-function rela-
tionship weights every participant equally irrespective of number of
voxels per participant, whereas the Saygin et al. method linearly weights
participants by their number of voxels. Given similar ROI sizes across
participants, however, this does not meaningfully affect the results.

We assessed the accuracy of the connectivity model by calculating a
Pearson correlation with the observed functional signal. Note we used
correlation rather than mean absolute error, which is used in the original
paper (Saygin et al., 2012). Given z-scored predictions and observations,
these two measures will be highly correlated.

Rather than use the connectivity data, we can also predict a voxel's
functional coefficients from the group's functional coefficients (Saygin
et al., 2012). The accuracy of these predictions was also assessed using a
LOOCYV approach, whereby a functional group-average was calculated for
n-1 participants in MNI space, transformed to the nth participant's native
space and z-scored within-region to predict that participant's functional
signals. The accuracy of this prediction was again assessed through
Pearson's correlation. We did not directly compare Pearson's r between
the two predictive models as this comparison is confounded by data
quality. For example, had we ran this experiment with a better signal-to-
noise ratio in the diffusion sequence, it would be reasonable to assume
our Pearson's r would be higher for the connectivity prediction. We also
compared our results to 4-fold (rather than n-fold) cross-validation, and
observed no meaningful difference.

We also assessed the unique variance captured by the structural and
functional group-average predictions, respectively. To do so we orthog-
onalized one prediction with respect to the other, leaving only the unique
variance. For example, to obtain the accuracy of structural connectivity
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prediction not already accounted for in the functional group-average, we
regressed the predicted voxel values from the structural connectivity
prediction onto the functional group-average. This was performed using
MatLab's glmfit. The residuals are then the orthogonalized prediction,
from which all shared variance with the functional group-average has
been removed. We used this vector of residuals to correlate with the
observed activity values and calculate the Pearson correlation.

2.7. Data availability

The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.
The group functional contrast maps are available on NeuroVault (http://
neurovault.org/collections/1381/) as are the automated and manual
segmentations of basal ganglia structures (http://neurovault.org/
collections/1380/). We also provide 9 maps detailing the average
observed and predicted signal for the three contrasts under investigation,
as well as the mean absolute error (MAE) of the prediction (http://
neurovault.org/collections/1381/).

3. Results

Participants on average missed 1.4% of trials (SD: 1.0). The reaction
time for hand responses was 683 ms (SD: 37 ms) and 723 (SD: 46) for foot
responses (foot - hand, mean across subjects 40 ms, 95% CI of
difference + 27 ms, Cohen's d = 0.63). Participants received a reward on
average on 51% (SD: 0.054) of trials, where random play would yield
48% reward — most likely reflecting the high level of difficulty due to
volatile reward probabilities.

We fit a reinforcement learning model to participants’ choices based
on their past actions and rewards. We used this model to calculate ex-
pected outcome values for each trial, and entered these into a model-
based fMRI analysis along with action and reward to index how
strongly the BOLD signal in each voxel co-varied with these variables.
The Bayesian model comparison and winning model parameters are
described in Tables 3 and 4, respectively.

As expected, the average contrast values from anatomical ROIs in
each participant's native space reflected both reward and expectation
signals (Fig. 2). Activity in the striatum is known to reflect reward pre-
diction error (RPE), calculated as reward minus expectation. A region
encoding a RPE should, in terms of average BOLD response across voxels,
show a positive effect of reward and a negative effect of expectation. We
observed this pattern in both the putamen (reward: left, p = 0.0002,
right, p = 0.003; expected value at outcome: left, p = 0.01, right,
p = 0.04; uncorrected for multiple comparisons) and caudate nucleus
(reward: left, p = 0.004, right, p = 0.006; expected value at outcome: left,
p=1 x 1075 right, p=9 x 10~>; uncorrected for multiple comparisons).
We also compared the response to hand and foot actions without refer-
ence to value. No striatal region showed a significantly greater response
to one or other of these effectors. As a positive control we examined the
cerebellum as the motor cortex was outside our restricted fMRI volume.
We observed higher BOLD activity on statistical parametric maps for foot

Table 3

Model comparison results with only the five best models shown here. Each reinforcement
learning model had a single learning rate and inverse temperature parameter. Added to this
base model was perseverance, effector bias, separate learning rate for positive and negative
feedback (‘neg «’), a lapse rate, and exponential decay for unchosen options back to
Q = 0.5. The integrated Bayesian Information Criterion was estimated for 200 k samples
each from the practice and scanning session, and summed over both sessions and partici-
pants to arrive at final BICi.

Additional parameters BICi SBICi
neg a, decay 12393 0
perseverance, neg «, decay 12400 +7
lapse rate, neg a, decay 12427 +34
perseverance, lapse rate, neg a, decay 12435 +42
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Table 4
Parameter estimates from winning model for the scanning session.
Parameter 25th percentile median 75th percentile
Positive learning rate 0.54 0.61 0.72
Negative learning rate 0.20 0.32 0.38
Inverse temperature 3.12 5.01 5.87
Decay 0.36 0.55 0.73
Left Caudate [N functional response
Left Putamen N averaged across ROl (a.u.)
Right Caudate -4 -2 0 2 4
Right Putamen ' ' ! !
=
hand > foot response
 ——
*
Reward N
* —_—
=
Expected value ¥
— *
*

Fig. 2. Extracted functional coefficients from anatomically defined bilateral putamen and
caudate nucleus. None of the 4 regions showed modulation by hand versus foot motoric
responses. As observed previously, these regions showed a positive response to rewards
and a negative response to expected value at the time of outcome. These signals show
features consistent with a reward prediction error (RPE). Error bars indicate 95% CI. Stars
indicate p < 0.05 for 1-sample t-test against zero, uncorrected for multiple comparisons.

compared to hand actions in the anterior right cerebellum, and higher
activity for hand compared to foot actions just posterior to this location,
consistent with the known anatomy of the cerebellum (Buckner, 2013).

The existence of focal corticostriatal projections suggests local vari-
ation in functional activity within each of 4 ROIs from Fig. 2. If true, this
local variation might be partly explained by local differences in corti-
costriatal connectivity. We used a regression-based method first

Probabilistic tractography from
seed voxel to each of 148
cortical targets

®

a reward coefficient
from functional voxels

[ ]
o o
g = X beta +e
o [ J
[} ®
b Probabilistic tractography Predicted Observed
for n™ subject coefficients coefficients
° o
[ J [} :
X betaCV = Pearson’s r
o
[} [}
L] [ ] [ ]

Fig. 3. Overview of the leave-one-out cross-validation regression approach. (a) For each
participant we estimated regression coefficients (‘beta’) describing how functional activity
related to structural connectivity with 148 cortical targets. This was implemented for each
striatal subregion and functional contrast independently. (b) The regression coefficients
were averaged across the n-1 participants (‘betaCV’ indicating cross-validated beta) and
multiplied by the n-th subject's connectivity matrix to predict the contrast coefficient in
each voxel. The Pearson correlation between predicted and observed coefficients was
recorded and the approach repeated for each participant, yielding n correlation co-
efficients for each contrast and striatal subregion. A Pearson's r significantly greater than
zero indicates differences in functional responses between voxels are predicted from dif-
ferences in structural connectivity.
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introduced by (Saygin et al., 2012) to test such a relationship between
structural connectivity and function (Fig. 3). In addition to a prediction
based on structural connectivity, we also used the functional group-
average as a benchmark predictive model by calculating the average
group response in each voxel based on n-1 subjects, and using this as a
prediction for subject n. Consequently, this approach tests consistency,
across subjects, in the spatial distribution of functional responses irre-
spective of structural connectivity.

We observed a pattern of results that was similar between the con-
nectivity and group predictive models, and identical for left and right
hemispheres (Fig. 4; statistics in Table 5). Whereas none of the regions on
average showed significant differential activity for hand versus foot ac-
tions (Fig. 2), local variation in this signal could be predicted from con-
nectivity patterns in the putamen but not caudate nucleus (Fig. 4a).
Additionally, local reward signals could be predicted from cortical con-
nectivity in bilateral putamen as well as in caudate nucleus. In contrast,
local variation in activity related to expected value—which was signifi-
cantly represented in the average response of each of the ROIs (Fig. 2)—
was only predicted from corticostriatal connectivity in bilateral caudate
nucleus but not in the putamen. A group average of the observed and
predicted maps for each contrast, as well as the MAE of the prediction
from corticostriatal connectivity, are available online (http://neurovault.
org/collections/1381/). Overall, these patterns of results demonstrate
that a relationship between corticostriatal connectivity and striatal
function is reliable across subjects.

However, we could similarly predict functional responses in voxels
based on the functional group-average (Fig. 4b). This invites the question
as to the extent the connectivity profile captures a unique component of
function, or whether it explains the same variance in functional signals
already captured by the functional group-average. To test this, we
calculated the proportion of variance explained in the functional
response by 1) the connectivity prediction orthogonalized with respect to
the group prediction (i.e. capturing unique variance explained by con-
nectivity); 2) the group prediction orthogonalized with respect to the

a b

Left Caudate | Prediction from Prediction from
Left Putamen [ structural connectivity — group functional map

Right Caudate Pearson’s r Pearson’sr
Right Putamen -OI.2 0 012 0;4 '0|~2 0 012 Oi4
hand > foot response i *
* *
* *
Reward : %
* *
* *
Expected value " .

Fig. 4. Accuracy of predictions from the connectivity model and the functional group-
average model. (a) The structural connectivity model predicts the functional contrast
value for each voxel in an ROI from corticostriatal connectivity of that voxel. Despite none
of the 4 ROIs showing an average effect of the hand > foot response contrast, local activity
in bilateral putamen but not caudate nucleus can be predicted from structural connec-
tivity. Local variation in reward contrast values could be predicted in each of the 4 ROIs.
In contrast, local variation in expected value responses could only be predicted in bilateral
caudate nucleus but not putamen — despite each ROIs showing an average effect of ex-
pected value. (b) Instead of using corticostriatal connectivity to predict function, we also
used the functional group-average to predict activity. The performance of this model
shows a similar pattern to the structural connectivity model. Error bars indicate 95% CI.
Stars indicate p < 0.05 for 1-sample t-test against zero, uncorrected for multiple
comparisons.
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connectivity prediction (containing unique variance captured by the
functional group-average model only); 3) the connectivity and group
prediction as two predictors in a single regression (each prediction's
unique variance + shared variance). The variance in the functional
response shared between the group and connectivity prediction is then
the total variance (#3) minus the sum of unique variances from the
connectivity and group models (#1 + #2). The contributions to
explained variance of the two models as well as their shared variance are
shown in Fig. 5.

To test whether the orthogonalized predictions performed better than
chance, we report the same analysis as in Fig. 4—where we test the
Pearson correlation against zero—but now using orthogonalized pre-
dictions (Fig. 5; Table 5). The signal uniquely explained by the connec-
tivity prediction remained significantly greater than zero in each of the
regions observed originally, with the sole exception of the hand > foot
response in left putamen. Thus, even when removing any variance
explained by consistent functional activations across the group, cortico-
striatal connectivity drives unique functional responses voxel-by-voxel
within striatal regions.

4. Discussion

In this study we used a reinforcement learning task to elicit BOLD
responses in the striatum related to actions, rewards and expected value.
The aim was to examine whether local variation in these responses could
be predicted from local variation in corticostriatal connectivity. We
found that the average activity in both caudate nucleus and putamen
varied with reward and expected value, but did not differentiate between
effectors used to perform an action. Corticostriatal connectivity predicted
voxel-specific responses to reward in both putamen and caudate nucleus,
predicted expected value in caudate nucleus but not putamen, and pre-
dicted effector-specific activity in the putamen but not caudate nucleus.
These results support the widely held belief that partially distinct func-
tional zones in the striatum are, at least in part, determined by the pat-
terns of anatomical inputs they receive from cortex (Alexander et al.,
1986; Averbeck et al., 2014; Draganski et al., 2008; Haber, 2003; Haber
and Behrens, 2014).

A goal of this study was to understand how striatal functional signals
arise from cortical inputs. The notion that anatomical connectivity de-
termines function is common in neuroscience. In the striatum cell pop-
ulations with projections along the direct and indirect pathway have
distinct functional roles in movement (Cui et al., 2013; Kravitz et al.,
2010; Yttri and Dudman, 2016) and in reinforcement learning (Kravitz
et al., 2012). In humans, connectivity fingerprints have been used to
segment individual brain structures with remarkable similarity to func-
tional zones (Behrens et al., 2003a; Johansen-Berg et al., 2004). This
same technique has revealed anatomical parcellation of the striatum
(Draganski et al., 2008; Georgiou-Karistianis et al., 2011; Tziortzi et al.,
2014; Verstynen et al., 2012), but this parcellation has not been directly
linked to patterns of functional activations.

We used a recently introduced analytical method (Osher et al., 2015;
Saygin et al., 2012), comprising a cross-validation technique to assess the
predictive power that connectivity has over functional signals. We
adjusted their approach to avoid two issues of concern. Firstly, we used
the Pearson correlation rather than mean absolute error (MAE) to assess
predictive accuracy. Whereas the correlation is insensitive to the vari-
ance of the signals, the MAE is linearly related to the standard deviation
of the signals. This can lead to spurious differences between group and
connectivity depending on the point in the analysis pipeline that the
group and connectivity predictions are normalized—though this is not
the case in the original work (Saygin et al., 2012). Secondly, we avoided
the use of statistical tests at the voxel level to compare models to one
another or to chance. As voxels are not independent measurements due to
inherent smoothness in the signal, tests such as permutation and t-tests as
performed in the original paper are invalid (Breakspear et al., 2004;
Nichols and Holmes, 2002). We therefore only performed tests on
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Fig. 5. Quantifying explained variance in the functional signal by predictive models. The similarity in prediction performance for connectivity and functional group-average predictions
(Fig. 4) raised the question whether the connectivity model is simply capturing spatial patterns of activity already explained by the functional group-average. To formally test this, we
orthogonalized the connectivity and group prediction with respect to one another and regressed the observed signal on these orthogonalized predictions. This revealed variance in the
functional signal uniquely explained by the group prediction (black) and the connectivity prediction (light grey). We also estimated how much overlap in explained variance there was
between both models, shown in red. Note that despite some overlap (red), the majority of explained variance is uniquely attributed to the group or connectivity predictions, indicating the
prediction from connectivity did not merely recapitulate the functional group-average. The p-values represent a 1-sample t-test against zero for the Pearson's correlations between

orthogonalized prediction and observed value, uncorrected for multiple comparisons.

Table 5

Statistics for Figs. 4 and 5. Values represent Pearson's r expressed as the mean and 95% CI across participants. P-value is from a t-test of r against zero, uncorrected for multiple comparisons.
The column ‘full’ represents the correlation when the prediction is not competing for variance with the alternative prediction. ‘Orthogonalized’ refers to the performance of the prediction

after orthogonalizing the prediction with respect to the alternative prediction method.

Contrast Region Connectivity prediction Functional group-average prediction
Full Orthogonalized Full Orthogonalized
Hand > foot L Caudate 0.04 [-0.05, 0.12] 0.026 [-0.05, 0.11] 0.04 [-0.04, 0.22] 0.078 [-0.05, 0.21]
p=0.37 p=0.51 p=0.18 p=0.22
L Putamen 0.19 [0.11, 0.27] 0.066 [-0.01, 0.14] 0.19 [0.22, 0.41] 0.247 [0.15, 0.35]
p = 0.00005 p =0.09 p < 0.00001 p = 0.00005
R Caudate —0.02 [-0.07, 0.03] —0.014 [-0.06, 0.03] —0.02 [-0.10, 0.12] 0.008 [-0.10, 0.12]
p=0.48 p=0.55 p=0.83 p=0.88
R Putamen 0.16 [0.07, 0.24] 0.068 [0.00, 0.13] 0.16 [0.11, 0.33] 0.162 [0.06, 0.26]
p = 0.0008 p=0.04 p = 0.0005 p = 0.002
Reward L Caudate 0.11 [0.01, 0.20] 0.037 [-0.05, 0.12] 0.11 [0.08, 0.34] 0.190 [0.07, 0.31]
p=0.03 p=0.38 p = 0.003 p = 0.004
L Putamen 0.13 [0.04, 0.23] 0.069 [0.00, 0.14] 0.13 [0.08, 0.33] 0.161 [0.05, 0.27]
p = 0.008 p=0.04 p = 0.003 p = 0.006
R Caudate 0.16 [0.09, 0.24] 0.066 [0.01, 0.12] 0.16 [0.14, 0.42] 0.232 [0.10, 0.36]
p = 0.0002 p=0.02 p = 0.0004 p = 0.001
R Putamen 0.12 [0.02, 0.21] 0.051 [-0.02, 0.12] 0.12 [0.11, 0.32] 0.186 [0.10, 0.27]
p=0.02 p=0.13 p = 0.0004 p = 0.0002
Expected value L Caudate 0.12 [0.03, 0.20] 0.081 [0.00, 0.16] 0.12 [0.03, 0.23] 0.116 [0.02, 0.21]
p = 0.007 p=0.04 p=0.02 p=0.02
L Putamen —0.02 [-0.10, 0.06] —0.023 [-0.10, 0.05] —0.02 [-0.11, 0.09] —0.008 [-0.11, 0.09]
p=0.58 p=0.52 p=0.82 p=0.87
R Caudate 0.20 [0.09, 0.32] 0.128 [0.05, 0.21] 0.20 [0.05, 0.35] 0.135 [0.01, 0.26]
p = 0.001 p = 0.002 p=0.01 p=0.03
R Putamen 0.03 [-0.03, 0.09] 0.038 [-0.01, 0.09] 0.03 [-0.14, 0.10] —0.023 [-0.14, 0.10]
p=0.29 p=0.14 p=0.75 p=0.69

summary statistics of each participant.

We observed that the average functional response in a striatal region
does not necessarily predict whether or not differential activity within
that region is predicted from functional group-averages or structural
connectivity. For example, although the left and right putamen on
average showed no differential BOLD response for hand versus foot ac-
tions, within the putamen there was a pattern of activity, consistent across
participants, that differentiated between such actions. This is unsurpris-
ing given the existence of somatotopic motor loops (Nambu, 2011;
Nambu et al., 2002) and, more generally, topographically organized
corticostriatal loops (Haber and Knutson, 2009). More surprisingly, the
putamen had a lower BOLD response with increasing expected value on
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average, but this signal lacked spatial consistency and bore no observable
relationship to connectivity. This raises a possibility that signals in the
striatum might be divided into two components: one driven by local
connectivity, and one which is diffuse and non-specific. This is similar to
the notion of global inhibition and selective dis-inhibition in striatal
pathways (Frank, 2011; Mink, 1996). If correct, such a functional ar-
chitecture would have important implications for the way in which
computations are performed by the striatum.

The results presented here should be understood in light of a number of
limitations. Firstly, the statistics are uncorrected for multiple comparisons,
and not all findings would survive Bonferroni correction. The main argu-
ment against these findings being false positives is the fact that the majority
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of results replicate between left and right hemisphere. This is highly un-
likely under the null hypothesis, and therefore strengthens our confidence
in the reported findings. Secondly, we have not examined whether an in-
dividual's structure-function relationship relates to reinforcement learning
parameters. Others have observed that corticostriatal projections can pre-
dict reinforcement learning parameters (de Wit et al., 2012; Verstynen,
2014). Similarly, we might hypothesize that the individual differences in
how strongly specific cortical regions drive striatal activity would also be
reflected in reinforcement learning parameters. This question would be
best studied in larger datasets than that presented here, for example in the
Human Connectome Project dataset (Van Essen et al., 2012).

Our results have implications for the standard practice of averaging
physiological signals across the caudate nucleus or putamen, as doing so
will discard a considerable amount of local heterogeneity in function.
One way to parcelate the striatum is through diffusion-weighted imaging
alone, as done before (Draganski et al., 2008; Lehericy et al., 2005;
Verstynen et al., 2012). Other work has examined how overlap between
corticostriatal projections relates to functional signals (Verstynen, 2014).
The work presented here took a data-driven approach to predicting
functional signals in the striatum from a full corticostriatal connectivity
profile, i.e. we did not single out specific corticostriatal pathways to
assess their relationship to function. This contrasts with recent work that
focused on frontostriatal and parietostriatal connectivity, observing
‘convergence zones’ in the striatum that were confirmed by resting state
functionality connectivity (Jarbo and Verstynen, 2015). Indeed, resting
state functional connectivity has been a popular tool to understand cor-
ticostriatal connectivity, given the inherent limitations in diffusion im-
aging reveal the intermeshed pathways that reach deep into the basal
ganglia (Choi et al., 2012; Jung et al., 2014; Kim et al., 2013; Tavor et al.,
2016). Others still have used meta-analyses of functional imaging studies
to reveal five distinct striatal zones that show BOLD changes for specific
psychological processes, as well as reveal corticostriatal networks
involved in cognition (Pauli et al., 2016).

The further development of these approaches is likely to improve our
ability to map an individual's corticostriatal system using non-
invasive methods.
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