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Pain is a complex, multidimensional experience that emerges from interactions among

sensory, affective, and cognitive processes in the brain. Neuroimaging allows us to

identify these component processes and model how they combine to instantiate the pain

experience. However, the clinical impact of pain neuroimagingmodels has been limited by

inadequate population sampling – young healthy college students are not representative

of chronic pain patients. The biopsychosocial approach to pain management situates a

person’s pain within the diverse socioeconomic environments they live in. To increase the

clinical relevance of pain neuroimaging models, a three-fold biopsychosocial approach

to neuroimaging biomarker development is recommended. The first level calls for the

development of diagnostic biomarkers via the standard population-based (nomothetic)

approach with an emphasis on diverse sampling. The second level calls for the

development of treatment-relevant models via a constrained person-based (idiographic)

approach tailored to unique individuals. The third level calls for the development of

prevention-relevant models via a novel society-based (social epidemiologic) approach

that combines survey and neuroimaging data to predict chronic pain risk based on

one’s socioeconomic conditions. The recommendations in this article address how we

can leverage pain’s complexity in service of the patient and society by modeling not

just individuals and populations, but also the socioeconomic structures that shape any

individual’s expectations of threat, safety, and resource availability.

Keywords: chronic pain, neuroimaging biomarkers, translational ability, social epidemiology, social determinants

of health, machine learning, biopsychosocial pain models

INTRODUCTION

Neuroimaging models have significantly expanded our understanding of the neural processes that
instantiate a person’s subjective pain experience [for reviews see (1–3)]. Through neuroimaging,
we have learned that the brain representation of pain is highly distributed and multidimensional
involving sensory, cognitive, and affective components (4–7). Neuroimaging models employing
multivariate [i.e., multivoxel pattern analysis or MVPA; (8)], predictive (i.e., machine learning),
and network analysis techniques can, respectively, delineate multiple component processes
that contribute to both acute and chronic pain (7, 9–11), predict a person’s self-reported
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evoked pain intensity (12, 13), and localize sites of
functional connectivity disruption across chronic pain
phenotypes (14, 15).

Despite these important advances, neuroimaging research has
yet to significantly impact the clinic. Anatomical and resting
state markers lack specificity- it remains unknown whether
changes are due to chronic pain or to co-morbidities like anxiety
and depression [for reviews see (16, 17)]. Furthermore, most
models are developed on experimental data of evoked phasic
pain where participants experience a brief (under 12 s) noxious
stimulus such as prick or a hot plate against the skin. This
does not translate well to chronic pain which must persist 3
or more months. Acute or phasic pain is typically appraised
as temporary and separate from the self, while chronic pain
is typically appraised as unending and apart of one’s life (18).
Chronic pain is also highly personalized and embedded in
spontaneous and tonic, rather than evoked and phasic, activity
in the brain (19–22). Finally, population samples are not well-
stratified across economic class, race, or ethnicity (23). In most
cases, participant socioeconomic status (SES) is not reported
nor well-measured [for a review see (24)]. Because chronic pain
disproportionately affects the poor and working class across
the globe (25–33), neuroimaging models of pain must take
socioeconomic information into account.

The biopsychosocial approach to pain management attempts
to encapsulate the broader societal issues which situate
interactions among the biological, psychological, and social
components of the pain experience (34). This conceptual
framework states that understanding pain requires an
understanding of the whole patient, their relationships, and
society (35, 36). However, the biopsychosocial approach is
largely theoretical and has yet to be well-integrated into pain
neuroimaging research. To resolve this translational gap, this
perspective formulizes the biopsychosocial approach into
testable neuroimaging models intended for the diagnosis,
treatment, and prevention of chronic pain. These models
endeavor to predict and understand chronic pain from
three levels, that of the individual, of the population, and
of society.

First, recommendations are made to increase the diagnostic
relevance of the population-based, or nomothetic, approach
to the development of pain neuroimaging models. These
recommendations include a shift in focus from evoked phasic
pain to evoked tonic pain paradigms and the recruitment
of larger and more diverse population samples. Second, a
person-based or idiographic approach to the development of
treatment-relevant models is discussed. Recommendations
are made for the training and implementation of these
models so that they can be used to track disease progress
and treatment efficacy within individual patients. Finally,
a novel society-based, or social epidemiological approach
to the development of prevention-relevant models is
proposed. This approach situates an individual’s disease
state within the socioeconomic conditions they live in.
Lastly, implications for both the clinic and public policy
are outlined.

NOMOTHETIC (POPULATION-BASED)
APPROACH TO DIAGNOSTIC MODELS

Human subjects research is largely nomothetic, that is, the
goal is to generate an explanation of brain activity that is
“universal” and generalizable to entire populations (Figure 1A).
Such models are trained on many different people sampled from
the same population. Individual differences are treated as noise
and intentionally minimized through careful inclusion/exclusion
criteria, outlier removal, and the inclusion of confound regressors
controlling for demographic variables such as age and gender
identity [for a review see (37)]. The nomothetic approach
is appropriate for the development of diagnostic biomarkers
because inferences must be drawn from the wider population to
identify pain pathologies in new patients presenting symptoms
for the first time.

Nomothetic neuroimaging model weights are estimates of
population-level associations between brain activity and pain
outcomes (i.e., self-reported pain intensity). Models are cross-
validated via an iterative “leave-N-subjects-out” procedure
to assess performance on out-of-sample participants [for
recommendations see (38)]. Next, they are validated on held out
“validation sets”; though this external validation process is not
common in single neuroimaging studies due to the demand on
sample size. More often, this validation process occurs over a
series of papers across unique data sets collected on different
scanners in varied locations [for a review see (2)]. This a slower
validation process, but it is a more thorough and robust one.
Once validated, the model’s predictions are deemed suitable for
application to a new individual drawn from the same population.

A strength of this approach is its ability to identify separable
component processes of pain (7). For example, the neurologic
pain signature (NPS) is a well-validated model for acute pain
evoked by noxious events (13). It captures a component process
that contributes to the perceived intensity of an acute painful
stimulus. It includes patterns of activity in the anterior cingulate,
somatosensory cortex, and periaqueductal gray. Woo et al. (7)
developed a separate multivariate predictive model of pain called
the stimulus intensity independent pain signature-1 (SIIPS1).
SIIPS1 captures fluctuations in pain independent of noxious
stimulus intensity. It includes activity in the nucleus accumbens,
lateral prefrontal cortex (PFC), and parahippocampal cortex.
When combined with the NPS, the two explain more variance in
brain activity than either model alone. However, the combined
variance explained is 30%, indicating that there are more
component processes relevant to evoked pain experiencing that
have yet to be discovered (Figure 1C).

Though the NPS and SIIPS1 can predict different aspects
of acute pain experiencing, they cannot distinguish between
chronic pain patients and controls. It is unclear whether models
trained on evoked phasic pain are informative for the diagnosis
of chronic pain. To distinguish between fibromyalgia patients
and healthy controls, the NPS was subdivided into its positive
activations and then combined with amultisensorymodel similar
to SIIPS1 and a separate model trained to predict evoked
pain in fibromyalgia patients (9). The combinatorial model
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FIGURE 1 | Three-level biopsychosocial approach to neuroimaging biomarker development. (A) Population-based (nomothetic) approach to diagnostic model

development. Neuroimaging model weights are estimates of population-level associations between brain activity and pain outcomes (i.e., diagnostic category vs.

healthy control). Population samples should be large and diversely sampled across gender identity, race, and socioeconomic identities. Models should be validated on

external clinical data sets. Models can then be applied to the brain activity of a new patient to diagnosis their pain condition. (B) Person-based (idiographic) approach

to treatment-relevant models. Neuroimaging model weights are estimates of person-level associations between brain activity and pain outcomes (i.e., pain severity) for

the same person through time. Models weights can be regulated by nomothetic models to lessen demands on data collection from one patient. Models can be

applied in the same patient at later time points to assess their disease progression or to assess treatment efficacy. Such models can be used to tailor treatment

selection on a case-by-case basis. (C) Society-based (social epidemiologic) approach to prevention-relevant models. This approach requires two steps. First,

participants complete a multidimensional survey that assesses both their environment (i.e., socioeconomic status) and their personal internalization of these conditions

(Table 1). Then, a risk model is trained on these survey data to predict pain severity. The weights of this risk model are estimates of population-level associations

between a person’s socioeconomic conditions and pain outcomes. This model can be applied to the survey data of a new patient to assess their risk of pain

chronification. Person-level survey data can be related to person-level pain-related brain activity, and then a neuroimaging model of the SES component of pain

processing can be developed. Neuroimaging model weights are estimates of group-level associations between the socioeconomic conditions a person lives in and

their pain-related brain activity. Such a model could be combined with other neuroimaging component process models of pain, such as the NPS and SIIPS1, to

predict clinical outcomes in new patients.

performed with high accuracy within the study it was developed,
however, it is unknown how it performs in external data sets.

Combining models like this may be prone to overfitting, so the
preregistration of model combinations is recommended.
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The translational limitations of evoked phasic pain models
may be due to the phasic, rather than the evoked, nature
of the noxious stimuli. Recently, a tonic pain neuroimaging
biomarker with clinical relevance was developed. This biomarker,
called TOPS, was trained on evoked tonic pain trails in healthy
controls (39). In this experiment, capsaicin was placed on
the tongue to evoke pain for 1-2min. TOPS can predict
clinical pain severity and distinguish between patients and
controls in two independent studies of chronic low back
pain. It is possible that tonic stimulations hold greater
clinical utility than phasic because longer stimulations allow
for rumination and the activation of resting state networks
that may play a role in the chronification of pain (22, 40,
41).

TOPS was able to track within-individual variations in pain
avoidance ratings with an average correlation of r = 0.51.
Though this holds promise for the clinic, there is still much
variance left to be explained. Pain is an idiosyncratic experience
with many dimensions; therefore, the nomothetic approach may
never be able to explain the entirely of an individual’s pain
experience, however, a “good enough” approximation might be
achieved through the development of a suite of component
process models that can be combined on a person-by-person
basis. As we build more models of pain components, such
as social context, interoception, affect, and expectations for
pain relief, we may begin to chip away at this complex
neural representation.

To this end, I make the following recommendations: First,
a concerted effort must be made to recruit larger, more
representative samples of the population. Nomothetic models
are only suitable for application on new individuals drawn from
the same population in which they were trained. The NPS was
trained on only 20 participants, eight of which are women and
79% are White. Sampling procedures which primarily recruit
from the student pool of the universities where the research
is conducted unintentionally select for young high income and
high education level White participants not of Hispanic origin
(23). This is not representative of the world at large, nor is it
representative of populations suffering from chronic pain. In
the United States, most chronic pain patients are low-education
and low-income women of color over the age of 45 (26, 42,
43).

Funding agencies must provide sufficient support so
that researchers can expand their recruitment, possibly
by employing companies that specialize in representative
sampling to stratify samples across age, gender identity,
race, ethnicity, wealth and income, education level, and
personality traits. Second, pain models and pain data sets
should be made open and shareable to increase collective
clinical impact. Patient data sets, especially those involving
spontaneous pain paradigms, are difficult to collect, but are
the most clinically-relevant. With increased data sharing,
new pain components developed in easier to collect (i.e.,
evoked pain in healthy controls) diverse populations can be
validated in clinically-relevant samples to improve translation
and impact.

IDIOGRAPHIC (PERSON-BASED)
APPROACH TO TREATMENT-RELEVANT
MODELS

Pain is heterogeneous. The nomothetic assumption that “one-
size-fits-all” ignores diversity in economic class, cultural
background, gender identity, ethnicity, and personality, and
limits applicability in real-world pain treatment. For example,
emotional pain is positively correlated with physical pain at
the group level, but this relationship is inconsistent across
time within unique individuals (44). Indeed, neither SIIPS1 nor
TOPS positively predicts pain in each individual the model
was trained on; approximately 2-3% of the training data show
effects in the opposite direction. It is possible that one’s unique
experiences with pain can influence the magnitude or direction
of the relationship a pain component process has on their
individual pain response. The idiographic approach accounts
for variance across individuals by allowing for personalized
predictions. Individual differences in pain expression have made
it difficult for biomarkers to be developed on lower dimensional
data like facial expressions, skin conductance responses,
and heart rate, however, recent idiographic approaches to
modeling these types of data have significantly improved
their predictive power (45–47). In the clinic, such models
may provide objective assessments of disease progression and
treatment progress.

In the person-based approach, models are trained on many
different samples from the same individual (Figure 1B). This
commonly involves estimating pain-related brain activity from
single trials within one experimental session. Predictive brain
maps developed on one participant should be internally cross-
validated to test the model’s ability to predict pain outcomes
on out-of-sample trials from the same participant. While it
might be useful to validate the model on later timepoints,
current evidence suggests that there is stability in a single
individual’s network-level representation of the same stimulus
through time (48).

Advantages of these models include improved accuracy
and the ability to capture representations at finer spatial
scales [e.g., (49–53)]. Because idiographic models require
hours of data acquisition from a single participant, it can
be difficult to collect from patients. One way to reduce the
demands on scan time is to constrain the idiographic model
with nomothetic priors. For example, Lindquist et al. (52)
regularized an idiographic model of acute pain in healthy
controls with the NPS. The regularized model performed better
than both the NPS and a purely idiographic model trained
on that subject’s data alone. This method of regularization
is known as group-regularized individual prediction (GRIP).
It combines population-based and idiographic models in
proportion to their variances. It does this by applying a shrinkage
factor to the model weights. The shrinkage factor penalizes
idiographic activity that appears unlikely (i.e., noise) relative to
group activity.

Non-regularized idiographic models are still likely to be
useful if sufficient data are collected from the patient. The
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recommendation here is to compare the performance of
regularized and non-regularized idiographic models within
patients and select the best model on a patient-by-patient
basis. This patient-tailored model can later be applied to
their own brain activity in longitudinal follow-ups and
intervention paradigms to track disease progress and treatment
efficacy. It could also be deployed in real-time neurofeedback
paradigms where participants can test multiple interventions
and empirically validate which works best for them [see (54)].
Within this framework, a diversity of treatments (e.g., drugs,
expectancymanipulations, placebo interventions, self-regulation,
or mindfulness) can be tested with reduced bias.

SOCIAL EPIDEMIOLOGIC
(SOCIETY-BASED) APPROACH TO
PREVENTION-RELEVANT MODELS

Studies of global chronic pain prevalence suggest that societal
stressors may contribute to the chronification of pain (32, 55–58).
This is not surprising–the relationship between one’s economic
class and chronic illness has been observed as early as 1848,
when Rudolph Virchow determined that treating the Typhus
epidemic in Upper Silesia would require more than medicine.
Virchow prescribed changes to the material conditions of the
people whom the epidemic most severely impacted—the poor
and working class (59). He concluded that though all illness has a
biological origin, where it spreads and who is most susceptible
is determined by structural factors such as housing, working
conditions, diet, and sanitation (60). Similar observations have
been made about chronic pain today. When controlling for age,
race, and education level, a study conducted in an urban trauma
center found that homelessness and low income were strongly
associated with chronic pain (27).

Relationships between low economic class and chronic pain
prevalence have been found across the United States (26, 61, 62)
as well as across different cultures and countries including South
Africa (63), Brazil (31), Iran (64), Germany (65), Austria (56),
Sweden (66), Finland (67), the United Kingdom (25, 68), Japan
(28), Nepal (33), and South Korea (69). Despite the long history
and geographic spread of these associations, SES has largely
been ignored by pain neuroimaging research. There are several
reasons for this: First, there is little communication between
epidemiologists and neuroimagers [an effort to correct this has
begun, see (70)]. Second, the lack of socioeconomic diversity in
research samples obfuscates this connection. Finally, it is difficult
to mathematically relate complex social structures to functional
brain activity. To the author’s knowledge, only one neuroimaging
study has done this to date (10). Here I propose to resolve this gap
with a social epidemiologic approach to neuroimaging models of
chronic pain.

Social epidemiologists study how socioeconomic structures,
institutions (i.e., law, education), and social relationships
influence health outcomes. A social epidemiologic approach to
neuroimaging models of pain relates the structure of society to
brain health and function. The primary goal of this approach
is chronic pain prevention. The first step is to collect survey

data assessing an individual’s socioeconomic conditions and
subjective experience of social status. This multidimensional
assay can then be applied to pain-related brain activity to develop
a neuroimaging model of socioeconomic contributions to
chronic pain (Figure 1C). The resulting SES neuroimagingmodel
may be a component process of pain useful for combinatorial
models described earlier. This approach may allow us to identify
patients most at risk for pain chronification because one’s
internalization of their socioeconomic conditions may play a role
in the onset and maintenance of chronic pain (58, 61, 71).

The transition from acute to chronic pain is marked by a shift
in processing from nociceptive components to socioemotional
components of pain—specifically, PFC-limbic circuitry,
including the NAc/striatum, amygdala, and hippocampus
(72, 73), and the default mode network [DMN; (41)]. Changes
to PFC-limbic circuitry may indicate a change in the valuation
of pain (11, 74). Changes to DMN connectivity may change how
the pain experience is construed in relation to the self (75, 76).
Both of these networks are altered by poverty and socioeconomic
stress (77). Activity in the PFC (78, 79) and ventral striatum
(80) differs as a function of SES during both valuation and
the processing of self-related information (81–83). Childhood
poverty is correlated with aberrant functional connectivity
within the DMN (84, 85). Interestingly, these aberrations can
be reversed in people who have high income later in life (86).
Relatedly, (10) found a threshold in annual income (>$25,000)
that delineated vulnerability from protection in chronic pain
patients. In the United States, the poverty line for a family of
four is $26,200; meaning families that make less than this cannot
afford food, rent, and other basic needs (87). It is unknown
whether changes in income can reverse chronic pain status,
however, chronic pain patients of high SES tend to have better
clinical outcomes (88).

The impact of socioeconomic stress on chronic pain may
not be reducible to income alone. The experience of social
strain or subordination itself may contribute to chronic illness
above and beyond income-level (89, 90). In non-human primates
low social status is associated with immune system deficits
that increase risk of infection and slow wound healing (91,
92). Chronic social stress may underlie immunosuppression in
humans and animals [for a review see (93)]. People in lower
social classes have a lower sense of personal control which is
associated with higher levels of stress and pain (94). However,
a high sense of self-efficacy is protective against chronic pain
and pain severity (95). The protective effect of self-efficacy may
be independent of class. For example, a large study in South
Korea (N = 28,532) demonstrated that when controlling for
monthly income, the presence of labor unions reduced low
back pain prevalence (69). Another study in the United States
found that unionized workers experience less severe pain for
work-related musculoskeletal disorders (96). One interpretation
of these effects is that labor unions change perceptions of self-
efficacy, pain controllability, and expectations for care and safety
by giving worker’s the ability to advocate for themselves through
collective bargaining (97).

A major barrier to the study of socioeconomic factors
in chronic pain is the lack of a standardized assessment of
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TABLE 1 | Socioeconomic Pain-Predispositions Profile Survey.

Level of assessment Profile dimension Examples

External conditions Objective SES Annual income, debt, amount of money in savings or investments, property ownership, housing

status, number of people in a household, marital status, education level, parental education level,

employment status, type of occupation, health insurance status, union membership

Demographic Information Age, race, gender identity, location of residence (urban vs. rural), location of birth, ethnicity,

immigration status

Sociopolitical Environment Type of government in the country of residence, the gross domestic product (GDP) of country of

residence, level of income inequality in country and city of residence, type of economic system in

country of residence

Internalization of external

conditions

Perceived SES “I have a very high standing in my workplace or community.” “If I got sick I would be able to access

quality care.” from The MacArthur Network on SES and Health and The MacArthur Scale of

Subjective Social Status (98, 99)

Perceived Social Support “There is a person in my life who is around when I am in need.” from the Multidimensional Scale of

Perceived Social Support (100)

Job satisfaction “Over the past 12 months, have you ever experienced workplace discrimination based on your

race, gender, education, etc?” from Perceived Workplace Discrimination (69) “I can get positive

feed-back and respect in my work.” from Work Satisfaction Index (101)

Beliefs about external conditions System Justification “Society is set up so that people usually get what they deserve.” from General and Economic

System Justification (102)

Social Trust “I feel that people generally earn the rewards and punishments that they get in this world.” from Just

World Scale (103) see also ‘Kind of Person’ Implicit Theory Scale (104)

Perceptions of Self-efficacy “Relief from pain is chiefly controlled by doctors” from Beliefs about Controlling Pain (105) see also,

Locus of Control Scale (106)

Personality Personality Type “I am moody, tense, and lack self-confidence.” from the Big 5 Personality Inventory (107)

Emotional reactivity “I often have concerned feelings for people less fortunate than me.” “I sometimes feel helpless when

I am in the middle of a very emotional situation.” from the Interpersonal Reactivity Index (108)

Attachment Style “I find it difficult to allow myself to depend on others.” from the Attachment Style Questionnaire (109)

Pain catastrophizing “When I am in pain I feel I can’t go on.” “I keep thinking of other painful events” from The Pain

Catastrophizing Scale (110)

Trait anxiety and depression “I worry too much over something that really doesn’t matter” from the State Trait Anxiety Inventory

(111) see also Beck Depression Inventory (112)

A multidimensional assay of socioeconomic conditions, their internalization, and pain-related appraisals and personality traits.

SES. Here I propose the creation of a “Pain-Predispositions
Profile Survey” (Table 1), a multidimensional assay of debt,
income, property ownership, investments/savings, family
wealth, education, perceived social status, environment (urban
or rural), housing situation, childhood attachment, SES-
related personality/evaluative traits (i.e., pain catastrophizing,
controllability perceptions), as well as measures of income
inequality within the city and country the patient resides in. A
predisposition model of chronic pain can then be developed on
these survey data that predicts patient pain status or severity.
A cross-validated procedure similar to that employed by
Vachon-Presseau et al. (10) can then be used to relate the
survey data to functional networks in chronic pain patients (or
healthy participants in evoked pain paradigms) to uncover a
socioeconomic-related component process contributing to the
pain experience (Figure 1C). Neuroimaging may not always
be an available tool for the diagnosis and treatment of chronic
pain—the survey-based model, however, is scalable and can be
leveraged for treatment selection by matching people on survey
similarity. Treatment programs that are validated on patients in
neuroimaging studies can then be recommended to new patients
with greater confidence.

DISCUSSION

An individual’s valuation of a painful event (113–115), their
expectations for support and health care (116–118), their
beliefs about pain permanence (119, 120), personality traits
(10, 121), and the socioeconomic conditions they exist in
(10, 122) influence their brains’ representation of pain. Pain,
therefore, is a personal experience instantiated by biological
processes and situated within one’s socioeconomic conditions.
Neuroimaging models situated within the socioeconomic
structures of the population being studied are necessary for
the development of a more complete understanding of the
complexities of human pain. In this perspective, I discuss how
three approaches to the development of pain neuroimaging
models—nomothetic (population-based), idiographic (person-
based), and social epidemiologic (society-based)—can be applied
to the diagnosis, treatment, and prevention of chronic pain.
These three approaches taken together serve to operationalize the
biopsychosocial model of pain within a neuroimaging context.

It is estimated that 1% of the world’s population controlled
44.8% of the world’s wealth in 2018 (123). Economists from
varied and opposing points on the political spectrum agree
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that an increasingly globalized and automated economy will
heighten existing barriers to economic mobility and make
income inequality more stark, widespread, and permanent (124).
Therefore, it is my final recommendation that scientists and
clinicians advocate for chronic pain patients at the level of
public policy. In the words of Virchow, “Disease is only a
manifestation of life under pathological conditions. . . Medicine
is a social science and politics is nothing else but medicine on a
large scale.”
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