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Abstract: Background: One of the most common co-morbidities, that often leads to death, associated
with acute pancreatitis (AP) is represented by acute lung injury (ALI). While many aspects of
AP-induced lung inflammation have been investigated, the involvement of specific pathways, such as
those centered on nuclear factor E2-related factor 2 (Nrf2) and nucleotide-binding domain leucine-rich
repeat (NLR) and pyrin domain containing receptor 3 (NLRP3), has not been fully elucidated.
Methods: To investigate the effect of cashew (Anacardium occidentale L.) nuts on pancreatic and
lung injury induced by cerulein injection, cerulein (50 µg/kg) was administered to CD1 mice for
10 h. Oral treatment with cashew nuts at a dose of 100 mg/kg was given 30 min and 2 h after the
first cerulein injection. One hour after the final cerulein injection, mice were euthanized and blood,
lung and pancreatic tissue samples were collected. Results: Cashew nuts were able to (1) reduce
histological damage; (2) mitigate the induction of mast cell degranulation as well as the activity of
myeloperoxidase and malondialdehyde; (3) decrease the activity levels of amylase and lipase as well
as the levels of pro-inflammatory cytokines; and (4) enhance the activation of the Nrf2 pathway and
suppress the activation of the NLRP3 pathway in response to cerulein in both pancreas and lung.
Conclusions: Cashew nuts could have a beneficial effect not only on pancreatitis but also on lung
injury induced by cerulein.

Keywords: cerulein-induced acute pancreatitis; cashew nuts; antioxidant; inflammation; polyphenols

1. Introduction

Acute pancreatitis (AP) is a multifactorial disease, with a mortality rate that can be as high as
15–20%; it initiates in the pancreas in response to an inflammatory event and leads to deleterious local
and systemic effects [1,2].
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In particular, among the various organs that can be involved in the systemic inflammatory
processes during pancreatitis, acute lung injury (ALI) is the most recurring severe complication and
is actually the major cause of death in patients with AP [3,4]. While the detailed mechanisms of
AP are still unknown, its pathogenesis is commonly attributed to the release of proteolytic enzymes,
such as amylase and lipase, inflammatory elements, reactive oxygen species (ROS), peroxidation of
lipid membranes, and release of other mediators into the blood, collectively leading to activation of the
systemic inflammatory response [5–8].

Considering that the clinical course is extremely variable, research to discover new therapeutic
approaches is extremely important [9]. The current treatment for pancreatitis is only supportive
therapy, comprising primarily pain management, hydration and nutritional support. Given the
multiple pathogenic mechanisms involved in AP and the associated systemic inflammatory reaction,
one potentially useful approach is the identification of natural products with multiple modes of
action, such as modulation of enzyme activities, suppression of inflammatory pathways, scavenging of
free radicals, etc. [10]. Recent findings indicate that the nuclear factor E2-related factor 2 (Nrf2) and
nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3)
inflammasome pathways are strongly activated during the development of AP [10–14].

Nrf2 is a master regulator of protective antioxidant and anti-inflammatory responses. It coordinates
the expression of several genes, including not only genes encoding antioxidant enzymes but also a
series of genes involved in various processes including respiratory, cardiovascular, cerebrovascular,
neurodegenerative and ocular diseases, as well as in tumorigenesis [15–17]. Under physiological
conditions, Nrf2 is sequestered in the cytoplasm by its inhibitor Kelch-like ECH-associated protein
1 (Keap1), which mediates the proteasomal degradation of Nrf2 [18]. Once cellular oxidative stress
occurs, Keap1 undergoes conformational modifications that prevent the degradation of Nrf2, allowing
it to accumulate in the nucleus, where it activates the transcription of its target genes by binding
to regulatory sequences called antioxidant response elements (ARE) [19]. Examples of antioxidant
detoxification enzymes induced by Nrf2 include heme oxygenase 1 (HO-1) and manganese-dependent
superoxide dismutase (Mn-SOD) [18].

Another fundamental pathway activated by the production of ROS is NLRP3 [20]. NLRP3 is
part of the inflammasome, a multimeric protein complex comprising a sensor (NLRP3), an adaptor
(apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and an
effector (caspase 1), that initiates an inflammatory mode of cell death and triggers the release of
pro-inflammatory cytokines [21]. The NLRP3 inflammasome has been implicated in a wide range
of diseases, including AP, diabetes and prion and neurodegenerative diseases [22]. Studies have
demonstrated that various natural compounds can ameliorate inflammation by inhibiting the NLRP3
pathway [23]. Natural compounds with the capacity to modulate the activation of NLRP3 may
thus be considered as complementary treatments in acute and chronic inflammatory disorders.
Such compounds include dietary antioxidants, such as curcumin, epigallocatechin-3-gallate (EGCG),
mangiferin, and resveratrol [24]. To date, the use of cashew nuts (Anacardium occidentale L.), which are
rich in antioxidants, has not been investigated as a possible strategy to counteract the development of
inflammation in AP.

Cashew nuts represent a well-known medicinal plant with a powerful antioxidant and
anti-inflammatory activity. They are rich in unsaturated fatty acids (UFAs), flavonoids, anthocyanins
and tannins, fiber, folate, and tocopherols [25–29]. Different studies have consistently shown that
adding nuts to a balanced diet helps to lose weight, lower cholesterol, control blood sugar, and protect
the eyes, heart and skin. Cashew nuts have been recently used as treatment for several different
diseases, both acute and chronic, such as colitis, joint degeneration, and dyslipidemia [30–36]. In the
present study we evaluated the impact of oral treatment with cashew nuts on pancreas and lung during
cerulein-induced AP in mice [37,38].
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2. Materials and Methods

2.1. Animals

CD1 mice (25–30 g, Envigo, Milan, Italy) were employed. The University of Messina Review
Board for animal care (OPBA) approved the study (protocol number 650/2017-PR dated 8/21/2017).
All animal experiments were in compliance with the new Italian regulations (D.Lgs 2014/26), the EU
regulations (EU Directive 2010/63) and the ARRIVE guidelines.

2.2. Experimental Protocol

AP was induced by cerulein hyperstimulation through 10 intraperitoneal (i.p.) injections (one
injection every hour for 10 h at a dose of 50 µg/kg). Animals were euthanized one hour after the last
injection, and samples of blood, lung, and pancreatic tissue were collected for further study [39].

2.3. Experimental Groups

Mice were randomly distributed into the following groups:

(1) Sham: Animals were subjected to injections of saline and were treated by oral gavage with saline.
(2) Sham + cashew nuts (100 mg/kg): Animals were subjected to injections of saline and were treated

by oral gavage with cashew nuts at the dose of 100 mg/kg (data not shown because there were no
differences between the sham+saline and sham+cashew nuts groups.).

(3) Cerulein: Mice were subjected to cerulein injections as described above and treated by oral gavage
with saline.

(4) Cashew nuts (100 mg/kg): Mice were subjected to cerulein injections a described above and
treated by oral gavage with cashew nuts (100 mg/kg).

The cashew nuts were given 30 min and 2 h after the first cerulein injection [1] (experimental
timeline in Supplementary Figure S1). The dose used was chosen based on previous studies [31,32,36].

2.4. Pancreatic and Lung Oedema

Pancreatic and lung oedema was quantified as previously described by calculating the ratio
between the water content of the tissue and its dry weight [40,41].

2.5. Histological Evaluation and Detection of Mast Cells

At the end of experiments, pancreas and lung tissues were fixed in 10% (w/v) PBS-buffered
formaldehyde at room temperature. Seven micrometer sections were prepared from paraffin embedded
tissues and stained with hematoxylin and eosin (H&E) for histological evaluation and with toluidine
blue for detection of mast cells. After staining, they were evaluated using a Leica DM6 microscope
(Leica Microsystems SpA, Milan, Italy) with Leica LAS X Navigator software (Leica Microsystems
SpA). The injury score for both pancreas and lung was calculated as previously described [40,42].

2.6. Measurement of Lipase, Amylase and Pro-Inflammatory Citokynes

Blood was collected and centrifuged, and the supernatant was used for measurement of serum
amylase and lipase activities using respective commercial kits (Cusabio, Houston, TX, USA and
Abcam, Cambrige, UK) (Cat.# CSB-EL001689MO and CSB-E16930m, respectively) [39]. Additionally,
the plasma levels of interleukin 1 beta (IL-1β), IL-6 and TNF-α were determined by enzyme-linked
immunosorbent assay (ELISA) kits (eBioscience, San Diego, CA, USA) (Cat.# BMS6002, BMS603-2 and
BMS607-3, respectively) as previously described [43].
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2.7. Evaluation of Myeloperoxidas and Malonaldehyde

Myeloperoxidase (MPO) and malonaldehyde (MDA) levels were assessed as previously described
in both pancreas and lung tissue. Briefly, after homogenization in respective specific buffers, absorbance
was measured at 650 nm, using a spectrophotometer. Levels were expressed in milli-units per
100 milligram (mU/100 mg) of tissue [44–46].

2.8. Western Blot Analysis

Western blots were executed previously described [47]. The following specific primary antibodies
were used: Anti-NRF-2 (sc-365949, 1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-HO-1
(sc-136960, 1:1000; Santa Cruz Biotechnology, CA, USA); anti-Mn-SOD (sc-137254, 1:1000, Santa
Cruz Biotechnology, CA, USA); anti-NLRP3 (sc-134306, 1:1000, Santa Cruz Biotechnology, CA, USA);
anti-Caspase-1 (sc-56036, 1:1000, Santa Cruz Biotechnology, CA, USA); and anti-ASC (sc-514414, 1:1000,
Santa Cruz Biotechnology, CA, USA). Primary antibodies were mixed in 1× PBS, 5% w/v non-fat
dried milk, 0.1% Tween-20, and incubated at 4 ◦C, overnight. Afterwards, blots were incubated
with peroxidase-conjugated bovine anti-mouse IgG secondary antibody or peroxidase-conjugated
goat anti-rabbit IgG (1:2000, Jackson Immuno Research) for 1 h at room temperature. As loading
controls, membranes were also incubated with antibodies against laminin (sc-376248, 1:1000; Santa
Cruz Biotechnology, CA, USA) or GADPH (sc-47724, 1:1000; Santa Cruz Biotechnology, CA, USA).
Signals were detected with enhanced chemiluminescence detection system reagent according to
manufacturer’s instructions (Super-Signal West Pico Chemiluminescent Substrate, Pierce). The relative
expression of the protein bands was quantified by densitometry with Bio-Rad ChemiDoc XRS software
(ImageLab, v6.0.1) and standardized to β-actin levels. Images of blot signals were imported to analysis
software (Image Quant TL, v2003).

2.9. Immunohistochemical Localization of NRF2, HO-1, Mn-SOD, Caspase-1, and ASC

Pancreas and lung sections were incubated with the following primary antibodies: Anti-NRF2
(sc-365949, 1:200, Santa Cruz Biotechnology, CA, USA); anti-HO-1 (sc-136960, 1:200, Santa Cruz
Biotechnology, CA, USA); anti-Mn-SOD (sc-137254, 1:200, Santa Cruz Biotechnology, CA, USA);
anti-NLRP3 (sc-134306, 1:200, Santa Cruz Biotechnology, CA, USA); anti-Caspase-1 (sc-56036, 1:200,
Santa Cruz Biotechnology, CA, USA); and anti-ASC (sc-514414, 1:200, Santa Cruz Biotechnology,
CA, USA), as previously described [48]. Sections were then incubated with the following
secondary antibodies: Peroxidase-conjugated bovine anti-mouse immunoglobulin G (IgG) or
peroxidase-conjugated goat anti-rabbit IgG (1:2000, Jackson Immuno Research, West Grove, PA,
USA). Specific marking was revealed with a biotin-conjugated goat anti-rabbit IgG or biotin-conjugated
goat anti-mouse IgG and avidin-biotin peroxidase complex (Vector Laboratories, Burlingame, CA,
USA). Graphic presentation of densitometric analyses was performed Image J software (v1.52a) as
previously described [49]. All immunohistochemical analyses were conducted by an observer without
knowledge of the treatments.

2.10. Cashew Nuts Nutritional Composition

The cashew kernel samples (Anacardium occidentale L.) used were obtained from Ivory Coast; per
100 g they contained 5.40 g moisture, 22.46 g protein, 44.19 g total lipids, 4.48 g total dietary fibre,
30.95 g total sugars, 2.68 g ash, and 80.01 mg total phenols. The nutritional composition was analyzed
according to the Association of Official Analytical Chemists (AOAC) Official Method as previously
reported [50–53].

2.11. Reagents

All other materials were purchased from Sigma-Aldrich Co. Stock solutions were prepared in
nonpyrogenic saline (0.9% NaCl, Baxter Healthcare Ltd., Thetford, Norfolk, UK).
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2.12. Data Analysis

All values are expressed as mean± standard error of the mean (SEM). For in vivo experiments, each
group comprised 6 animals. For experiments involving histology, images shown are representative at
least 3 independent experiments on tissue sections collected from all animals in each group. The results
were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons.
A p value < 0.05 was considered significant. # p < 0.05 vs. cerulein; ## p < 0.01 vs. cerulein; ### p < 0.001
vs. cerulein; * p < 0.05 vs. sham; ** p < 0.01 vs. sham; *** p < 0.001 vs. sham.

3. Results

3.1. Effect of Cashew Nuts on Cerulein-Induced Oedema and Tissue Damage

Histological analysis of the pancreas of cerulein-treated mice showed tissue damage characterized
by interstitial edema and inflammatory cell infiltrates (Figure 1B,D). These inflammatory signs were
significantly reduced in the group of mice orally administered 100 mg/kg cashew nuts (Figure 1C,D).
The histological analysis of the lung yielded similar findings. Lung injury during AP was characterized
by alveolar thickening and abundance of inflammatory cell infiltrates (Figure 1F,H). Lung inflammation
was significantly reduced by administration of cashew nuts (Figure 1G,H). Cerulein-induced AP is
accompanied by tissue oedema in both the pancreas and the lung, which was quantified by determining
the water content of the tissue. The oedema was significantly decreased after cashew nuts treatment in
both pancreas (Figure 1I) and lung (Figure 1J).

Figure 1. Evaluation of histological damage and oedema in the pancreas and lung of mice with
cerulein-induced acute pancreatitis (AP). Pancreas: (A) sham, (B) cerulein, (C) cerulein+cashew
nuts, (D) pancreas histological score, (I) pancreatic oedema. Lung: (E) sham, (F) cerulein,
(G) cerulein + cashew nuts, (H) lung histological score, (J) lung oedema. Values shown are
means ± SEM of 6 mice. *** p < 0.001 vs. sham; ## p < 0.01 vs. cerulein; ### p < 0.001 vs. cerulein.

3.2. Effects of Cashew Nuts on Cerulein-Induced Mast Cell Degranulation and on Myeloperoxidase and
Malondialdehyde Activity

Mast cells are well known to play a significant role under inflammatory conditions, and there
are remarkable overlaps between factors that cause mast cell degranulation and the progression of
AP. We therefore evaluated whether administration of cashew nuts could have a beneficial effect on
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mast cell degranulation during cerulein-induced AP, as assessed by toluidine blue staining. In both
pancreas (Figure 2B) and lung (Figure 2F), a significant increase in mast cell degranulation was
observed after cerulein injection as compared to the sham group (Figure 2A,E). Treatment with cashew
nuts significantly decreased the number of degranulated mast cells in pancreas (Figure 2C) and lung
(Figure 2G). Moreover, oral treatment with cashew nuts significantly mitigated the cerulein-induced
increase in the activity of malondialdehyde (MDA, a marker of lipid peroxidation) and myeloperoxidase
(MPO, a marker of neutrophilic infiltration) in pancreas (Figure 2D,I) and lung tissue (Figure 2H,J).

Figure 2. Effects of cashew nuts on cerulein-induced mast cell degranulation and MPO and MDA
activity. Pancreas: (A) sham, (B) cerulein, (C) cerulein+cashew nuts, (D) MPO and (I) MDA. Lung:
(E) sham, (F) Cerulein, (G) cerulein+cashew nuts, (H) MPO and (J) MDA. Arrows indicate mast cells.
Values shown are means ± SEM of 6 mice. *** p < 0.001 vs. sham; ## p < 0.01 vs. cerulein; ### p < 0.001
vs. cerulein.

3.3. Effects of Cashew Nuts on the Levels of Amylase, Lipase, and Pro-Inflammatory Cytokines

Administration of cerulein is well-known to cause an increase in the serum levels of amylase and
lipase, as well as to promote the release of different pro-inflammatory cytokines into the blood. Indeed,
in cerulein-induced AP, a significant increase in serum levels of amylase (Figure 3A), lipase (Figure 3B),
IL-1β (Figure 3C), IL-6 (Figure 3D), and TNF-α (Figure 3E) was observed compared to the sham group;
administration of cashew nuts significantly ameliorated all the above inflammatory markers.

3.4. Effects of Cashew Nuts on the Nrf2 Pathway in Cerulein-Induced AP

Considering the key role of oxidative stress during AP, we investigated the effect of cashew nuts on
the Nrf2 pathway in pancreas and lung by Western blotting. Administration of cashew nuts following
cerulein injection significantly increased the nuclear protein abundance of Nrf2 in both pancreas
(Figure 4C,C1) and lung (Figure 4H,H1). The gene encoding Mn-SOD is known to be upregulated by
Nrf2, and cashew nuts significantly increased the protein abundance of Mn-SOD in both pancreas
(Figure 4B,B1) and lung (Figure 4G,G1). The same pattern was observed for HO-1 in both pancreas
(Figure 4A,A1) and lung (Figure 4F,F1).
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Figure 3. Effects of cashew nuts on the levels of amylase, lipase and cytokines in cerulein-induced AP.
Amylase (A), lipase (B), IL-1β (C), IL-6 (D), and TNF-α (E). Values shown are means ± SEM of 6 mice.
*** p < 0.001 vs. sham; ### p < 0.001 vs. cerulein.

Figure 4. Effects of cashew nuts on the nuclear factor E2-related factor 2 (Nrf2) pathway in
cerulein-induced AP as assessed by Western blotting. Pancreatic Western blots of HO-1 (A),
manganese-dependent superoxide dismutase (Mn-SOD) (B), nuclear Nrf2 (C), β-actin (D) and Lamin
A/C (E). Relative densitometric quantification of pancreatic HO-1 (A1), Mn-SOD (B1) and nuclear Nrf2
(C1). Lung Western blots of HO-1 (F), Mn-SOD (G), Nrf2 (H), β-actin (I) and Lamin A/C (J). Relative
densitometric quantification of lung HO-1 (F1), Mn-SOD (G1 and nuclear Nrf2 (H1). Western blots
shown are representative of at least 3 independent experiments. Values shown are means ± SEM of 6
mice. # p < 0.05 vs. cerulein.

These results were further confirmed by immunohistochemical staining for Nrf2 in pancreas
(Figure 5A–C,M) and lung (Figure 5D–F,O), as well as for HO-1 in pancreas (Figure 5G–I,N) and lung
(Figure 5J–L,P).

3.5. Effects of Cashew Nuts on the NLRP3 Pathway in Cerulein-Induced AP

Finally, we evaluated whether cashew nuts could reduce inflammasome activation in
cerulean-induced AP. Analysis of inflammasome components by Western blotting showed that the
protein abundance of NLRP3 increased significantly in pancreas (Figure 6A,A1) and lung (Figure 6E,E1).
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The same was observed for the protein abundance of ASC in pancreas (Figure 6C,C1) and lung
(Figure 6G,G1), as well as for the protein abundance of Caspase-1 in pancreas (Figure 6B,B1) and lung
(Figure 6F,F1); administration of cashew nuts significantly ameliorated all of the above parameters.

Figure 5. Effects of cashew nuts on the Nrf2 pathway in cerulein-induced AP as assessed by
immunohistochemistry. Immunohistochemical staining for Nrf2 and HO-1 in pancreatic and lung tissue.
Nrf2 immunohistochemical staining in pancreas ((A) sham, (B) cerulein, (C) cerulein+cashew nuts) and
lung ((D) sham, (E) cerulein, (F) cerulein+cashew nuts), and relative densitometric quantification in
pancreas (M) and lung (O). HO-1 immunohistochemical staining in pancreas ((G) sham, (H) cerulein,
(I) cerulein+cashew nuts) and lung ((J) sham, (K) cerulein, (L) cerulein+cashew nuts) and relative
densitometric quantification in pancreas (N) and lung (P). Values shown are means ± SEM of 6 mice.
# p < 0.05 vs. cerulein.

Figure 6. Effects of cashew nuts on the NLRP3 pathway in cerulein-induced AP as assessed by Western
blotting. Pancreatic Western blots of NLRP3 (A), Caspase-1 (B), ASC (C) and β-actin (D). Relative
densitometric quantification for pancreatic NLRP3 (A1), Caspase-1 (B1) and ASC (C1). Lung Western
blots of NLRP3 (E), Caspase-1 (F), ASC (G) and β-actin (H). Relative densitometric analysis of lung
NLRP3 (E1), Caspase-1 (F1) and ASC (G1). Values shown are means ± SEM of 6 mice. # p < 0.05 vs.
cerulein; ** p < 0.01 vs. sham.

These results were further confirmed by immunohistochemical staining for NLRP3 in pancreas
(Figure 7A–C,S) and lung (Figure 7D–F,V), as well as for Caspase-1 in pancreas (Figure 7G–I,T) and
lung (Figure 7J–L,W), and for ASC in pancreas (Figure 7M–O,U) and lung (Figure 7P–R,X).
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Figure 7. Effects of cashew nuts on the NLRP3 pathway in cerulein-induced AP as assessed
by immunohistochemistry. Immunohistochemical staining for NLRP-3, Caspase-1, and ASC in
pancreatic and lung tissue. NLRP3 immunohistochemical staining in pancreas ((A) sham, (B) cerulein,
(C) cerulein+cashew nuts) and lung ((D) sham, (E) cerulein, (F) cerulein+cashew nuts), and relative
densitometric quantification in pancreas (S) and lung (V). Caspase-1 immunohistochemical staining
in pancreas ((G) sham, (H) cerulein, (I) cerulein+cashew nuts) and (lung (J) sham, (K) cerulein,
(L) cerulein+cashew nuts), and relative densitometric quantification in pancreas (T) and lung (W). ASC
immunohistochemical staining in pancreas ((M) sham, (N) cerulein, (O) cerulein+cashew nuts) and lung
((P) sham, (Q) cerulein, (R) cashew nuts), and relative densitometric quantification in pancreas (U) and
lung (X). # p < 0.05 vs. cerulein; ## p < 0.01 vs. cerulein; ### p < 0.001 vs. cerulein; *** p < 0.001 vs. sham.

4. Discussion

AP is a common disease whose severity can vary mild disease to sepsis and multiple organ failure
(MOF) [54]. Though AP can affect various distant organs, such as the colon, ALI is considered the most
frequent possible complication of AP [41,55]. The relationship between AP and ALI is most probably
due to an increase in the number of neutrophils in the lungs that lead to ROS generation with a
consequent increase in the production of proinflammatory cytokines [56]. Human studies have indeed
demonstrated very high concentrations of IL-1β, IL-6, TNF-α, neutrophil enzymes, and pancreatic
enzymes including amylase and lipase in plasma, but the exact pathogenesis of AP-associated ALI
remains unclear [56].

Even though there is still no specific drug therapy for AP, with treatment being generally supportive,
it has been hypothesized that targeting inflammatory cascade molecules and oxidative stress could be
a promising strategy to counteract the development of AP and ALI [57]. Some antioxidants, mainly
naturally occurring ones, have been tested as potential beneficial agents in patients with AP. However,
results to date have been inconsistent, and there are insufficient clinical data to support their routine
use in humans. For example, resveratrol has been shown to be effective in the treatment of AP in rodent
models, but clinical studies have not yet been conducted using this compound as an activator of Nrf2 [6].
In contrast, selenium, if given early, has been shown to reduce mortality, complications and need for
surgery [58]. Intravenous administration of ascorbic acid (vitamin C) also significantly reduced markers
of oxidative stress such as superoxide dismutase and catalase, and led to a faster normalization of the
leukocyte count and of amylase levels, as well as to a significant reduction of TNF-α, IL-6, and IL-8
levels [59]. Melatonin has also been shown to be able to neutralize oxygen radicals, activate enzymes
involved in the antioxidant response, and suppress the release of pro-inflammatory cytokines [60].
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Despite such promising results, the data currently available are not sufficient to support the
clinical use of antioxidants for AP. Therefore, further studies are needed to understand the precise
mechanisms underlying this serious disease and to optimize its treatment by counteracting both the
inflammatory and oxidative processes implicated in its pathogenesis. In this regard, several trials in
recent years have focused on the use of nutritional support to traditional treatment [61].

Cashew nuts, fruits of Anacardium occidentale L., an original plant from Brazil, have shown a good
capacity to counteract oxidative damage, primarily thanks to the abundance of secondary metabolites
such as polyphenols, flavonoids and others [62–66]. The most plausible hypothesis is that polyphenolic
components of dietary plants modulate the cellular redox state by boosting the endogenous antioxidant
defense [66,67]. Recently, cashew nuts were used for their antioxidant, anti-genotoxic, anti-mutagenic,
anti-inflammatory, and other protective properties [31,68–75]. In previous studies, we demonstrated
that cashew nuts treatment, was able to alleviate oxidative stress and inflammation in different in vivo
models, such as dinitrobenzene sulfonic acid (DNBS)-induced colitis, carrageenan-induced paw edema,
and monosodium iodoacetate (MIA)-induced osteoarthritis. These effects are likely exerted through a
reduction of various pro-inflammatory pathways and mediators, including MPO and MDA levels,
mast cell degranulation and neutrophil infiltration, release of pro-inflammatory cytokines, modulation
of NF-κB signaling, modulation of ROS production, etc. [31,32,36].

Among several different in vivo experimental models of AP that exhibit the same
pathophysiological development of human pancreatitis, the use of cerulein, an analog of cholecystokinin
(CCK), is one of most frequently used. We thus used this model to induce AP in mice and to investigate
for the first time the effect of cashew nuts treatment on inflammation and oxidative stress in the
pancreas and lung during AP.

Cashew nuts treatment had beneficial effects on cerulein-induced histological alterations in both
pancreas and lung. Cerulein treatment led to severe alterations of tissue architecture with oedema
formation and inflammatory cells infiltration. These modifications were significantly attenuated by
oral treatment with cashew nuts at a dose of 100 mg/kg. Mast cells have been reported to play a pivotal
role during pancreatitis-associated ALI [76]. Previous studies have shown that mast cells are usually
located in the pancreatic interstitial and periacinar space as well as in the mesentery, but during AP
they were highly correlated with neutrophil infiltration and oedema formation in both pancreas and
lung [76,77]. Neutrophil infiltration is also important in acute pancreatitis. MPO activity is a useful
indicator of neutrophil activation and inflammation, since the enzyme is stored in the neutrophils’
granules [78]. Additionally, because while one of the most dangerous consequences of oxidative
stress is cellular injury triggered by ROS, it is informative to assess the levels of oxidation products as
markers of oxidative stress [79,80]. Considering that lipid peroxides are extremely reactive compounds,
they degrade rapidly into a range of metabolites. MDA is one of the best known secondary metabolites
of lipid peroxidation, and it is used as a marker of cell membrane damage [80]. In the present study,
oral treatment with cashew nuts was able to partially suppress mast cell degranulation, neutrophil
infiltration, and lipid peroxidation.

Cerulein administration is well known to induce a dysregulation of the production and secretion
of digestive enzymes, such as amylase and lipase, specifically inhibiting their secretion by the
exocrine pancreas into the digestive tract, and leading to elevation in their respective levels in
the blood circulation [81]. In parallel, pro-inflammatory cytokines play a fundamental role in the
inflammatory response associated with AP. Different clinical studies have, in fact, documented a
pro-inflammatory cytokine profile in the sera of patients with AP, including increased levels of IL-1β,
IL-6 and TNF-α [82,83]. This profile was also observed in the present study. Importantly, cashew nuts
were able to decrease the cerulein-induced levels of amylase and lipase as well as the levels of IL-1β,
IL-6 and TNF-α.

AP being an oxidative stress condition, the Nrf2/Keap1 signaling pathway is activated in the
pancreas, but this not sufficient to prevent the disease [12]. Several studies have shown that the
hyper-stimulation of Nrf2 via plant-derived natural compounds such as visnagin or hydroxytyrosol
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could be a promising strategy against the excessive oxidative stress that characterizes AP [41,84,85].
In the present study, we found that cashew nuts treatment was able to promote Nrf2 nuclear
translocation and to induce the expression of the Nrf2-regulated factors HO-1 and Mn-SOD in both
pancreas and lung.

Another pathway that recently attracted attention is NRLP3, and it has been recently demonstrated
that NLRP3 modulation may be a promising strategy to alleviate AP and ALI [86,87]. Inflammasome
formation starts with the interaction of NRLP3 with ASC, which in turn recruits and activates
procaspase-1 to active caspase-1, converting the cytokine precursors pro-IL-1β and pro-IL-18 into
mature and active IL-1β and IL-18, respectively. The activation of these cytokines leads to a series of
cellular responses that induce a very strong inflammatory response in the cell which can culminate
in its death [88–93]. Researchers have focused their attention on the role of the inflammasome in the
initiation or evolution of disorders with a high impact on public health, such as metabolic pathologies,
cardiovascular diseases, inflammatory issues, and neurologic disorders [20]. It has been shown that
the NLP3-induced caspase-1-mediated activation and secretion of IL-1β and IL-18 plays a key role
during the development of AP [11]. In the present study, we found that the levels of NLRP3, ASC
and caspase-1 were significantly increased after cerulein induction, and that cashew nuts considerably
diminished this increase in both pancreas and lung.

5. Conclusions

Considering the key role played by inflammation and oxidative stress in several diseases,
antioxidant and anti-inflammatory dietary compounds are a main research attention is focus.
Antioxidant treatment is believed to have great prospects, since its therapeutic efficacy has already been
demonstrated in several experimental settings of AP. Nuts are one of the main sources of polyphenols
in the diet worldwide. The present work adds further support to the concept that natural-based
compounds can be useful for the treatment not only of pancreatitis but also of the lung complications
associated with it. Specifically, compounds present in cashew nuts could be a useful adjunct to mitigate
the inflammation and oxidative stress that underlie these conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/10/992/s1,
Figure S1: Experimental protocol of cerulein-induced acute pancreatitis (AP). AP was induced by cerulein
hyperstimulation through ten hourly intraperitoneal (i.p) injection at the dose of 50 µg/kg. Cashew nuts were
given 30 min and 2 h after the first cerulein injection. Animals were euthanized 1 h after the last injection, and
samples of blood, lung and pancreatic tissue were preserved for further study.
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