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Summary

Successful merging of chemical and biotechnologi-
cal operations is essential to achieve cost-efficient
industrialization of bio-based processes. The demon-
stration of the use of syngas, derived from micro-
wave assisted pyrolysis of municipal solid waste, for
the improved growth and poly-3-hydroxybutyrate
production in Rhodospirillium rubrum, stands out as
an example of the synergistic contribution of chemi-
cal engineering and applied microbiology to sustain-
able biomaterial manufacturing, paving the way to
similar applications for other syngas derived biopro-
ducts.

Great efforts have been devoted in the past decades to
develop biotechnology-based factories, so called biore-
fineries, which convert renewable raw materials into
valuable chemicals. In a fine combination of chemical
engineering and applied microbiology, Revelles et al.
(2016) validate the use of syngas, derived from micro-
wave assisted pyrolysis of municipal solid waste (MSW),
for Rhodospirillium rubrum growth and production of
poly-3-hydroxybutyrate (PHB), a reference bio-based
and biodegradable plastic (Zinn et al., 2001).
In contrast to plant oils, grains and sugars used as fer-

mentation substrates in first generation refineries, resid-
ual biomass-rich matrixes, such as MSW or sewage
sludge, bear great potential as feedstocks for second
generation plants, thanks to their generalized availability,
vast surplus and food-chain independent origin. However,

direct processing is hindered by their intrinsic complex
composition, reduced carbon content and recalcitrance to
hydrolysis. Syngas (CO+H2) obtained by thermochemical
conversion of these wastes, offers the advantage of
yielding homogeneous composition and higher carbon
source concentration (Drzyzga et al., 2015).
Previous contributions have shown how microwave

assisted pyrolysis (MIP) for syngas production results in
reduced waste volumes, rapid and selective heating and
improved quality of the final products in comparison to
conventional pyrolysis, together with portable and cost-
efficient processes for in situ treatment of waste (Ben-
eroso et al., 2014, 2015). Revelles et al. (2016) effec-
tively utilize this stream for the first time with R. rubrum
cultures for biomass and biodegradable plastic synthe-
sis. From the present results, noteworthy is the fact that
MIP syngas is not only consumed faster than synthetic
syngas (1.3 times more in light, and twice as fast in
darkness) but also provides increased yields on bio-
mass, demonstrating a more efficient assimilation of the
carbon fraction in the gas effluent.
Rhodospirillium rubrum is a versatile non-sulphur bac-

terium that can grow in aerobic or anaerobic conditions,
the latter allowing the expression of photosynthetic path-
ways resulting in its distinct purple-red colour. Anaerobic
growth also enables CO and CO2 assimilation, both in
light and darkness. The ability of R. rubrum for produc-
ing PHB when grown on syngas has been described
(Do et al., 2007; Choi et al., 2010), and makes this sin-
gular bacterium, together with other syngas-converters
such as Clostridium ljungdahlii (K€opke et al., 2010;
Schiel-Bengelsdorf and D€urre, 2012), a valuable biocata-
lyst for third generation, gas based biorefineries.
Results from Revelles et al. (2016) demonstrate that

R. rubrum can readily use synthetic or MIP syngas, in a
broad range of compositions and operational conditions,
light or darkness. In this way, syngas streams with lower
CO and CO2 content can also be assimilated into biomass
and long-chain hydrocarbons. Interestingly, low molecular
weight hydrocarbons, found as minor impurities in MIP
syngas, do not adversely affect bacterial growth either.
The adaptability to variations in feedstock composition, in
terms of lower carbon substrate concentrations and resis-
tance to impurities, is shared by other gas-fed systems,
such as the conversion of methane from biogas streams
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by methanotrophic cultures, again for biomass and PHB
synthesis (del Cerro et al., 2012; Rostkowski et al., 2012).
In comparison to the chemically catalysed syngas conver-
sion into higher molecular weight compounds, as in the
Fischer-Tropsch process, and apart from obvious lower
energy requirements, the amenable and resilient charac-
ter of R. rubrum as a biocatalyst is the basis of a major
competitive advantage of the overall process.
The creation of PHB out of cheap and widely available

renewable resources, such as syngas, is a major and criti-
cal step to ultimately launch these ever-promising materials
towards massive commercial production (Chen, 2009).
Indeed, it is well known that raw materials contribution
accounts for more than a third of operational costs in PHB
manufacturing (Solaiman et al., 2006). Syngas fermenta-
tion stands out as a breakthrough technology for the cost-
effective generation of chemicals and fuels from a wide
range of low-cost feedstocks, including MSW, but also
industrial waste, agricultural biomass and industrial off-
gases. Syngas fermentation has already been demon-
strated at commercial scale for ethanol, and is underway
for other building blocks, such as 2,3-butanediol (K€opke
et al., 2011). In this context, the fact that Revelles et al.
(2016) achieve production of PHB from microwave syngas
is particularly relevant: since microwave assisted pyrolysis
overcomes limitations of conventional pyrolysis (Fern�andez
et al., 2011), it seems reasonable to expect that MIP syn-
gas fermentation benefits from an enhanced overall pro-
cess efficiency. Most probably, MIP syngas is also a
worthy substrate for other relevant syngas-based biopro-
cesses, as the ones involving the Wood-Ljungdahl pathway
(K€opke et al., 2010). Therefore, the validation by Revelles
et al. (2016) of the usefulness of MIP syngas as a fermen-
tation substrate for PHB production opens the door to simi-
lar applications for other syngas derived bioproducts.
Undoubtedly, both strain and process development

strategies will further promote this approach. Synthetic
biology and omics tools are being intensively exploited to
expand the knowledge base on R. rubrum and to increase
PHB productivity by remodelling bacterial metabolism (Jin
and Nikolau, 2012; Heinrich et al., 2015; Klask et al.,
2015; Revelles et al., 2016). An intrinsic limitation of the
process, substrate solubility, may be overcome with novel
reactor configurations and feeding strategies (Munasinghe
and Khanal, 2010). In this sense, the Revelles et al.
(2016) contribution paves the way for improved PHB pro-
duction using syngas from MSW, as an example of sus-
tainable biomaterial manufacturing through biotechnology.
In conclusion, novel chemical and biotechnological

processes are required to bring cost-efficient bio-based
plants to industrial reality. The success of such hybrid
biorefineries will stand on the synergistic contribution of
both chemical and fermentative processes. Revelles
et al. (2016) demonstrate in this article that emerging

chemical processing technologies, such as microwave
assisted pyrolysis, can supply valuable substrates for
existing biorefinery platforms. At least as importantly,
versatile R. rubrum is shown to integrate the fluctuations
in syngas composition to constant conversion, becoming
a tuning-filter for biomass and biomaterial production.
May there be many more such new applications for this
and other (old) bacteria.
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