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Abstract

The brain is highly energy consuming, therefore is under strong selective pressure to

achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency

as a design principle for cortical activities has been rarely studied. Especially it is not clear

how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing,

oscillations and neuronal avalanches. Here we demonstrate that these prominent properties

can be simultaneously observed in a generic, biologically plausible neural circuit model that

captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their

co-emergence achieves minimal energy cost as well as maximal energy efficiency on infor-

mation capacity, when neuronal firing are coordinated and shaped by moderate synchrony

to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the

form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a

foundation for further efficient information processing under energy constraint.

Author summary

The adult human brain consumes more than 20% of the resting metabolism, despite con-

stituting only 2% of the body’s mass. Most energy is consumed by the cerebral cortex with

billions of neurons, mainly to restore ion gradients across membranes for generating and

propagating action potentials and synaptic transmission. Even small increases in the aver-

age spike rate of cortical neurons could cause the cortex to exceed the energy budget for

the whole brain. Consequently, the cortex is likely to be under considerable selective pres-

sure to reduce spike rates but to maintain efficient information processing. Experimen-

tally, cortical activities are ubiquitously observed at multiple scales with prominent

features: irregular individual firing, synchronized oscillations and neuronal avalanches.

Do these features of cortical activities reflect cost-efficiency on the aspect of information
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capacity? We employ a generic but biologically plausible local neural circuit to compare

various dynamical modes with different degrees of synchrony. Our simulations show that

these features of cortical activities can be observed simultaneously and their co-emergence

indeed robustly achieves maximal energy efficiency and minimal energy cost. Our work

thus suggests that basic neurobiological and dynamical mechanisms can support the foun-

dation for efficient neural information processing under the energy constraint.

Introduction

Complex spatiotemporal patterns are ubiquitously observed in spontaneous cortical activities

in vitro and in vivo, with prominent features at multiple scales: irregular individual firing [1–3],

synchronized oscillations [4–6] and neuronal avalanches [7–10]. Specially, neuronal avalanches

form spatiotemporal clusters of synchronized activities interrupted by periods of silence, yet

individual neurons discharge spikes in a rather random way, which is close to a Poisson process

[10]. The sizes of spiking clusters in neuronal avalanches follow a power-law distribution, sug-

gesting that such activities are generated by a scale-invariant dynamics, as the system poised at

a critical state [11, 12]. Therefore, self-organized criticality has been considered as an overriding

organizing mechanism for the cortical activities at different scales [13–15].

These multi-scale cortical activities are believed to have different implications in informa-

tion processing. Firstly, irregular firing can be robustly generated in large-size networks, in

which excitatory and inhibitory currents to each neuron are dynamically balanced, as a result

to increase the accuracy and speed of information relay in terms of firing rate [2]. Secondly,

synchronous oscillations are thought to be crucial for neural integration, cognition, and behav-

ior [4–6]. Abnormally strong synchrony can indicate dysfunction of the underlying cortical

network, e.g., excessive synchrony during epileptic seizures [16] and Parkinson’s disease [17],

while abnormally weak synchrony can be associated with disorders such as schizophrenia [18]

and autism [19]. Finally, neuronal avalanches have been demonstrated to optimize the

response range of stimulus intensities [20, 21], the amount of information that can be stored

and transferred [7, 22], the variability of spontaneous synchrony [23] to allow flexible switch-

ing between states, and the information representation in an adaptive sensory neuronal net-

work [15, 24]. Consequently, complex spatiotemporal patterns are significant on numerous

aspects of neural information processing.

However, cortical activities should be constrained by its restricted energy budget. Actually,

the human brain consumes 20% of the body’s energy despite constituting only 2% of the body’s

mass. Thus, optimal brain functioning requires careful balancing of the brain’s energy budget.

Nonetheless, the brain is remarkably energy-efficient when compared to the computer CPU

[25], since neurons fire sparsely and the majority of them are at quiescent state for any given

time [26]. Cost-efficiency is therefore supposed to be an important organizing principle for corti-

cal connectivities and activities, and should be reflected in the above-mentioned features of corti-

cal activities. This concept has been extraordinarily successful in explaining brain structure,

including the scaling between white and gray matters across species [27], the spatial placement of

the neural components [28, 29] with wiring length minimization and the features of brain con-

nectome by a trade-off with functional values [30, 31]. It has also been employed to well explain

optimal behavioral patterns [32]. Therefore, it is highly desirable to investigate whether the prin-

ciple of cost-efficiency is reflected in the ubiquitously observed features in cortical activities.

To assess the impact of these dynamical features on energy consumption and information

processing, we employ a generic but biologically plausible neural circuit to compare various
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dynamical modes with different synchrony degrees. Since cortical energy usage is dominated

by the generation and propagation of action potentials and synaptic transmission, the energy

cost is generally proportional to the mean firing rate and can be roughly estimated by the spike

rate. On the other hand, information processing and transmission is limited by the repertoire

of different activated configurations available to the population, whose extent can be quanti-

fied by the entropy H, also known as information capacity [33, 34]. H is important because it

defines an upper limit on various aspects of information processing, e.g., a population with low

entropy will present a bottleneck for information transmission in the cortex. Therefore, follow-

ing Ref. [35], the energy efficiency here is introduced as information capacity per energy unit.

In this way, our results show that irregular firing, synchronized oscillations and neural ava-

lanches can be observed simultaneously in the regime of moderate synchrony, while their co-

emergence indeed robustly achieves maximal energy efficiency and minimal spike rate in com-

parison to the other synchrony regimes. The superior efficiency at moderate synchrony is

attributed to the dynamical mechanism for coordinating and shaping individual firing to

reduce otherwise redundant spikes. Thus, co-emergence of the experimentally observed multi-

scale cortical activities achieves cost-efficiency in terms of information capacity.

Results

Neural circuit model

Here we consider a generic model of neuronal networks with basic biological characteristics:

excitation-inhibition (E-I) balance, conductance-based synaptic currents and realistic synaptic

dynamics. The model was proposed in [36] to study the emergence of gamma oscillations

from sparse firing of neurons. We simulate large random networks of E-I spiking neurons

with E-I ratio γ = 4: 1 and interconnection probability C = 0.2, sketched in Fig 1A. Besides,

each neuron receives some independent external excitatory projections, which represent input

from other neural circuits or external stimuli. Neuronal spiking dynamics is described by the

integrate-and-fire (IF) model with refractory period and leaky current (an example in Fig 1B),

while conductance-based synaptic currents are used to model the synaptic transmission from

presynaptic neurons to postsynaptic neurons (details in Methods). When a presynaptic spike

arrives, the unitary conductance change is modelled as a bi-exponential function with conduc-

tion delay time τl, rise time τr and decay time τd (see Fig 1C). Moreover, the synaptic strengths

are chosen to realize an E-I balanced state, in which neurons fire irregularly [2, 37] (details in

Methods). The synaptic decay times were found important to determine the frequencies of the

oscillations [36]. In this study, we explore the parameter space of E-I synaptic decay times

(τd_e, τd_i) to investigate various dynamical modes and to study whether cost-efficiency on the

aspect of information capacity can be achieved.

Co-emergence of multi-scale cortical activities

The above model has been previously shown to generate sparsely synchronized oscillations,

which consist of irregular and sparse individual spikes but synchronized oscillating population

activities [36]. Two different underlying dynamical mechanisms have been discovered: E-I

loop for gamma oscillations (30 * 80 Hz) or inhibition-inhibition (I-I) loop for sharp-wave

ripples (*200 Hz), which happens at two different parameter regions of (τd_e, τd_i), where

excitatory currents or inhibitory currents dominate the fast dynamics, respectively [36]. Here

we focus on the former one with a continuous transition from asynchronous states to synchro-

nized states induced by the E-I loop for gamma oscillations.

In Fig 2, we show three examples with different synchrony degrees (synchrony defined in

Methods):

Multi-scale cortical activities and cost-efficient information capacity
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• Asynchronous irregular state (τd_e = 6 ms, τd_i = 6 ms);

• Moderately synchronized state (τd_e = 4 ms, τd_i = 10 ms);

• Highly synchronized state (τd_e = 2 ms, τd_i = 14 ms).

For the first case, the individual neuron fires spikes irregularly, due to the incoming E-I bal-

anced currents with their mean cancelled and large fluctuations left (Fig 2A), while the popula-

tion activity is asynchronous (Fig 2B) [37]. Secondly, individual spiking is driven by

commonly modulated E-I conductance (Fig 2C), due to the moderately synchronized popula-

tion activity (Fig 2D). The resulting currents to each neuron are tightly coupled with a little

time lag of inhibition behind excitation, closely resembling the observation in in vivo intracel-

lular recordings [38]. Finally, the fast dynamics is dominated by the excitatory currents (Fig

2E) and the population activity is highly synchronized by strong E-I loop (Fig 2F). And each

neuron is driven by the feedback currents with large E-I time lag, which allow neurons to fire

once or even more spikes in each lag window (Fig 2E). Therefore, with different parameters

(τd_e, τd_i), different cortical activities at both neuron and population levels can be simulta-

neously generated in this model.

In summary, by decreasing τd_e and increasing τd_i, stronger and stronger synchrony can be

induced in the population activities as shown in Fig 3A, while individual spikes are still irregu-

lar as shown in Fig 3B. That is because, faster excitation and slower inhibition lead to the for-

mation of a stronger E-I delayed-feedback loop [6, 36, 39]. As a result, increasing synchrony

will induce the emergence of collective oscillations, where the maximal power shifts to nonzero

frequencies in the power spectra of the population activities as shown in Fig 3C and 3D, and

the maximal power also increases with the synchrony degree as shown in Fig 3E. On the other

hand, increasing either synchrony or τd_i slows down the population rhythm (Fig 3D).

Fig 1. Schematic representation of network architecture, neuronal integration and spike, synaptic

conductance traces. (A) The local recurrent neuronal network consists of excitatory (Exc) and inhibitory

(Inh) spiking neurons with synaptic connections (blue, excitatory; red, inhibitory) and inputs from other neural

circuits or external stimuli. (B) The voltage trace of one IF neuron with refractory period and leaky current. (C)

The unitary conductance response to a pre-synaptic spike is described by a bi-exponential function with

latency τl, rise time τr and decay time τd.

doi:10.1371/journal.pcbi.1005384.g001
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Actually, after one bump of excitatory and inhibitory activities, another round cannot be initi-

ated until the residual inhibitory conductance decays to low enough values to be conquered by

the external excitatory inputs (Fig 2C and 2E). Therefore, large τd_i (*10 ms) will limit the

rhythm of collective oscillations into gamma band (30 * 80 Hz) (Fig 3D), which is thought to

be important for sensory processing, motor activity, and cognitive functions [5].

Moreover, synchronized oscillations with different synchrony degrees temporally split popu-

lation activities into random clusters, presenting subcritical, critical, or supercritical avalanche

dynamics. Here the avalanches are characterized following the spike-based avalanche analysis

in vivo of pyramidal neurons [10] (details in Methods). The subcritical dynamics has an expo-

nentially decaying avalanche size distribution; the supercritical one has much more chance of

large-size avalanches, while the critical dynamics shows a power-law avalanche size distribution.

The avalanche size distributions for the above three examples are plotted in Fig 3F. We can find

that the moderately synchronized case is critical, while the asynchronous one is subcritical and

Fig 2. Multi-scale dynamics of E-I balanced network with various synchrony degree. Left panel: asynchronous state

(τd_e = 6 ms, τd_i = 6 ms); Middle panel: moderately synchronized state (τd_e = 4 ms, τd_i = 10 ms); Right panel: highly

synchronized state (τd_e = 2 ms, τd_i = 14 ms). (A, C, E) Time series of membrane potential, input conductances, and input

currents of a randomly selected neuron. (B, D, F) Network activity. Top, raster plot of a subset 500 neurons (Exc 400 (blue), Inh

100 (red)); bottom, the average excitatory and inhibitory population activity in 1-ms bins; inset, autocorrelation (AC) of the

excitatory population activity. Middle and right panels show that the population rhythm is mainly determined by inhibitory decay

time τd_i, and the delayed negative feedback from inhibitory population suppresses the firing of the excitatory population, leaving

a window for integration, whose size controls the burst of individual activities (C, E).

doi:10.1371/journal.pcbi.1005384.g002

Multi-scale cortical activities and cost-efficient information capacity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005384 February 13, 2017 5 / 28



Fig 3. Co-existence of multi-scale cortical activities at moderately synchronized states. (A) Average

pairwise 1-ms synchrony between excitatory neurons (E—E Synchrony); (B) Average CV (standard deviation/

mean) of the inter-spike intervals (ISIs) over the excitatory population; (C) Power spectra of population activity

for 3 different parameter sets indicated in (F); (D) Peak frequency; (E) Peak power. (F) Avalanche size

distributions for 3 different parameter sets. (G) Distance of avalanche size distribution from the best-fitted

power-law distribution; (H) ISI CV (red), distance from power-law (black) and peak power (blue) vs. E—E

Synchrony, showing the co-existence of irregular firing, synchronized oscillations and neuronal avalanches at

moderately synchronized states. (A, B, D, E, G) in the parameter space (τd_e, τd_i) (unit: ms).

doi:10.1371/journal.pcbi.1005384.g003
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the highly synchronized one is supercritical, which is also supported by the distributions of

spike number and duration in each avalanche, and waiting time between two consecutive ava-

lanches (see S1 Fig). The criticality at the moderately synchronized states can also be indicated

by the exponentially-modulated and small-amplitude sinusoidal autocorrelation of the excit-

atory population activity, as shown in Fig 2D, bottom inset. To more quantitatively characterize

the criticality, we introduce here a distance D of the avalanche size distribution from the best-

fitted power-law function, with respect to the average avalanche size (details in Methods). From

Fig 3G, we find that neuronal avalanche, as the critical dynamics, coincides with the moderately

synchronized states, while the subcritical dynamics occurs in the asynchronous region and the

supercritical one in the highly synchronized region. Besides, the moderately synchronized states

also correspond to the oscillation onset (also indicated in Fig 2D, bottom inset), where the oscil-

lation power goes through a clear transition from low to high as shown in Fig 3H. Therefore,

neuronal avalanches and gamma oscillations emerge jointly, which is consistent with in vivo
observations [8, 40]. Specifically, neuronal avalanches are achieved by aggregating different

groups of neurons into clusters at different time instants and sparsely synchronized oscillations

emerge when the clusters are organized with typical time-scales.

Furthermore, moderate synchrony will feedback to shape individual spikes to be irregularly

tonic with coefficients of variation (CV) close to 1 as shown in Fig 3H for the excitatory popu-

lation, where CV is defined as the standard deviation over the mean of inter-spike intervals

(ISIs) (details in Methods). Distributions of CV separately for excitatory and inhibitory neu-

rons in the various dynamical states with different synchrony degree are also given in S2 Fig

for various parameter sets (τd_e, τd_i). The distribution profiles in the critical states with moder-

ate synchrony are consistent with those of experimental data in various cortex areas, as shown

in [41, 42]. As shown in Fig 3B, CV is larger than 1 in the whole asynchronous region, indicat-

ing burst in the spikes of individual neurons, that is, several spikes in a short interval followed

by a long period of silence. And CV is larger at larger τd_e and τd_i. The generation of burst is

due to the effects of both conductance-based currents and slow synaptic conductance. Firstly,

large bumps of conductance inputs to each neuron drastically reduce neuronal effective mem-

brane time constant, so that neurons response promptly to positive currents and fire spikes

more frequently [43, 44]. Secondly, the slow synaptic dynamics will induce long time-scale

autocorrelation of net currents [45, 46], whose fluctuations drive the postsynaptic neurons to

generate grouped spikes with short ISIs in between (Fig 2A and S3 Fig). As a result, larger syn-

aptic decay time introduces longer excursion of current fluctuations and induces more bursts

in individual activities as shown in Fig 3B [46]. On the other hand, in the highly synchronized

region, the currents can also drive neurons to show burst activities (S3 Fig), because of the

large E-I time lag in currents. However, in the moderately synchronized region, bursts are

reduced by the instantaneously correlated and moderately modulated E-I currents (Figs 2C,

3H and S3 Fig). That is because the current fluctuations are smoothed out by the modulation

and neuronal integration is limited in the little E-I time lag of rising phase (Fig 2C).

Cost-efficient information capacity

To examine whether cost-efficiency can be achieved on the aspect of information capacity, here

we first introduce the definition of the population spike pattern and its corresponding energy

cost and efficiency, in analogy to the work by Levy and Baxter [35]. The population spike pattern

is defined within a time window Δτ in two scenarios: Binary scenario, each neuron has just two

states, spiking or non-spiking; Analog scenario, neuron’s state is represented by its spike count.

Assume that a resting neuron consumes r unit of energy within Δτ, due to its leaky current,

and a spike costs one extra unit of energy. In this way, 1/r measures the relative energy

Multi-scale cortical activities and cost-efficient information capacity
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constraint level on the spike pattern (details in Methods). If we consider a population with n
neurons, which fire m spikes on average in each time window Δτ, the generated pattern can be

described by its activity level ρ = m/n, energy cost E = nr + m and energy efficiency η = H/E,

where the entropy H measures the abundance of different activated configurations available to

the population, representing its information capacity (detailed formulation in Methods). Here

we just consider excitatory neurons in the pattern, so the activity level can also be given as

ρ = vE Δτ, where vE is the mean firing rate of excitatory neurons.

Actually, with the given activity level ρ, the theoretical upper-bound efficiency has been

derived by Levy and Baxter [35], based on the maximal entropy principle [47] (a unified deri-

vation also presented in Methods: Energy efficiency optimization). That is, for each given ρ,

the optimal efficiency ηopt is written as

Zopt rð Þ ¼
f rð Þ

rþ rð Þ
; in binary scenario; ð1Þ

Zopt rð Þ ¼
f r= 1þ rð Þð Þ

rþ rð Þ= 1þ rð Þ
; in analog scenario; ð2Þ

where f(ρ) = −ρlog2 ρ − (1 − ρ)log2(1 − ρ) represents the Shannon’s entropy of a binary event

with probability ρ (more details discussed in Methods: Energy efficiency optimization). Note

that the optimal efficiency is independent of the number of neurons n but dependent on the

parameter r. As shown in Fig 4, increasing r from 0 to1 will shift the value ρm for the maximal

ηopt from ρm = 0 to ρm = 0.5 in binary scenario or from ρm = 0 to ρm = 1 in analog scenario.

Therefore, a pattern with a lower firing rate vE does not always imply a higher energy efficiency

ηopt.

Generally, the spatiotemporal spike patterns should be discretized by both spatial and tem-

poral resolutions. The former can be naturally set by one neuron, while the latter needs a typi-

cal time scale. From the viewpoint of population coding, a pattern is reasonable to include the

co-activated neurons within this typical time window, which therefore should be determined

by the time scale of cross correlations between neurons [48]. In our simulation, spike series of

different neurons are coincident within 20 ms for most parameter pairs (τd_e, τd_i) as shown in

Fig 5A, thus the spike patterns can be splited into bins with Δτ = 20 as shown in Fig 5B. Such a

time scale is also biologically plausible in neural circuit, e.g., reading out the patterns by down-

stream neurons through the synaptic current time of a few milliseconds and the membrane

time of 10 * 20 ms, and learning by spike-timing dependent plasticity (STDP) [49] with preci-

sion of spike timing < 20 * 30 ms. Actually, the time window can not be larger, otherwise the

spike pattern tends to involve more than one spikes for each neuron, which is not energy effi-

cient as discussed in Methods: Energy efficiency optimization. We have also checked smaller

bin sizes for the spike patterns, and found that decreasing Δτ will weaken the advantage of the

critical regime in terms of energy efficiency, as shown in S5 Fig. Therefore, we select Δτ = 20

ms as the proper time window to split the spike trains into patterns.

From our simulations, as shown in Fig 6A and 6B, one can find that the firing rate vE is

minimal and energy efficiency ηsim is maximal in the parameter region for critical dynamics,

where irregular firing, synchronized oscillations and neuronal avalanches emerge altogether.

Actually, the inhibitory firing rate vI is also minimal in this region, as shown in S4 Fig. There-

fore, the spike patterns of cortical activities with moderate synchrony, where the prominent

multi-scale dynamical features emerge together, can achieve cost-efficiency on the aspect of

information capacity. What is more, such cost-efficiency is robust in both binary and analog

scenarios as shown in Fig 6C and 6D (more data in S6 Fig, upper panel), as long as the

Multi-scale cortical activities and cost-efficient information capacity
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parameter r is in the empirical range (0.005 * 0.1) [50–52]. These results are significant

because theoretically the optimal energy efficiency ηopt is not always achieved in the pattern

with the lowest firing rate as indicated in Eqs (1 and 2) and Fig 4.

The minimal firing rate vE in the moderately synchronized states, as shown in Fig 6C and

6D, can be ascribed to the reduction of burst activities through the specific feedback currents.

In the asynchronous states, one can find that bursts in the spike trains with intermittent peri-

ods of long silence, which is indicated in S3 Fig, make vE slightly larger than that in the critical

region. While strong synchrony also drives neurons to show burst activities and much

enhances the firing rate vE (S3 Fig), moderate synchrony is just enough to reduce the bursts,

Fig 4. Effect of relative resting energy r on optimized energy efficiency ηopt(ρ). (A, B) The optimized energy efficiency ηopt(ρ) vs.

activity level ρ for various values of relative resting energy r in both binary (A) and analog scenarios (B). Larger r shifts the value of ρm for

maximal ηopt(ρ) monotonically from ρm! 0 at r = 0 to ρm = 0.5 in binary scenario (open circles in (A)) or ρm = 1 in analog scenario (solid

points in (B)) at r!1. (C) The monotonic dependence of ρm as well as its corresponding firing rate v (v = ρ/Δτ,Δτ = 20 ms) on r in both

binary (black dashed line) and analog scenarios (black solid line). To achieve the maximal energy efficiency ηopt(ρ), the neuronal firing

rate is constrained in the range of 1 * 8 Hz for binary patterns (red dashed line) or 1 * 10 Hz for analog patterns (red solid line) with r in

the empirical range 0.005 * 0.1, respectively.

doi:10.1371/journal.pcbi.1005384.g004

Fig 5. Definition of spatiotemporal spike patterns. (A) Examples of cross-correlogram between neuron pairs for various

parameter sets (τd_e, τd_i) show that spike coincidence happens within 20-ms windows; the average firing rate of one neuron is

plotted relative to the time at which the other neuron spikes, averaged over 2000 pairs of randomly selected excitatory neurons.

Black, blue, red points are the respective subcritical, critical supercritical cases as exampled in Fig 2. Three more cases around the

critical region are shown as green points. (B) Schematics of mapping spiking patterns of 10 randomly selected neurons into binary

strings; black, patterns without any spike; blue, binary patterns with spikes.

doi:10.1371/journal.pcbi.1005384.g005

Multi-scale cortical activities and cost-efficient information capacity
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which will be generated by fluctuating and balanced currents in the asynchronous states, but

avoids to induce burst, when each neuron receives the currents with just a little E-I time lag in

the currents (Fig 2C; S3 Fig). Therefore, the moderate synchrony can both coordinate and

shape individual spikes to reduce the bursts and render the firing rate vE to be minimal in this

critical region, as shown in Fig 6C and 6D. Besides, in the critical region, slower population

rhythm at larger τd_i further lowers vE, as indicated in Fig 6A.

Such reduction of burst activities also makes the critical dynamics with moderate syn-

chrony to achieve maximal energy efficiency ηsim robustly, as shown in Fig 6C and 6D. As ana-

lyzed in Methods: Energy efficiency optimization, the upper bound ηopt can only be achieved

when neurons are active independently with an identical probability, so the energy efficiency

ηsim in our simulations is reduced from the corresponding upper bound ηopt by two main

sources of correlations—the temporal correlation due to burst and synchronization among

neurons. Actually, as shown in S7 Fig from the simulation, increasing CV decreases the energy

efficiency in the asynchronous states (synchrony degree < 0.1) for both binary and analog sce-

narios and various r.
Specifically, in the binary scenario with r = 0, the effect of burst on reducing energy effi-

ciency can be isolated by eliminating the redundant spikes, because just one spike fired by

each neuron contributes to the simulated entropy Hsim in each time window Δτ. If these

redundant spikes were not taken into consideration in the energy cost, then the energy effi-

ciency can boost from ηsim = Hsim/m to Bηsim = Hsim/mn, with B = m/mn denoting the burst

Fig 6. Cost-efficient information capacity in the critical region. (A) Average excitatory firing rate vE; (B)

Energy efficiency ηsim in analog scenario at r = 0; (C, D) Energy efficiency ηsim at various r (colors) and

average excitatory firing rate vE (black) vs. E—E Synchrony in both binary (C) and analog (D) scenarios. Cost-

efficiency is achieved robustly in the critical region across the empirical range of r. n = 40 for all patterns. (A, B)

in the parameter space (τd_e, τd_i) (unit: ms).

doi:10.1371/journal.pcbi.1005384.g006

Multi-scale cortical activities and cost-efficient information capacity
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level and mn representing the average number of spiking neurons in each time window Δτ.

Thus the reduction of energy efficiency due to the burst can be given as

RB ¼ Hsim=mn � Hsim=m ¼ B � 1ð ÞZsim: ð3Þ

Except for the burst, the other temporal correlation in individual spiking series seems to be

ignorable, which can be inferred from the dependence of the probability p0 of empty patterns

on the number of spiking neurons mn at various sample size n, as shown in Fig 7. The depen-

dence is fitted well with the ideal case of sparse patterns (mn� n)

p0 ¼ 1 � mn=nð Þ
n
� e� mn ; ð4Þ

where neurons fire spikes in a random way. Thus, in the asynchronous states, neurons seem to

be active in a random way except for the burst activities. Therefore, the remaining gap between

Bηsim and ηopt can be approximately ascribed to the synchronization, given as

RS ¼ Zopt mn=nð Þ � BZsim; ð5Þ

yielding the total reduction of energy efficiency as

Zopt m=nð Þ � Zsim m=nð Þ � Zopt mn=nð Þ � Hsim=m ¼ RB þ RS: ð6Þ

Fig 7. Probability of empty patterns. Dependence of the probability p0 of empty patterns on the number of

spiking neurons mn for and the subcritical state in our simulations at various sample size n. Dashed line

represents the ideal case with all neurons firing randomly. Parameter set (τd_e, τd_i) is indicated by the triangle

in Fig 6A and 6B.

doi:10.1371/journal.pcbi.1005384.g007
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As shown in Fig 3H, red, burst activities can be shaped by moderate synchrony in our simu-

lations, and thus there is a trade-off of their contributions to the reduction of energy efficiency,

as shown in Fig 8A for the case r = 0. Interestingly, the total reduction ηopt − ηsim (or RB + RS) is

just right minimized in the critical region, as shown in Fig 8B for both binary and analog cases.

Actually, in the later case, burst activities also limit the available configurations, whose effect is

similar to that by synchronization, although different spike counts within Δτ represent different

patterns and spikes are not redundant any more. Such mechanism is robust to minimize the

total reduction R and then to maximize the simulated energy efficiency ηsim for any r chosen

from the empirical range (0.005 * 0.1), even though larger r shifts the maximum of ηopt to

larger ρ, as indicated by the solid lines in Fig 8C, or to the corresponding subcritical and super-

critical regions in the parameter space (τd_e, τd_i), as shown in S6 Fig bottom panel. Thus, the

energy efficiency reduction ηopt − ηsim keeps minimal in the critical region in both binary and

analog scenarios, as shown in Fig 8D, and the simulated energy efficiency ηsim perserved maxi-

mal in the critical region pretty well for r ranging from 0.005 to 0.1, as shown in S6 Fig top

panel. Therefore, the critical dynamics can robustly achieve a maximal energy efficiency ηsim.

Furthermore, the spike patterns generated by the critical dynamics are sparse. Specifically,

the minimal firing rate vE reaches around 3 Hz (Fig 6A), against 30 * 80 Hz of the primary

Fig 8. Trade-off in energy efficiency reduction. (A) Energy efficiency reduction by burst and

synchronization in binary scenario; (B) Energy efficiency reduction is minimal in the critical region in both

binary and analog scenarios; r = 0 for (A, B). (C) Comparison of simulated energy efficiency ηsim with the

upper bound ηopt at various states for various r. The optimum is represented by solid lines and the

simulated by symbols. (D) ηopt − ηsim vs. r in both binary (open circles) and analog (solid points) scenarios.

Energy efficiency reduction keeps minimal in the critical region at various r in both scenarios. (C, D)

Parameters (τd_e, τd_i) are indicated in Fig 6A and 6B with corresponding symbols; n = 40 for all patterns.

doi:10.1371/journal.pcbi.1005384.g008
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population rhythm (Fig 3E), indicating that a single pyramidal cell fires only once in every

10 * 20 population cycles, which is consistent with the experimental observation [53]. This

implies that the activity level in each configuration is low (ρ = ΔτvE * 0.06), suggesting that

such spatiotemporal spike patterns can be reconciled with the ‘sparse coding’ scheme [26, 54,

55], where a small proportion of neurons fire at any one time and a few spikes can be distrib-

uted among a large number of neurons in many different ways. Interestingly, despite being

very sparse, the critical dynamics still frequently generates readable configurations with large

number of neurons simultaneously activated. Actually, as shown in Fig 9, the frequency of

large number of activating neurons, which is comparable to the experimental observation [48],

is 2-order larger than that of the asynchronous case. Therefore, such critical dynamics not only

achieves cost-efficiency on the aspect of information capacity, but also is feasible for informa-

tion processing.

Discussion

To summarize, biologically realistic synaptic dynamics in E-I balanced networks provides a

scheme to generate cortical activities with prominent multi-scale features: irregular individual

firing, synchronized oscillations and neuronal avalanches. Interestingly, the generated spike

patterns can simultaneously achieve the lowest mean firing rate and the maximal energy effi-

ciency on the aspect of information capacity. Therefore our work establishes the link between

Fig 9. Spiking neuron number distribution. Probability distributions of the activated neuron number for the

selected states, indicated in Fig 6A and 6B with the corresponding symbols. n = 40 for all patterns. The

distribution in the critical region is close to the experimental data [48] (red).

doi:10.1371/journal.pcbi.1005384.g009
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the underlying design principle of cost-efficiency and the generically observed features of cor-

tical activities. Such cost-efficient neural dynamics are caused by an E-I delayed-feedback loop

with suitable strength, and the resulted moderate synchrony can coordinate irregular neuronal

spikes into neuronal avalanches and shape them to reduce otherwise redundant spikes. Here

we argue that such cost-efficient spike patterns could provide a foundation for further efficient

information processing, learning and memory by employing sensitive, flexible and coherent

responses in the network with low-rate and sparse firing. In the following, we go further to dis-

cuss the novelty of our results with comparison to previous understandings of the dynamical

mechanism underlying the co-emergence of multi-scale cortical activities. Then we will discuss

the potential benefits of cost-efficient cortical activities in information processing and the cost-

efficiency in the co-organision of cortical connectivities and activities.

Comparisons to previous understandings

Neuronal avalanche has been widely studied in models, such as the random branching model

[7], the excitatory neuronal network model with short-term synaptic plasticity [13] and the E-I

balanced Ising model [56]. However, most previous work treats neuronal avalache as the state

with a critical activity level, therefore the critical states generated in these models are always

asynchronous without displaying oscillations. On the other hand, synchronized oscillations

are mainly investigated by the interplay between excitatory and inhibitory population, empha-

sizing the role of inhibitory neurons [38, 57]. Such model can reconcile irregular individual fir-

ing and synchronized population oscillations. To this end, we suggest here the critical

synchronization to account for the co-emergence of these salient dynamical features. That is,

E-I balance and suitable E-I synaptic dynamics induce E-I population oscillations, which mod-

erately modulate the feedback currents with a little E-I time lag, and drive neurons to fire irreg-

ularly and continuously in the form of avalanches. Unfortunately, we should point out that the

analytical understanding of neuronal response to such correlated and modulated E-I inputs is

highly challenging, partly because of the complicate interaction between multiple time scales

of synaptic filters and the high-conductance membrane [44]. Therefore, how all of these fea-

tures can be simultaneously reconciled at this critical state is still unsolved analytically.

Nonetheless, the co-occurrence of moderate synchrony and critical states is not only to

occur in the model here, but also can be found in a broad class of network models, e.g., one

recent example in Ref. [58] and a current-based neuronal network model with simulation

results shown in S8 Fig. Here the critical states with neuronal avalanches are considered as the

onset of population oscillations, and Fig 3(A), 3(E) and 3(H) show that the moderate synchro-

nous state occurs at the oscillation onset. This scenario has been employed to analyze the pop-

ulation frequency close to the critical points via linear stability analysis, when the model here

was first introduced by Brunel and Wang [36]. What is more, the corresponding normal form

at such critical points was also derived in by Brunel and Hakim [57, 59] for different models,

with the generic underlying dynamical mechanisms of I-I loop or E-I loop, and different syn-

aptic or voltage integrative (current-based or conductance-based model) mechanisms.

Note however, that the critical states in the current-based model can occur in the states with

a relatively wide range of synchrony, not only the moderately synchronized states but also some

state with rather weak synchronization (Synchrony measured in 1-ms window can be low to

the value *0.01, see S8 Fig. (F)). The underlying mechanism can be attributed to the effective

time scale τeff of membrane potential integration. In the current-based model, τeff is equal to the

membrane time constant τE (discussion focusing on excitatory neurons, but it is the same for

inhibitory neurons), while in the conductance-based model, teff ¼ tE= 1þ GEE
i þ GEI

i

� �
, which

is dynamical with dependence on the total incoming conductance, and can be reduced to 1 * 2
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ms in the so-called high-conductance states [43, 44, 60]. Therefore, in the conductance-based

model, the population activity should be coordinated into a group with strictly moderate 1-ms

pairwise synchrony to support the critical dynamics with neuronal avalanches. However, in the

current-based model, due to much larger and constant τeff, the population oscillation may

induce the cross-correlation between neuronal spiking in larger time lags, which is suitable to

organize the population activity in order to support critical dynamics with neuronal avalanches,

even though synchronization in the 1-ms window can be rather weak. Therefore, such critical

dynamics can occur in the states with a wide range of synchrony. As discussed above, it is still

hard to analyze neuronal response to such correlated, balanced and modulated E-I inputs. We

hope our work will stimulate more theoretical analysis on the intricate relationships among

these properties.

Actually, I-I loop can also generate sparsely synchronized oscillations, and we have also

simulated the transition due to the I-I loop. It is found from the simulation that the firing rate

change in this transition is abrupt, which is in some sense like the subcritical Hopf bifurcation

in terms of the macroscopic state. This is totally different from the one due to the E-I loop,

which can be described as a supercritical Hopf bifurcation, where the oscillation amplitude

increases gradually from 0 and we can find a large parameter regime for the critical states due

to the effects of finite system size and external noise. Therefore, there is little critical regime for

the transition due to the I-I loop. It is not clear now why they are so different, because the

reduced equation derived by Brunel and Hakim [57] has shown that the dynamics of the popu-

lation averaged firing rate goes through a supercritical Hopf bifurcation in a simplified and

purely inhibitory neuronal network. Thus, it is not clear which property of our model makes

the transition due to the I-I loop as a subcritical Hopf bifurcation, which is often accompanied

by a hysteresis. It is also unclear how to investigate such kind of hysteresis in the neuronal net-

work dynamics and what is its functional role in the cortex. This topic will be our further work

in future.

On the other hand, previous studies in both experiments and theoretical models have

shown that mutual information or entropy measures has a maximum at criticality or avalanche

dynamics [7, 22, 61]. However, all of those studies consider the scenario of the critical point in

a transition from a quiescent state to a fully activated state in a driven system [7, 22, 61]. As dis-

cussed above, we are here considering the transition from an asynchronous state to a highly

synchronized state. Thus, our results do not contradict with previous facts. Furthermore, our

results are not only to extend the existing understanding, but to start from the basic idea of the

first fundamental principle?cost-efficiency, and demonstrates that there exists one biological

plausible neuronal network model which can accomplish this principle under the constraint of

commonly observed multi-scale dynamical features of cortical activities. Therefore, the novelty

of our results is completely not mitigated by the existing facts. Different from the usual view

that entropy measures show a maximum at critical points or avalanche dynamics, here we also

study the nontrivial change of the firing rate and study the energy efficiency as the ratio of the

entropy over the energy (linearly dependent on the firing rate). Different from the common

view that the firing rate increases monotonically during the transition, here the firing rate and

firing patterns have a nontrivial trade-off since moderate synchrony can coordinate and shape

irregular individual activities to simultaneously minimize firing rate (by reducing the redun-

dant spikes) and reduce the entropy under the corresponding rate (due to synchronization),

and it is the trade-off in the critical regime that robustly maximize the energy efficiency. Such

a trade-off shown in Fig 8, to our best knowledge, has not been discovered yet. Besides, the pre-

vious experimental observation is obtained from the electrodes’ signals, like LFPs [7, 22]. So

our results are expected to be further tested in the experiments with neuronal resolutions.

Multi-scale cortical activities and cost-efficient information capacity
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Functional benefits in information processing

The E-I balanced network has been shown as an efficient candidate for rate coding and infor-

mation transmission [2, 62]. Such rate sensitivity also provides a dynamical basis for orienta-

tion selectivity without the need of neural maps [63]. Moreover, the sensitivity of neuronal

response to weakly correlated inputs can surprisingly induce highly nontrivial patterns [64,

65].

On the other hand, activity in gamma frequencies is thought to play a major role in the

propagation of information across cortical areas [66–69]. Synchronous spiking during gamma

activity is supposed to allow these neurons to efficiently cooperate in the recruitment for their

postsynaptic targets, thereby facilitating the transmission of information, and also regulate the

efficiency, thereby contributing to the merger, or ?binding?, of information originating from

distinct regions. And such information transmission during gamma oscillations depends on

the precise timing of the oscillation. However, even within a specific cortical location, the

instantaneous frequency of gamma oscillations changes from one moment to the next, and

this ongoing modulation in oscillation frequency (or phase) affects the precise timing of neu-

ronal spiking with that cortical location, thereby altering the efficacy with which information

is transmitted to downstream regions.

In consistent with previous in vivo observations [70], cycle-to-cycle fluctuations in the oscil-

lation amplitude reflect underlying fluctuations of both excitatory and inhibitory synaptic cur-

rents, yet excitation and inhibition remain balanced during each oscillation cycle. What is

more, such fluctuation can be maximized at the critical states, as reflected in the dynamical

properties of neuronal avalanches. Thus, the instantaneous E-I balance in the critical dynamics

may translate ongoing fluctuation of oscillation amplitudes into the variability of inter-event

interval or oscillation phase [70].

Therefore, co-emergence of these salient cortical activities may provide a dynamical sub-

strate for signal transmission with high flexibility and capacity, while neuronal spikes are

sparse and irregular.

Finally, the temporal correlation of spikes is crucial for spike-timing dependent plasticity

(STDP), which is a solid biophysical substrate for learning [71]. STDP can also feedback to

drive the network into the critical state with moderate synchrony, which is at the border

between synchronization and desynchronization [72]. Thus, a recurrent network endowed

with STDP could self-organize into the critical dynamics, and then provide the dynamical

foundation for efficient learning. On the other hand, the oscillation frequency could also make

impact in the learning process. Of special interest are the beta/gamma-band (13 * 30/

30 * 80 Hz) oscillations, where two avalanches are separated by a few tens of milliseconds

(15 * 80 ms). As a result, synapses within the same cluster will be altered significantly by

STDP, while the synapses crossing two different clusters are slightly modified. Thus a network

endowed with STDP could evolve into modules with stronger connections within a cluster

and relatively weaker connections between clusters, providing a potential substrate for memo-

rizing each signal in each cluster.

Co-organization of network structures and activities

In our further work, preliminary numerical simulations indicate that such cost-efficient criti-

cal states are robust in 2-dimensional lattices, whose connection probability decay exponen-

tially with distance. If the neural circuits are geometrically constrained and the wiring is

required to be economical, a good candidate for the realistic network structure is the hierarchi-

cal module, featured by dense, short-range connections and sparse, long-range connections

[30, 31]. Our previous work has shown that such connection topology can increase the range
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of parameters for critical dynamics and therefore supports its robustness, because the module

renders the activities hard to spread beyond the local modules to the whole network [73, 74].

In this way, the geometrical constraint is likely to further shape the spike patterns. Therefore,

it is significant in the future to study the cost-efficiency on both cortical connectivities and

activities.

Methods

Recurrent E-I network model

The model studied here was introduced in [36], whose biological basis and related discussions

can be dated back to the work by Amit and Brunel [75, 76]. While the model did not consider

all the anatomical and neurobiological details, it captures essential features in neuronal spik-

ing, synaptic dynamics and network coupling, as detailed in the following realistic properties:

• Neuronal property: leaky integrate-and-fire neurons with realistic membrane time con-

stants, resting membrane potential, spike threshold, reset potential and refractory periods

for pyramids and interneurons (fast spiking interneuron with short membrane time

constant);

• Synaptic property: realistic synaptic time courses with synaptic time constants: latency, rise

time and decay time taken from slice data;

• Network property: realistic connection probability and E-I ratio in population size.

In particular, we model large recurrent networks with excitatory (Exc) and inhibitory (Inh)

neurons (N = 2500, NE: NI = 4: 1), randomly connected with a given connection probability

C = 0.2. Each neuron receives on average KE excitatory and KI inhibitory synaptic inputs from

other neurons within the network, and also KO excitatory synaptic inputs from outside, mim-

icking connections within the same cortical area and inputs from other areas in the cortex (KO

= KE = 400, KI = 100), respectively. The external synaptic inputs are modelled as uncorrelated

Poisson-type spike trains, with input rate fex = 2.5 Hz for each connection.

Both excitatory and inhibitory neurons are simplified as leaky integrate-and-fire neurons.

The dynamics of sub-threshold membrane potential VE (VI) for excitatory (inhibitory) neu-

rons are described as

tk
dVk

i

dt
¼ VL � Vk

i þ GkE
i tð Þ EE � Vk

i

� �
þ GkI

i tð Þ EI � Vk
i

� �
; ð7Þ

GkE
i tð Þ ¼ tk

X

j2@Oi

X

n

gkO þ
X

j2@Ei

X

n

gkE
 !

sE t � tjn
� �

; ð8Þ

GkI
i tð Þ ¼ tk

X

j2@I i

X

n

gkIsI t � tjn
� �

; ð9Þ

where i = 1, . . ., NE, and k = E, I.
Here gEO, gIO, gEE, gEI, gIE, gII denote the synaptic strengths of conductance for external

input to Exc, external input to Inh, Exc to Exc, Inh to Exc, Exc to Inh and Inh to Inh. Their val-

ues are set to satisfy the balanced condition [2, 77], e.g., gEO = 0.05, gIO = 0.08, gEE = 0.04, gIE =

0.08, gEI = 0.6, gII = 0.96, in units of the resting membrane conductance gL = 10 nS. EE (EI) is

the reversal potential for excitatory (inhibitory) synaptic currents, with EE = 0 mV, EI = −70

mV. One corresponding current-based neuronal network model is also employed to
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investigate the multi-scale activities, whose results are summarized in S8 Fig. The model is sim-

ilar to the conductance-based model, only with the last two Vk
i for both excitatory and inhibi-

tory synaptic currents in Eq (7) replaced by the averaged potentials hVi, which is set to be hVi
= −60 mV for all cases. Though the modification of the model appears small, but the dynamical

features of the current-based and conductance-based models can be quite different, because

the latter model has an intrinsic dynamics of the so-called effective time scale for membrane

potential integration, which depends on the total incoming conductance [43, 44, 60].

The membrane time constants are set as τE = 20 ms, τI = 10 ms, and the leaky potential is

VL = −70 mV. When the membrane potential reaches the spike threshold θ = −50 mV, a spike

is emitted, the membrane potential is reset to −60 mV, and synaptic integration is halted for 2

ms (1 ms) for excitatory (inhibitory) neurons, mimicking the refractory period in real

neurons.

@O i, @E i, @I i denote the set of incoming external, excitatory, inhibitory neighbors, respec-

tively. sE(t − tjn), sI(t − tjn) are the time courses of synaptic conductance induced by the nth pre-

synaptic spike coming at tjn from jth excitatory or inhibitory incoming connection,

respectively. They are described as a delayed difference of exponentials with three parameters:

latency τl, rise time τr, and decay time τd. They are given as

sk tð Þ ¼
Y t � tlð Þ

td � tr
exp

�

t � tl
td � exp

�

t � tl
tr

0

B
@

1

C
A; ð10Þ

where k = E, I and Θ(t) is the Heaviside function, with Θ(t) = 0 for t� 0 and Θ(t) = 1 for t> 0.

For both excitatory and inhibitory synapses, τl = 1 ms and τr = 0.5 ms. The decay times τd_e,

τd_i for excitatory and inhibitory synapses are employed as parameters around typical values

(2 * 5 ms for τd_e [78, 79], 5 * 15 ms for τd_i [80, 81]) for investigating the network dynam-

ical modes.

Simulation methods

Simulations are done using a finite difference integration scheme based on the second-order

Runge-Kutta algorithm with time step dt = 0.05 ms [82, 83]. Each network is simulated for

2000 s with the initial 1 s discarded. Networks are simulated on a cluster of 16 nodes (8 proces-

sors each node) running Linux, using custom written codes in C++.

Autocorrelation of population activity

The instantaneous population activity A(t) is determined by the number of spikes in the full

network per 1-ms bin. The autocorrelation of the population activity in the insets in Fig 2B,

2D and 2F is defined as [62]

ACk tð Þ ¼
1

hAk tð Þi
2T

XT

t¼1

Ak t þ tð Þ � hAk tð Þi½ � Ak tð Þ � hAk tð Þi½ �; ð11Þ

where k = E, I and hAk(t)i is the mean activity of kth population.

Irregularity of individual spikes

For each neuron, inter-spike interval (ISI) is measured by the time distance of two consecutive

spikes, each of which has a precise spiking time. The irregularity of individual spikes is charac-

terized by the coefficients of variation (CV) of the ISI distribution, which is the ratio of the

standard deviation (SD) to the mean of the ISI distribution. CV values close to 0 indicate
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regular spikes, values near 1 indicate irregular spikes, and values much larger than 1 indicate

bursts. For burst activities, the neuron is likely to fire several spikes in a short interval followed

by a longer period of silence. The averaged CV over the excitatory population is used to char-

acterize the irregularity of individual activities throughout the population.

Synchrony index of spike trains

The spatiotemporal clustering of individual spikes is characterized by the pair-wise spiking

synchronization. We adopt the average instantaneous cross-correlation of neuronal spiking

time to quantify the degree of synchrony. The pair coherence between neuron i and j is defined

as

Kij ¼

Pl
k¼1

Bi kð ÞBj kð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

k¼1
Bi kð Þ

Pl
k¼1

Bj kð Þ
q ; ð12Þ

where Bi(k) (Bj(k)) is the spike train of neuron i(j). Bi(k) = 0 or 1 (k = 1, . . ., l), represents no

spike or one spike generated in the kth 1-ms bin.Kij measures the probability of neuron i and j
spiking together within 1-ms bins, and the average over all pairs Kij is taken as the synchrony

index.

Peak frequency analysis

The series of population firing rate with the mean detrended are Fourier transformed to calcu-

late the power spectrum. To estimate the peak frequency, a Gaussian kernel is used to smooth

the power spectrum and then to catch the peak frequency and peak power.

Neuronal avalanches definition and quantification

Following recent observation of spike-based neuronal avalanches in vivo [10], in which just

spikes of pyramidal neurons are taken into consider, we here also define neuronal avalanches

using spikes in excitatory population. The window size δt is employed to bin the spike train of

the whole excitatory population. An avalanche is defined as a sequence of consecutive non-

empty bins, flanked by empty bins.δt ranges from the simulation step size dt to 20 dt (from

0.05 ms to 1 ms), and the results are almost the same.

Here the avalanche size s is measured as the number of neurons firing in an active period.

Due to individual burst activity in some cases, a neuron may fire several spikes in this period.

We have also defined the avalanche size as the total number of spikes in this sequence and

found there is no qualitative difference in our results. The duration of the avalanches and the

waiting time between two consecutive avalanches are also examined.

To characterize neuronal avalanches, the distribution P(s) of avalanche sizes is first visually

inspected and then quantified by the distance from the best-fitted power-law distribution

Pfit(s), which is defined as the ratio of the average size difference per avalanche to the average

size of the best-fitted power-law distribution, as follows:

D ¼
PN

s¼1
sjP sð Þ � Pfit sð Þj

PN
s¼1
jsPfit sð Þj

: ð13Þ
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Energy efficiency of information capacity

Spike trains of excitatory neurons are binned by windows of Δτ = 20 ms into sequences of

spike count (s = 0, 1, . . ., 10) in analog scenario or binary sequences of spiking (1) and non-

spiking (0) in binary scenario. In binary scenario, in case where there is more than one spike

in a bin, we denote it as ‘1’. Information theoretic quantities such as the entropy depend on the

full distribution of states for the population. Estimating these quantities could be difficult,

because finite data sets lead to systematic errors. In this work, we perform long time simula-

tions (2000 s) and sample n excitatory neurons’ spike trains to investigate the spike patterns.

Here the sampled size is set as n = 40, and the number of available configurations is very large.

We try our best to reduce the statistical variability by taking 100 random samples and averag-

ing the obtained entropy values of each subset of chosen neurons.

We denote p0 as the probability of the empty configuration with no spike, and correspond-

ingly pi as the probability of ith unique nontrivial configuration with mi spikes distributed in n
sampled neurons during the 2000 s simulation time. Fig 5B presents one schematic example of

the binary spike patterns of 10 sampled neurons. Then the information capacity can be defined

as the entropy of all these configurations

H ¼ �
X

i

pilog
2
pi: ð14Þ

In each time window Δτ, each neuron, spiking or not, costs r energy unit due to the leaky

currents and one spike costs one extra unit of energy. Then, the average energy expansion per

configuration is given as

E ¼
X

i

mipi þ nr ¼ mþ nr; ð15Þ

where m = ∑i mi pi is the average spike count over all configurations. Here, the energy effi-

ciency is defined as the ratio of information capacity to energy cost, as follows

Z ¼ H=E ¼ H= mþ nrð Þ; ð16Þ

with the unit bits/energy. In this way, the spike pattern is constrained by the activity level

ρ = m/n, and 1/r measures the relative energy constraint on the spike pattern. If r!1, the

spikes expend no extra energy and the energy has no constraint on the spike pattern. If r = 0,

the energy cost of resting neurons can be ignored, then the energy efficiency is simplified as

η = H/m, which characterizes how much information one spike can express. Decreasing r
increases the energy constraint on the energy efficiency of the spike patterns. Empirically, r
cannot be ignored, which ranges from 0.005 to 0.1 [50–52].

Energy efficiency optimization

The optimization of energy efficiency provides its theoretical upper bound with given ρ, which

can be expressed as

Zopt rð Þ ¼ max
fpig

Z ¼
�
P

pilog
2
pi

mþ nr
ð17Þ

with given spike expenditures m = ∑i mi pi and population size n. By introducing Lagrangian

multiplier λ and μ to assume

pi ¼ e� l� mmi ; ð18Þ
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such optimization subject to the constraint of spike expenditures m = ρn can be solved in both

binary and analog scenarios by the principle of maximum entropy [47].

Our results are identical with the previous work in Ref. [35], where the information capacity

is estimated by assuming independent and random neuronal activities, and the binary and

analog patterns are dealt from different perspectives: fraction of active neurons in binary sce-

nario and firing frequencies in analog scenario. Actually, both scenarios can be unified in the

unique framework of the distribution of spike patterns. Here, we derive strictly the optimal

energy efficiency with given activity level ρ = m/n in both scenarios, and summarize the results

into the formula, which can be used to discuss the significant effect of the relative resting

energy r on the constraint of activity level or neuronal firing rate.

Binary scenario. In this scenario, each neuron can be considered as a binary signaling

device with two states: spiking irrespective of the spike count in the time bin or non-spiking.

This happens where connections between neurons of upstream and downstream have short-

term depression [84, 85], where just the first spike makes a significant contribution, while the

subsequent spikes within a short time window have little effect on the downstream neurons.

To maximize the energy efficiency of binary patterns, each neuron is naturally assumed to

fire at most one spike in each pattern. Thus, the fraction of nontrivial patterns with k spikes

can be given as:

Pk ¼
X

i

d k � mið Þe� l� mmi ¼ Ck
ne
� l� mk; ð19Þ

where Ck
n ¼

n!

k! n� kð Þ!
is the number of different unique patterns with k spikes distributed in n

neurons. Then the corresponding maximization can be written as:

max
Pk

Z ¼
�
Pn

k¼0
Pklog

2
Pk

mþ nr
; ð20Þ

with Pk� 0,
Pn

k¼0
Pk ¼ 1,

Pn
k¼0

kPk ¼ m. Substituting Pk into the last two summation equa-

tions yields:

el ¼
Xn

k¼0

Ck
ne
� mk ¼ 1þ e� mð Þ

n
; ð21Þ

mel ¼
Xn

k¼0

kCk
ne
� mk ¼ ne� m 1þ e� mð Þ

n� 1
; ð22Þ

and then we arrive

l ¼ n log
n

n � m
; ð23Þ

m ¼ � log
m

n � m
; ð24Þ

which gives us the probability of the ith pattern as

pi ¼ e� l� mmi ¼ 1 � rð Þ
n� mirmi : ð25Þ

Such distribution of spike patterns shows that each neuron is to be active independently

with an identical probability ρ, which is consistent with the assumption in Ref. [35].
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So the optimized energy efficiency can be given as

Zopt rð Þ ¼
Hopt rð Þ

mþ nr
¼

lþ mm
mþ nr

log
2
e ¼

f rð Þ

rþ r
; ð26Þ

where f(ρ)� − (1 − ρ)log2(1 − ρ) − ρlog2 ρ is Shannon’s entropy function of a binary event with

probability ρ. This function tells us that the optimized entropy Hopt(ρ) can achieve the maximal

value at ρ = 0.5, where each neuron expresses one bit information and all kinds of unique

binary patterns can be generated equally.

However, the optimized energy efficiency ηopt not only depends on the activity level ρ but

also the parameter r, as shown in Fig 4. So the value of ρm for maximal ηopt depends on the

value of r. When r� ρ, the denominator in Eq 26 can be considered as constant, so the opti-

mization of energy efficiency is equivalent to the entropy optimization. In this case, ηopt peaks

at ρm = 0.5. On the other hand, when r! 0, Eq 26 can be simplified to ηopt(ρ) = f(ρ)/ρ, whose

peak is achieved at ρm! 0. It is monotonic dependence of the value ρm on r, as shown by the

open circles in Fig 4A. By setting
dZopt
dr
jrm ¼ 0, we can get the relationship between ρm and r:

rr
m ¼ 1 � rmð Þ

1þr
; ð27Þ

whose solutions are shown in Fig 4C, dashed line.

Analog scenario. This is a more general scenario where burst activity can transmit infor-

mation. In this case, the spike count sj of the jth neuron in each pattern expresses information,

therefore the activity level ρ = m/n can be larger than 1. Here, the pattern time window is Δτ =

20 ms and the excitatory neuron has a refractory period τrp = 2 ms, so we set the spike count sj
in each pattern to range from 0 to 10. In this way, the fraction of patterns with k spikes can be

given as

Pk ¼
X

i

d k � mið Þe� l� mmi ¼ Cn� 1

n� 1þke
� l� mk; ð28Þ

where Cn� 1
n� 1þk ¼

n� 1þkð Þ!

k! n� 1ð Þ!
is the number of different unique patterns with k spikes (k ¼

Pn
j¼1

sj)
distributed in n neurons. Similar to that in binary scenario, from

Pn
k¼1

Pk ¼ 1,
Pn

k¼1
kPk ¼ m,

we can get

el ¼
X10n

k¼0

Cn� 1

n� 1þke
� mk ¼ Qn

0
� 1 � e� mð Þ

� n
; ð29Þ

mel ¼
X10n

k¼0

kCn� 1

n� 1þke
� mk ¼ nQ1Q

ð

0n � 1Þ � ne� m 1 � e� mð Þ
� nþ1ð Þ

; ð30Þ

where Q0 ¼
P10

s¼0
e� ms � 1 � e� m and Q1 ¼

P10

s¼0
se� ms � e� m

1� e� m for e−μ< 1.

Then we can get

l ¼ � n log
n

mþ n
; ð31Þ

m ¼ � log
m

mþ n
; ð32Þ
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which gives us the probability of the ith pattern as

pi ¼ e� l� mmi ¼ 1 � r0ð Þ
n
r0mi ; ð33Þ

where r0 ¼ m
mþn ¼

r

1þr
.

So the maximum entropy principle [47] will lead to the optimized energy efficiency as

Zopt rð Þ ¼
Hopt rð Þ

mþ nr
¼

lþ mm
mþ nr

log
2
e ¼

f r0ð Þ

r0 þ 1 � r0ð Þr
¼

f r= 1þ rð Þð Þ

rþ rð Þ= 1þ rð Þ
; ð34Þ

which shows that the optimized entropy Hopt(ρ) achieves maximal at ρ0 = 0.5 or ρ = 1, that is

m = n, where all kinds of unique analog patterns can be generated equally. However, like that

in binary scenario, the optimized energy efficiency ηopt also depends on both activity level ρ
and the parameter r. Fig 4B shows the dependence of ηopt on ρ at various values of r and the

value of ρm for maximal ηopt is also monotonically determined by the value of r (solid points in

Fig 4B). The dependence of ρm on r can be given by the equation

rr
m ¼ 1þ rmð Þ

r� 1
; ð35Þ

whose solution is shown in Fig 4C, solid line.

Finally, the constraint of r on the activity level ρm will limit the firing rate of neurons v (v =

ρ/Δτ) ranging from 1 * 10 Hz for both scenarios, see Fig 4C.

Supporting information

S1 Fig. Distributions of neuron number, spike number, duration in each avalanche and

waiting time between two consecutive avalanches for the 3 different parameter sets in Fig

2. It is shown that the scale-free behavior in the moderately synchronized case is not reflected

in size distribution, but also in temporal dynamics, although the synchronized oscillations

start to emerge.

(TIF)

S2 Fig. Distributions of CV values for various parameter sets (τd_e, τd_i) in different

regions of synchrony degree. CV distribution for excitatory population (blue columns),

inhibitory population (red columns); The distribution profiles at critical states are consistent

with those of experimental data in various cortex areas, as shown in [41, 42].

(TIF)

S3 Fig. Bursts in individual activities manifested by ISI distribution. (A) ISI distribution of

individual spiking activities at the asynchronous state compared to that of Poisson process

with identical firing rate, shown in linear-log scales. The comparison shows us that neurons at

the asynchronous state have higher probability to fire temporally clustered spikes and also

higher probability to be silent for long periods. (B) ISI distributions in linear-linear scale

shows strong burst activity at the asynchronous state (black) and highly synchronized state

(red), which is reduced by moderate synchrony at the critical state (blue).

(TIF)

S4 Fig. Inhibitory mean firing rate. Due to faster spiking of inhibitory neurons (membrane

time constant: 10 ms for inhibitory neurons and 20 ms for excitatory neurons), excitatory and

inhibitory populations are analyzed separately. (A) The average firing rate vI of inhibitory pop-

ulation is about twice of the excitatory one vE, but both have similar distribution shape in the

whole parameter space (τd_e, τd_i). (B) The average firing rate vI of inhibitory population is also
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minimal in the critical regime.

(TIF)

S5 Fig. Effect of different bin sizes for the spike patterns on the energy efficiency ηsim. It is

shown that decreasing the bin size will weaken the advantage of the critical regime in terms of

energy efficiency.

(TIF)

S6 Fig. Robustness of maximal energy efficiency ηsim in the critical region. The simulated

energy efficiency ηsim (top panel) and the optimal one ηopt with its corresponding activity level

(bottom panel) of analog patterns in the parameter space (τd_e, τd_i) (unit: ms), for various val-

ues of r indicated in the plot. It shows that ηsim preserves maximal in the critical region pretty

well for r ranging from 0.005 to 0.1, although larger r will shift the maximum of ηopt to the sub-

critical as well as supercritical regions with larger activity level or firing rate.

(TIF)

S7 Fig. Effect of individual firing bursting on the energy efficiency for both binary and

analog scenarios and various r. For the asynchronous states with synchrony degree less than

0.1, increasing the averaged CV over the excitatory population will decrease the energy effi-

ciency for both binary and analog scenarios and various r.
(TIF)

S8 Fig. Asynchronous irregular states and co-occurrence of neuronal avalanches and mod-

erate synchrony in the current-based neuronal network model. The model’s details are

described in Methods: Recurrent E-I network model. (A) Raster of an excitatory subpopula-

tion in the asynchronous irregular states with bursts in individual neuron’s spiking; (B) The

averaged CV over the excitatory population in the parameter space (τd_e, τd_i); One can find

that indivdual spiking behaviours are also shaped by the synchrony (compared with (E)). (C)

Avalanches size distributions for 3 different states: subcritical, critical and supercritical states

as also indicated in (F) (unit for both τd_e and τd_i: ms); (D) Distance D of avalanche size distri-

bution from the best-fitted power-law distribution; (E) Average pairwise 1-ms synchrony

between excitatory neurons (E—E Synchrony); (F) Distance D from power-law distribution vs.
E—E Synchrony, showing the co-existence of neuronal avalanches and moderate synchrony.

The three solid dots correspond to the three cases shown in (C), with respective colors.

(TIF)
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