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Abstract. 	The	generation	efficiencies	of	mutation-induced	mice	when	using	engineered	zinc-finger	nucleases	(ZFNs)	have	
been	generally	10	to	20%	of	obtained	pups	in	previous	studies.	The	discovery	of	high-affinity	DNA-binding	modules	can	
contribute	to	the	generation	of	various	kinds	of	novel	artificial	chromatin-targeting	tools,	such	as	zinc-finger	acetyltransferases,	
zinc-finger	 histone	 kinases	 and	 so	 on,	 as	 well	 as	 improvement	 of	 reported	 zinc-finger	 recombinases	 and	 zinc-finger	
methyltransferases.	Here,	we	report	a	novel	ZFN	pair	that	has	a	highly	efficient	mutation-induction	ability	in	murine	zygotes.	
The	ZFN	pair	induced	mutations	in	all	obtained	mice	in	the	target	locus,	exon	17	of	aminopeptidase	Q	gene,	and	almost	all	
of	the	pups	had	biallelic	mutations.	This	high	efficiency	was	also	shown	in	the	plasmid	DNA	transfected	in	a	cultured	human	
cell	line.	The	induced	mutations	were	inherited	normally	in	the	next	generation.	The	zinc-finger	modules	of	this	ZFN	pair	are	
expected	to	contribute	to	the	development	of	novel	ZF-attached	chromatin-targeting	tools.
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Engineered	zinc-finger	nucleases	 (ZFNs),	which	consist	of	a	
DNA-binding	module	of	multiple	C2H2	zinc-finger	motifs	

and	a	FokI-derived	DNA	endonuclease	unit,	can	 induce	a	DNA	
double-strand	break	(DSB)	in	any	target	locus	in	diverse	cell	types	
and	living	organisms	[1–12].	In	mice,	the	induction	of	ZFNs	into	
zygotes	can	generate	genome-modified	mice	 inexpensively	and	
rapidly,	and	so	far,	diverse	gene-modified	mice	have	been	generated	
by	ZFNs	[1–3,	12].	Engineered	DNA-binding	modules	can	also	be	
used	for	a	variety	of	artificial	chromatin-targeting	proteins	by	attaching	
enzymes	other	 than	DNA	endonucleases.	Engineered	zinc-finger	
DNA-binding	modules	(ZF-binding	modules)	have	already	been	
applied	to,	for	example,	zinc-finger	recombinases	and	zinc-finger	
methyltransferases	[13–18].	A	recent	report	on	a	novel	construction	
method	for	ZFNs,	by	which	arbitrary	ZFNs	can	be	synthesized	rapidly,	
repeatedly	and	inexpensively	[12],	suggests	a	wider	application	of	
ZF-binding	modules	 to	artificial	chromatin-targeting	proteins	 in	
various	research	fields.
To	generate	an	artificial	chromatin-targeting	protein,	an	enzyme	

is	attached	to	a	DNA-binding	module	through	an	appropriate	amino	
acid	linker.	Several	improvements	in	various	areas,	such	as	the	length	
and	configuration	of	the	linker	and	modifications	of	the	enzyme,	
are	considered	necessary	to	obtain	suitable	molecules	[17,	19].	In	

these	trial-and-error	processes,	the	presence	of	high-affinity	DNA-
binding	modules	should	be	advantageous	in	obtaining	an	efficient	
architecture.	Therefore,	the	discovery	of	high-affinity	ZF-binding	
modules	can	contribute	to	the	generation	of	various	kinds	of	novel	
artificial	chromatin-targeting	tools,	such	as	ZF	acetyltransferases,	
ZF	deacethylases,	ZF	histone	kinases,	ZF	phosphatases	and	so	on,	
as	well	as	the	improvement	of	reported	zinc-finger	recombinases	and	
zinc-finger	methyltransferases.	However,	it	is	difficult	to	design	a	
highly	efficient	ZFN	pair	in cellulo	using	the	information	from	in 
vitro	affinity	assays.	Previously,	the	binding	of	zinc-finger	motifs	
to	various	triplet	sets	with	high	affinity	by	in vitro	screening	was	
reported	[21–27],	but	not	all	ZF-binding	modules,	which	consist	of	
high-affinity	zinc-finger	motifs,	have	a	high	affinity	for	target	DNA	
sequences	in cellulo,	because	of	the	chromatin	state	[27–29]	or	the	
“context-dependent	effect”	of	 the	flanking	DNA	sequences	[20].	
The	mutation-generating	efficiencies	of	regular	ZFNs	are	usually	
less	than	25%	of	obtained	pups	[12],	and	the	highest	efficiency	for	
a	reported	ZFN	has	never	exceeded	70%.
In	the	present	study,	we	report	a	novel	ZFN	pair	with	a	highly	

efficient	mutation-induction	ability	in	murine	zygotes.	We	constructed	
a	ZFN	set	for	exon	17	of	the	mouse	4833403I15Rik	gene,	known	as	
aminopeptidase	Q	(Aqpep),	and	found	that	all	of	the	obtained	pups,	
which	were	derived	from	zygotes	injected	with	the	ZFN	mRNA,	
exhibited	 induced	mutations	on	 the	 target	 locus.	These	 induced	
mutations	were	inherited	in	the	next	generation.	In	addition,	the	high	
affinity	of	the	present	ZF-binding	module	pair	was	compared	with	
that	of	a	previously	reported	ZF-binding	module	pair	having	a	high	
affinity	score	by	a	single-strand	annealing	(SSA)	assay	using	partial	
eGFP-coding	plasmid	DNA	in	order	to	clarify	the	“context-dependent	
effect”	of	the	DNA	sequence.
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Materials and Methods

Ethics statement
All	animal	care	and	experiments	conformed	to	the	Guidelines	for	

Animal	Experiments	of	ahe	University	of	Tokyo	and	were	approved	
by	the	Animal	Research	Committee	of	the	University	of	Tokyo.

Construction of plasmid DNAs
The	left	and	right	ZFN	plasmids	were	constructed	by	the	overlap	

extension	PCR	and	TA	cloning	(OLTA)	method	according	to	a	previous	
report	[12].	Constructed	DNA	sequences	and	predicted	amino	acid	
sequences	are	shown	in	Supplementary	Figs.	1	and	2	(online	only).	
For	construction	of	SSA	reporter	plasmid	DNA,	two	overlapped	
fragments	of	eGFP	ORF	(1	to	601	and	120	to	710)	were	cloned	by	
PCR	using	primers	(EGxxFP	Fw1	and	Rv1	and	EGxxFP	Fw2	and	Rv2)	
shown	in	Supplementary	Table	1	(online	only).	Each	PCR	amplicon	
was	joined	at	the	BamHI	site	and	inserted	into	the	EcoRI	site	of	a	
pCAGGS	vector.	The	forward	and	reverse	target	oligonucleotides	
shown	in	Supplementary	Table	1	(Aqpep	insert	and	Rosa26	insert)	
were	annealed	and	ligated	at	the	BsmBI	site	of	the	plasmid	vectors.	
These	vectors	were	sequenced	using	a	commercial	sequencing	kit	
(Applied	Biosystems,	Foster	City,	CA,	USA)	and	a	DNA	sequencer	
(Applied	Biosystems)	according	to	the	manufacturer’s	instructions.

In vitro synthesis of RNA, microinjection and generation of 
genome-modified mice
ZFN	mRNAs	were	synthesized	in vitro	according	to	a	previous	

report	[12].	Ten	micrograms/milliliter	of	left	and	right	ZFN	mRNAs	
were	mixed	at	a	ratio	of	1:1,	and	the	mRNA	solution	(about	4	pl)	was	
microinjected	into	the	cytoplasm	of	C57BL/6NCr	zygotes	obtained	by	
natural	mating	and	oviduct	flushing.	After	microinjection,	the	zygotes	
were	cultured	in	M16	medium	for	24	h,	and	10	to	12	embryos	that	
reached	the	2-cell	stage	were	transferred	into	each	oviduct	of	0.5	dpc	
pseudopregnant	ICR	female	mice.	Pups	were	obtained	by	natural	
childbirth,	and	their	genomic	DNAs	were	extracted	from	their	tails.	
Mutation	induction	in	the	pups	was	evaluated	by	direct	sequencing	
of	genomic	PCR	products	using	each	of	the	4	forward	and	4	reverse	
primers	shown	in	Supplementary	Table	1	as	appropriate.

SSA assay using eGFP reporter plasmids
SSA	assays	using	eGFP	reporter	plasmid	DNAs	were	performed	

according	to	previous	studies	[22,	30]	with	some	modifications.	
Briefly,	250	ng	of	reporter	plasmid	vector	and	200	ng	of	left	and	right	
ZFN	plasmid	vectors	were	transfected	into	1	×	105	of	HEK293	cells	
with	Lipofectamine	LTX	according	to	the	manufacturer’s	protocol.	
Forty-eight	hours	after	transfection,	confluently	grown	cells	were	
fixed	with	3.5%	PFA	in	PBS,	and	then	the	fluorescent	signals	were	
observed	using	a	confocal	laser	scanning	microscope.	Three	rounds	
of	experiments	were	performed,	and	obtained	fluorescent	signals	were	
measured	by	ImageJ	and	analyzed	statistically	by	Student’s	t-test.

Results

First,	left	and	right	ZFN	plasmids	on	exon	17	of	mouse	Aqpep	
were	constructed	by	the	OLTA	method	(Fig.	1,	Table	1)	[12].	The	
mRNAs	of	the	ZFN	pair	were	injected	into	C57BL/6NCr	mouse	

zygotes,	and	after	these	embryos	were	transferred,	16	live	pups	were	
obtained.	The	mutation	induction	in	the	obtained	pups	was	assessed	
by	the	direct	sequencing	of	genomic	PCR	products,	which	revealed	
that	all	of	the	pups	had	diverse	mutation	patterns	(+4	to	–2350)	in	the	
target	locus	(Fig.	2A).	Three	of	the	obtained	pups	were	monoallelic	
and	showed	a	wild-type	allele	with	a	mutation	allele	by	PCR	direct	
sequencing,	but	the	other	13	pups	showed	only	mutation	alleles	that	
indicated	biallelic	mutations.
One	male	having	5	base	deletions	and	16	base	deletions	in	each	

allele,	respectively,	and	one	female	having	the	same	2	base	deletions	
in	both	alleles	were	mated,	and	the	 inheritances	of	 the	mutation	
allele	were	assessed	in	the	next	generation.	The	F0	mutations	were	
naturally	inherited	in	the	next	generation,	but	one	unexpected	mutation	
pattern	was	observed	in	one	F1	pup,	indicating	mosaicism	in	germ	
cells	of	 the	male	(Fig.	2B).	There	was	no	apparent	phenotype	in	
F0	and	F1	pups.
The	binding	of	zinc-finger	proteins	to	their	target	DNA	is	known	to	

be	affected	by	their	chromatin	states,	such	as	DNA	CpG	methylation	
and	histone	modifications	[27–29].	Therefore,	 in	order	 to	clarify	
whether	the	high	activity	level	of	the	present	ZFN	pair	depends	on	
the	high	affinity	of	the	ZF-binding	modules	for	the	target	sequences	
or	not,	we	compared	the	DSB-induction	activity	of	the	present	and	
previous	ZFNs	for	Rosa26	[12],	which	showed	mutation	induction	
in	10–20%	of	pups	[12],	by	an	SSA	assay	using	reporter	plasmids	
with	no	chromatin	modifications	 for	 the	 targets.	No	signal	was	
observed	in	the	cells	transfected	with	only	reporter	plasmids	(Fig.	3).	
In	contrast,	the	cells	transfected	with	Aqpep	reporter	plasmids	and	
the	Aqpep-ZFN	pair	showed	significantly	higher	levels	of	signaling	
than	the	cells	transfected	with	the	Rosa26	reporter	plasmid	and	the	
Rosa26-ZFN	pair	(Fig.	3).	These	results	suggest	that	the	Aqpep-ZFN	
pair	has	a	high	affinity	for	the	target	DNA	sequence.

Discussion

In	the	present	study,	we	found	incidentally	a	novel	ZFN	pair	that	
could	induce	an	indel	mutation	with	extremely	high	efficiency	in	a	
target	locus	in	mouse	zygotes.	Recently,	the	CRISPR/Cas	system,	
another	kind	of	engineered	endonuclease	system,	consisting	of	

Fig. 1.	 Schematics	 of	 constructed	ZFNs	 and	 the	 target	DNA	sequence.	
L1–4	and	R1–4	indicate	each	zinc-finger	motif.
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guideRNA,	a	DNA-binding	RNA	module,	and	Cas9,	a	specific	
DNA	endonuclease	binding	with	guideRNA,	was	also	found	to	be	
applicable	for	 the	generation	of	gene-modified	animals	[31–37].	
The	CRISPR/Cas	system	can	induce	indel	mutations	in	target	loci	
of	almost	all	obtained	pups	by	microinjection	of	guideRNA	and	
Cas9	mRNA	into	zygotes	in	mice	and	rats	[31–37].	The	mutation	
generation	efficiency	of	the	ZFN	pair	found	in	the	present	study	was	
comparable	to	that	of	the	CRISPR/Cas	system,	showing	the	high	
possibility	of	ZFNs	but	in	only	some	limited	cases.	We	also	showed	
the	inheritance	of	the	mutations	induced	by	the	present	ZFN	pair	

in	the	next	generation	and	the	presence	of	mosaicism	in	one	of	the	
pups.	These	characteristics	are	also	the	same	as	those	reported	for	
CRISPR/Cas	systems.
Several	methods	to	measure	the	binding	affinity	of	a	zing-finger	

motif	to	a	DNA	triplet	in vitro	have	been	reported	[21–27].	These	
assays	have	reported	zinc-finger	motifs	bound	to	specific	DNA	triplets	
with	high	affinity	[21,	22].	However,	even	though	these	high-affinity	
zinc-finger	motifs	were	joined,	not	all	of	the	ZF-binding	modules	
could	bind	to	the	target	 loci	efficiently	 in cellulo	 [27].	This	was	
attributed	to	the	“context-dependent	effect,”	which	is	the	effect	of	
other	nucleotide	sequences	flanking	the	target	triplet	on	the	binding	
affinity	of	the	zinc-finger	motif	[20].	This	indicates	the	difficulty	of	
designing	ZFN	pairs	having	high	efficiency	in cellulo	by	using	the	
information	from	in vitro	affinity	assays.	In	fact,	a	previous	study	
showed	the	number	of	quality	parameters	for	each	zinc-finger	motif	
for	DNA	triplet	binding	[21,	22].	According	to	the	score	table,	the	

Table 1.	 Amino	 acid	 sequences	 of	 DNA	 recognition	 sites	 in	
each	zinc-finger	motif	used	in	the	ZFNs

DNA	recognition	sequence 			Target	triplet	DNA
L1 DRSHLTR GGC
L2 DRSNLTR GAC
L3 QSGNLTE CAA
L4 QSGNLAR GAA
R1 QSSSLVR GTA
R2 QSGDLTR GCA
R3 QSSDLTR GCT
R4 QAGHLAS TGA

Fig. 2.	 Generation	 of	mutant	mice	 and	 their	 inheritance.	 (A)	Mutation	
patterns	 of	 mutated	 alleles	 from	 16	 obtained	 pups.	 The	 target	
loci	of	 the	pups	were	amplified	by	genomic	PCR,	and	the	PCR	
products	were	sequenced	directly.	Three	pups	were	monoallelic	
mutants,	 and	 the	other	13	were	biallelic	mutants.	Four	mutated	
alleles	were	not	defined	by	the	present	PCR	analysis.	The	vertical	
row	indicates	the	number	of	inserted	(+)	or	deleted	(–)	bases	in	
each	allele,	and	the	horizontal	row	indicates	the	number	of	alleles	
having	 the	 indicated	mutations.	 (B)	 Inheritance	 analysis	 of	 the	
mutations.	A	female	having	2	base	deletions	in	both	alleles	and	a	
male	having	5	base	deletions	and	16	base	deletions	in	each	allele	
were	used	as	F0	mice.	F0	mutations	were	naturally	inherited	in	all	
F1	pups,	but	one	unexpected	mutation	was	observed	in	one	pup.

Fig. 3.	 SSA	assay	of	the	Aqpep-ZFN	and	Rosa	26-ZFN	pairs.	(A)	One	
of	 the	 eGFP	 reporter	 plasmids	was	 transfected	with	 or	without	
the	corresponding	ZFN	plasmid	into	HEK293	cells,	and	then	the	
fluorescent	 signals	were	 observed	 after	 48	 h.	 (B)	Three	 rounds	
of	experiments	were	performed,	and	the	fluorescent	signals	were	
analyzed	by	 ImageJ.	The	 results	 are	 shown	as	 the	mean	+	SD.	
*	Significant	difference	(P	<	0.05).	N.S.,	no	significant	difference.
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total	numbers	of	quality	parameters	of	the	present	ZFNs,	4	and	10	for	
the	left	and	right	ZF-binding	modules,	respectively,	were	not	higher	
but	were	rather	lower	than	those	of	our	previous	Rosa26-ZFNs	(7	and	
10	for	the	left	and	right	ZF-binding	modules,	respectively),	which	
induced	mutations	in	12.5	to	22.7%	of	generated	pups.	This	shows	
clearly	that	it	is	necessary	to	predict	the	efficiency	of	ZF-binding	
modules	in cellulo	with	consideration	for	elements	other	than	the	
parameters	obtained	by	an	in vitro	affinity	assay	of	a	DNA	triplet.
The	DNA-binding	affinities	of	the	modules	are	expected	to	be	

affected	by	epigenetic	modifications	such	as	DNA	methylation	and	
histone	methylation,	phosphorylation,	acetylation	and	sumoylation	
as	well	as	 target	DNA	sequences.	We	addressed	this	 issue	in	the	
present	study	with	the	SSA	assay	using	vector	DNAs	of	the	target	
sequences	and	revealed	that	the	present	Aqpep-ZFN	pair	had	much	
higher	efficiency	than	the	previous	Rosa26-ZFN	pair,	suggesting	
that	 the	high	efficiency	is	due	mainly	to	the	affinity	to	the	target	
DNA	sequence.	Although	this	result	does	not	exclude	the	influence	
of	epigenetic	modifications	on	ZFN	efficiency,	the	importance	of	the	
context-dependent	effect	of	the	DNA	sequence	for	the	high	affinity	
of	the	ZF-binding	modules	was	indicated.
The	transcription	activator-like	effector	nuclease	(TALEN)	is	

another	kind	of	engineered	endonuclease	system	having	the	same	
FokI	endonuclease	unit	as	ZFN,	and	it	is	also	applied	to	the	generation	
of	gene-modified	animals	[38,	39].	The	transcription	activator-like	
effector,	a	DNA-binding	module	of	TALEN,	has	been	reported	to	
have	almost	the	same	DNA-binding	affinity	as	ZF-binding	modules,	
but	it	is	known	to	have	no	bothersome	context	effect	[40].	However,	
each	unit	of	the	transcription	activator-like	effector	consists	of	33–35	
amino	acids	that	recognize	only	one	base,	whereas	each	zinc-finger	
motif	consists	of	fewer	than	30	amino	acids	and	can	recognize	triplet	
bases;	therefore	a	ZF-binding	module	can	target	a	much	longer	DNA	
sequence	than	a	transcription	activator-like	effector	having	the	same	
molecular	weight.	In	addition,	it	takes	less	labor	to	construct	ZF-
binding	modules	than	transcription	activator-like	effector	modules.	
Artificial	chromatin-targeting	enzymes	other	than	endonucleases,	such	
as	methylase,	recombinase	and	acetylase,	have	been	reported	using	
only	zinc-finger	motifs	as	DNA-binding	modules	[13–19].	Recently	
a	novel	construction	method	for	ZFNs,	by	which	arbitrary	ZFNs	
can	be	synthesized	rapidly,	repeatedly	and	inexpensively,	has	been	
reported	[12].	This	method	should	accelerate	the	use	of	ZF-binding	
modules	in	a	variety	of	fields.	These	enzymes	are	attached	to	the	
DNA-binding	module	through	appropriate	linker	amino	acids,	and	
the	 length	of	a	 linker	sequence	should	be	crucial	 to	 the	enzyme	
activity.	Since	 the	ZF-binding	module	pair	we	reported	here	 is	
certain	to	bind	to	the	target	sequence,	ZF-containing	enzymes	could	
be	modified	or	improved	without	the	need	to	consider	DNA-binding	
affinity	if	the	present	ZF-binding	module	is	used.	This	module	is	
expected	to	contribute	significantly	to	further	development	of	artificial	
chromatin-targeting	proteins.
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