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Abstract

Background: Long non-coding RNAs (lncRNAs) are emerging as important regulators of various biological processes. While
many studies have exploited public resources such as RNA sequencing (RNA-Seq) data in The Cancer Genome Atlas to
study lncRNAs in cancer, it is crucial to choose the optimal method for accurate expression quantification. Results: In this
study, we compared the performance of pseudoalignment methods Kallisto and Salmon, alignment-based transcript
quantification method RSEM, and alignment-based gene quantification methods HTSeq and featureCounts, in combination
with read aligners STAR, Subread, and HISAT2, in lncRNA quantification, by applying them to both un-stranded and
stranded RNA-Seq datasets. Full transcriptome annotation, including protein-coding and non-coding RNAs, greatly
improves the specificity of lncRNA expression quantification. Pseudoalignment methods and RSEM outperform HTSeq and
featureCounts for lncRNA quantification at both sample- and gene-level comparison, regardless of RNA-Seq protocol type,
choice of aligners, and transcriptome annotation. Pseudoalignment methods and RSEM detect more lncRNAs and correlate
highly with simulated ground truth. On the contrary, HTSeq and featureCounts often underestimate lncRNA expression.
Antisense lncRNAs are poorly quantified by alignment-based gene quantification methods, which can be improved using
stranded protocols and pseudoalignment methods. Conclusions: Considering the consistency with ground truth and
computational resources, pseudoalignment methods Kallisto or Salmon in combination with full transcriptome annotation
is our recommended strategy for RNA-Seq analysis for lncRNAs.
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Background

Long non-coding RNAs (lncRNAs) are a diverse class of RNA
molecules that are >200 nucleotides in length and do not encode
proteins [1]. While functional classification is lacking for most
lncRNAs, on the basis of their genomic proximity to protein-
coding genes and the direction of transcription, lncRNAs are of-
ten classified into antisense, intronic, bidirectional, intergenic,
or overlapping RNAs [1]. GENCODE, the database that provides
annotations for human genes and transcripts, defines >14,000

human lncRNA genes (release 27, https://www.gencodegenes.o
rg). Other lncRNA databases including NONCODE [2] and Mi-
Transcriptome [3] both collect >60,000 lncRNAs. Compared with
protein-coding genes, lncRNAs are shorter, lower-expressed,
less evolutionarily conserved, and expressed in a more tissue-
specific manner [4]. lncRNAs have recently emerged as an essen-
tial class of regulatory elements for many biological processes
including imprinting, cell differentiation, and development [5].
They are often disrupted in human diseases including cancer [6].
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They may interact with DNA, RNA, and proteins, and exert reg-
ulatory roles through a variety of mechanisms. Based on their
molecular functions, lncRNA may act as (i) signals, which are
indicators of transcriptional activity; (ii) decoys, which bind to
and titrate away protein targets such as transcription factors;
(iii) guides, which direct regulatory complexes or transcription
factors to specific targets and regulate gene expression in cis or
trans; and (iv) scaffolds, which serve as central platforms where
relevant molecular components in cells are assembled [7].

lncRNAs have been shown to be important in the patho-
genesis of human diseases, especially in cancer, and many
cancer-relevant lncRNAs have been identified [8, 9]. For exam-
ple, Hox transcript antisense RNA (HOTAIR), one of the most
well-characterized lncRNAs, promotes breast cancer metastasis
through recruitment of Polycomb chromatin remodeling com-
plex to silence the HOXD gene cluster [10]. In addition, HO-
TAIR is overexpressed in breast, liver, lung, and pancreatic can-
cers [11]. CDKN2B-AS1, an antisense lncRNA encoded by the
CDKN2B locus, epigenetically silences nearby tumor suppresser
genes and promotes oncogenesis [12]. Telomerase RNA compo-
nent (TERC), the critical RNA component of telomerase poly-
merase, serves as a template for the enzyme telomerase reverse
transcriptase (TERT) to elongate telomeres. Variants and copy
number changes at the TERC locus have been associated with
cancer risk and progression [8]. The lncRNA LINC01106 is shown
to be differentially expressed in multiple cancer types including
lung adenocarcinoma and nasopharyngeal carcinoma [13, 14].
Another lncRNA, LINC01123, is among the 5 most significantly
up-regulated lncRNAs in intrahepatic cholangiocarcinoma [15].

The discovery of oncogenic and tumor suppressor lncRNAs
has led to an increased interest in the investigation of lncR-
NAs as potential cancer drug targets and biomarkers. Hence,
it is critical to accurately determine lncRNA expression in can-
cer research. RNA sequencing (RNA-Seq) has been widely used
for massive-parallel gene expression quantification. There have
been many studies that explore lncRNA expression profile in
cancer using publicly available RNA-Seq datasets such as those
generated by The Cancer Genome Atlas (TCGA), which provide
a rich source of lncRNA expression data in large cancer patient
populations [16, 17]. Among those studies, the analysis of the
lncRNA expression profile of breast cancer samples in TCGA re-
vealed different subtypes of breast cancer and subtype-specific
overexpression of HOTAIR [16]. The analysis of 13 cancer types
in TCGA revealed highly cancer site–specific lncRNA expression
and dysregulation [17].

There are 2 types of RNA-Seq protocols, depending on
whether strand specificity information of transcripts is retained
in the library preparation step [18]. The standard protocol loses
the information regarding which strand the original mRNA tem-
plate is coming from, which makes it difficult to accurately de-
termine gene expression from overlapping genes. The strand-
specific RNA-Seq protocol, such as the deoxyuridine triphos-
phate (dUTP) method, retains strand origin of transcripts by de-
grading the second strand in the complementary DNA synthesis
step. It has been shown to be more reliable in gene expression
quantification and is recommended over the standard protocol
[19]. However, the majority of TCGA samples were prepared with
non-standard RNA-Seq protocol.

Multiple tools for processing RNA-Seq data have been devel-
oped in recent years. While some studies have benchmarked
RNA-Seq analysis workflows [20, 21], their focus has been pri-
marily on protein-coding genes. There is no accepted gold stan-
dard pipeline yet that shows which method performs best to
quantify expression of lncRNAs. As the interest in studying lncR-

NAs in cancer grows, it is necessary to determine which algo-
rithms perform best in lncRNA expression quantification be-
cause it is important to understand the differences and limita-
tions of each of them and to follow the best practices of RNA-Seq
analysis.

Because of the lower expression and different properties of
lncRNAs with respect to protein-coding genes, we hypothesized
that the processing and analysis of RNA-Seq data for lncRNA
expression may be subjected to different technical biases and
challenges, and that special considerations may be necessary to
optimize the pipeline specifically for lncRNAs.

To investigate the performance of different methods on the
quantification of lncRNAs as well as the effect of different RNA-
Seq library preparation protocols, we applied 5 popular quantifi-
cation methods, Kallisto [22], Salmon [23], RSEM [24], HTSeq [25],
and featureCounts [26], on RNA-Seq samples prepared using a
standard protocol (i.e., un-stranded) and a strand-specific proto-
col. Kallisto and Salmon are so-called pseudoalignment meth-
ods because they do not align sequencing reads to the refer-
ence genome; instead, they use an expectation maximization
algorithm to iteratively assign reads to a set of compatible tran-
scripts to obtain the estimated abundances for all transcripts.
The alignment-free feature makes pseudoalignment methods
much faster than alignment-based methods such as RSEM, HT-
Seq, and featureCounts because the latter require mapping of
the sequencing reads to the genome or transcriptome, which
takes substantial time and computational resources. Among the
alignment-based methods, RSEM aligns reads to the transcrip-
tome using bowtie as the default aligner and obtains transcript-
level expression, while HTSeq and featureCounts use genome-
aligned reads to obtain gene-level expression directly. We re-
fer to RSEM as an “alignment-based transcript quantification
method” and HTSeq and featureCounts as “alignment-based
gene quantification methods.” We used 3 aligners, STAR [27],
Subread [28], and HISAT2 [29], to map the reads to the genome,
before applying HTSeq and featureCounts to count the reads
mapped to individual genes.

Data Description

Both un-stranded and reverse-stranded RNA-Seq data from
TCGA samples were downloaded from the ISB Cancer Genomics
Cloud. The other reverse-stranded dataset was downloaded
from NCBI SRA under the accession PRJEB11797. Read quality
control was performed with Trim galore [30], with the setting
”-q 20 –stringency 3 –gzip –length 20 –paired.” Afterwards the
reads were mapped to the human transcriptome (both GEN-
CODE and GENCODE combined with NONCODE) by STAR and
were further processed by RSEM [24] (version 1.3.0) to obtain
gene and transcript expression. Stand-specific option was set
as ”–forward-prob 0.5” for un-stranded samples and ”–forward-
prob 0” for reverse-stranded samples. RSEM and Polyester [31]
were then used to generate 2 sets of simulated RNA-Seq reads. In
RSEM simulation, RNA-Seq reads were generated with the com-
mand ”rsem-simulate-reads,” which takes as input abundance
estimates, sequencing model parameters, and reference tran-
scripts. The abundance estimates and sequencing model are ob-
tained by running RSEM on the real datasets mentioned above.
The total number of simulated reads for each sample is 60 mil-
lion. The simulated reads were 50 bp (simulated from TCGA
samples) or 100 bp (simulated from PRJEB11797 data) paired-end
reads. The fragment length distribution is 178 ± 60 (mean ± sd)
bp for TCGA samples and 155 ± 51 bp for the other dataset.
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In Polyester estimation, RNA-Seq reads were generated with
the command ”simulate experiment countmat,” which takes as
input the count matrix of transcripts obtained from the real
datasets. Both un-stranded and strand-specific RNA-Seq reads
were generated in RSEM and Polyester simulation. The 2 sets
of simulated samples with pre-defined gene expression levels
serve as the ”ground truth” for the evaluation of other pipelines.

Analyses
Full transcriptome annotation improves the specificity
of RNA quantification

We used RSEM [24] to simulate RNA-Seq reads based on 3 RNA-
Seq datasets: (i) 100 un-stranded samples from 10 cancer types
in TCGA, (ii) 40 reverse-stranded samples in TCGA, and (iii) 62
reverse-stranded samples from a study of Barrett esophagus and
esophageal adenocarcinoma (PRJEB11797) [32]. To evaluate the
effect that different transcriptome annotations has on the quan-
tification of gene expression, we built 3 transcriptome annota-
tion sets: (i) full annotation with all 58,288 genes in GENCODE
release 27, (ii) partial annotation containing only the 19,836
protein-coding genes, and (iii) partial annotation with only the
14,168 lncRNAs (Additional File 1).

Using the lncRNA-only annotation overestimates lncRNA ex-
pression compared to full annotation (Fig. 1, Additional File 2).
The overestimation effect using an incomplete transcriptome
annotation set can be observed for all the methods when us-
ing either un-stranded or reverse-stranded RNA-Seq libraries,
although the effect is less drastic for alignment-based meth-
ods when using reverse-stranded libraries. The effect of in-
complete transcriptome annotation is less obvious for protein-
coding genes, but there is still a slight increase of the percentage
of expressed genes when using only protein-coding annotation,
compared to full annotation (Additional Files 2 and 3). Thus, us-
ing a full annotation improves the specificity of RNA quantifica-
tion; therefore, it was used in the following analysis.

Pseudoalignment methods and RSEM outperform
HTSeq and featureCounts for lncRNA expression
quantification

Pseudoalignment methods detect expression of more genes
than alignment-based methods (Fig. 2A, Additional File 4). The
average percentage of expressed lncRNAs (fragments per kilo-
base million [FPKM] ≥ 1 in ground truth) in the simulated ground
truth ranges between 4.7% and 7.4% for the 3 RNA-Seq datasets,
which is very close to the output of Kallisto and Salmon. The
alignment-based methods detect fewer lncRNAs compared to
the ground truth, especially for un-stranded samples.

The performance of each method was further evaluated at
both sample level (Fig. 2B) and gene level (Fig. 2C). For sample-
level evaluation, only expressed lncRNAs (FPKM > 1 in the
ground truth) were kept in each sample. The concordance of
each method with the ground truth was measured by means
of Spearman’s correlation, Euclidean distance, median percent
error, and linear regression. Gene expression from Kallisto and
Salmon yields the highest Spearman’s correlation, the lowest
Euclidean distance, and the lowest median percent error with re-
spect to the ground truth. The 2 pseudoalignment methods also
have the highest level of fitness to the ground truth, in terms of
the lowest mean squared error, the highest adjusted R2 value,
and a slope value of close to 1 (Fig. 2B, Additional File 5). A simi-
lar trend can also be observed for protein-coding genes in GEN-

CODE (Additional File 6A). For gene-level evaluation, a compari-
son was performed using, for each corresponding dataset, only
those lncRNAs with median FPKM > 1 in the ground truth be-
cause genes with low read counts are likely to be noise and un-
likely to yield reliable results. The number of lncRNAs examined
ranges between 464 and 729 for the 3 RNA-Seq datasets. Kallisto
and Salmon perform better than alignment-based methods in
terms of higher Spearman’s correlation, lower Euclidean dis-
tance and median percent error with respect to the ground truth,
linear regression slope closer to 1, and higher adjusted R2 value
(Fig. 2C, Additional File 7). The fraction of genes for which the
estimates are significantly different (percent error > 5%) from
the ground truth is significantly larger in HTSeq and feature-
Counts than pseudoalignment methods. A similar trend can also
be observed for protein-coding genes in GENCODE (Additional
File 8A).

Because RSEM cannot be assessed in an unbiased manner
using RSEM-simulated datasets, we later used the Polyester-
simulated datasets to include RSEM in the benchmark. We sim-
ulated 40 samples for both un-stranded and strand-specific
protocols, and compared RSEM, pseudoalignemnt methods,
and alignment-based gene quantification methods with ground
truth. The performance of RSEM was similar to pseudoalign-
ment methods and outperformed HTSeq and featureCounts, in
terms of the percentage of expressed lncRNAs detected (Fig. 3A)
and concordance with ground truth in both sample-level (Fig. 3B)
and gene-level (Fig. 3C) comparison.

For each of the expressed lncRNAs in any of the 3 datasets,
hierarchical clustering was performed to evaluate the similar-
ity of each method’s measurement to the ground truth and
between each other (Fig. 4). Kallisto and Salmon often clus-
tered together with the ground truth. In addition, the 3 feature-
Counts pipelines (STAR+featureCounts, HISAT2+featureCounts,
Subread+featureCounts) form another cluster, while pipelines
using HTSeq loosely cluster together.

Next, we expanded our analysis and also included lncRNAs
from NONCODE, a database collecting 172,216 transcripts from
96,308 lncRNA genes (version 5) [2]. We simulated RNA sequenc-
ing reads based on both GENCODE and NONCODE gene anno-
tations and replicated the analysis for lncRNAs in NONCODE.
Similar to the results from GENCODE annotation, the 2 pseu-
doalignment methods outperform alignment-based methods in
both sample-level (Additional File 6B) and gene-level compari-
son (Additional File 8B).

Characteristics of expressed and discordant lncRNAs

Antisense and long intergenic non-coding RNAs (lincRNAs) are
the 2 major types of lncRNAs. In un-stranded samples, the mean
proportion of antisense lncRNAs in the expressed lncRNAs is
54%, which is much higher than the proportion of antisense
lncRNAs in GENCODE (39%) and the expressed antisense lncR-
NAs in reverse-stranded libraries (25–48%) (Fig. 5A). More than
three-quarters of lncRNAs have only 1 isoform in GENCODE,
while they only constitute approximately half of the expressed
lncRNAs in the 3 datasets, indicating that lncRNAs with more
isoforms are expressed at a higher percentage (Fig. 5B). In ad-
dition, shorter lncRNAs (≤1,000 nucleotides) and lncRNAs with
2 exons are expressed at a lower percentage, compared to the
distribution in GENCODE (Additional File 9).

We further investigated the features of discordant lncR-
NAs (Spearman’s correlation <0.7 compared with respect to
the ground truth), especially for alignment-based methods, be-
cause pseudoalignment methods are highly concordant with the
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Figure 1: The effect of incomplete transcriptome annotation on the expression quantification of lncRNAs. (A) Box plot of the percentage (PCT) of expressed lncRNAs

(fragments per kilobase million [FPKM] ≥ 1) detected with each tool, using full annotation or lncRNA-only annotation. The ground truth expression used for data
simulation was also plotted for comparison. Each point in the box plot represents 1 sample. For each library type, 10 samples were included in the analysis. (B) The
expression profile of lncRNAs in 1 representative sample from each of the datasets was shown with violin plot (left) and scatter plot (right), which demonstrates the
overestimation effect using lncRNA-only annotation compared with full annotation, in all 3 samples for both pseudoalignment and alignment-based methods. In

the box plots, the top and bottom of the rectangle represent the third and the first quartiles. The band inside the rectangle is the second quartile (the median). The
whiskers above and below the box show the upper and lower fences, which are 1.5 times interquartile range above the third quartile, or 1.5 times interquartile range
below the first quartile, respectively.

ground truth. In un-stranded samples, the majority of discor-
dant lncRNAs are antisense (Fig. 5C, Additional File 10). Approx-
imately 20–26% of expressed antisense lncRNAs are discordant,
while only 7–10% of expressed lincRNA are discordant, indicat-
ing that antisense lncRNAs are more susceptible to misquan-

tification from alignment-based methods in un-stranded sam-
ples. However, in reverse-stranded samples, the percentage of
discordant antisense lncRNAs is <2%, whereas the percentage
of discordant lincRNAs is still as high as 4–7% (Fig. 5D, Additional
Files 10 and 11A). Therefore, compared to un-stranded RNA-Seq,
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Figure 2: Pseudoalignment methods outperformed alignment-based methods in RSEM-simulated datasets. (A) Box plot of the percentage (PCT) of expressed
lncRNAs detected with each tool. Each point in the box plot represents 1 sample. (B) Sample-level and (C) gene-level comparison of each tool with the
ground truth. The calculation of Spearman’s correlation and Euclidean distance, and linear regression was performed using log-transformed FPKM values
reported by each tool compared with the ground truth. In sample-level comparison, only expressed lncRNAs in each sample were included in the analysis.

Each point in the box plot represents 1 sample. In gene-level comparison, lncRNAs with median FPKM > 1 in the corresponding dataset were included in
the analysis. Each point in the box plot represents 1 gene. Spearman, Spearman’s rank-order correlation; MSE, mean squared error; MPE, median percent error;
AdjR2̂, adjustedR2 .I ntheboxplots, thetopandbottomof therectanglerepresentthethirdandthef irstquartiles.Thebandinsidetherectangleisthesecondquartile(themedian).Thewhiskersaboveandbelowtheboxsh



6 Benchmark of long non-coding RNA quantification for RNA-Seq of cancer samples

Figure 3: Pseudoalignment methods outperformed alignment-based methods in Polyester-simulated datasets. (A) Box plot of the percentage of expressed lncR-
NAs detected with each tool. Each point in the box plot represents 1 sample. (B) Sample-level and (C) gene-level comparison of each tool with the ground
truth. The calculation of Spearman’s correlation and Euclidean distance, and linear regression was performed using log-transformed FPKM values reported
by each tool compared with the ground truth. In sample-level comparison, only expressed lncRNAs in each sample were included in the analysis. Each point

in the box plot represents 1 sample. In gene-level comparison, lncRNAs with median FPKM > 1 in the corresponding dataset were included in the analysis.
Each point in the box plot represents 1 gene. Spearman, Spearman’s rank-order correlation; PCT, percentage; MSE, mean squared error; MPE, median percent error;
AdjR2̂, adjustedR2 .I ntheboxplots, thetopandbottomof therectanglerepresentthethirdandthef irstquartiles.Thebandinsidetherectangleisthesecondquartile(themedian).Thewhiskersaboveandbelowtheboxs
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Figure 4: Similarity matrix of different methods. Each grid in the matrix is the

number of times that 2 methods were clustered in the same group, which is
counted from hierarchical clustering of 1,075 expressed lncRNAs in any of the 3
datasets. The group number for cutting the hierarchical clustering dendrogram
was set as 4. Euclidean distance and average linkage were used for single-gene

level clustering.

reversed-stranded protocols are better at the quantification of
antisense lncRNAs. The inferior performance of lncRNA quan-
tification in un-stranded samples is further reflected when com-
paring the number of transcripts, transcript length, number of
exons, and sequence uniqueness of expressed and discordant
lncRNAs among the 3 datasets (Figs 5C and D, Additional Files
11B–D and 12–15). The difference among the breakdown of these
lncRNA features is largely due to inaccurate quantification of an-
tisense lncRNAs in un-stranded samples (Additional File 16). For
example, of the 102 discordant lncRNAs with only 1 isoform in
un-stranded samples, three-quarters are antisense, and of the
105 discordant lncRNAs with high sequence uniqueness (>80%
unique sequences), the majority are antisense. In both cases, the
number discordant antisense lncRNAs is <3 in reverse-stranded
samples. Nevertheless, lncRNAs with very low sequence unique-
ness (<20% unique sequences) are quantified poorly in both un-
stranded and reverse-stranded samples. To summarize, anti-
sense RNAs and lncRNAs with very low sequence uniqueness
are quantified poorly by alignment-based methods, especially
in un-stranded RNA-Seq samples.

Examples of concordant and discordant lncRNAs

To demonstrate the importance of accurate lncRNA expression
quantification, we investigated the expression profile of a num-
ber of well-known lncRNAs with important functions in cancer:
HOTAIR, CDKN2B-AS1, TERC, LINC01106, and LINC01123 (Fig. 6).
HOTAIR and CDKN2B-AS1 are 2 examples in which all methods
perform equally or similarly well, although the expression lev-
els called by Kallisto and Salmon are closer to the ground truth.
Note that this is not the case for the other 3 lncRNAs. TERC,
involved in cancer progression and risk, was accurately called
by Kallisto and Salmon mostly in reverse-stranded datasets,
whereas alignment-based methods using featureCounts and
HTSeq did not correctly pick up this lncRNA. Similarly, the
lincRNA LINC01106, differentially expressed in lung adenocar-
cinoma and nasopharyngeal carcinoma, and LINC01123, dif-
ferentially expressed in intrahepatic cholangiocarcinoma, also

showed a similar pattern, in which their expression was called
accurately by Kallisto and Salmon in both un-stranded and
reverse-stranded samples but not by the other methods.

Discussion

In this work, we compared the performance of popular RNA-
Seq processing pipelines for the quantification of gene expres-
sion. In particular, we focus on cancer samples and lncRNAs,
which have not yet been studied thoroughly in previous RNA-
Seq benchmarking studies. An increasing number of studies are
using TCGA RNA-Seq data to study lncRNA expression profiles
and identify potential lncRNA biomarkers [17, 33]. These public
resources provide rich opportunities for studying the expression
and function of lncRNAs in cancer in a cost-effective way. It is
thus critical to choose the right method for accurate expression
quantification of lncRNAs.

The 2 pseudoalignment methods, Kallisto and Salmon, out-
performed alignment-based gene quantification methods HT-
Seq and featureCounts at both sample-level and gene-level com-
parison, regardless of the choice of library type (un-stranded
vs reverse-stranded), aligners (STAR, Subread, HISAT2) or tran-
scriptome annotation (GENCODE and NONCODE). Further evalu-
ation of the methods, including RSEM, on datasets generated by
Polyester showed that RSEM’s performance was similar to that of
Kallisto and Salmon. Pseudoalignment methods detected more
lncRNAs in each sample, which is similar to those levels in the
ground truth for the simulated datasets. They were also highly
concordant with the ground truth in terms of having the highest
Spearman’s correlation and the lowest Euclidean distance, es-
pecially at sample-level comparisons. When each method was
linearly regressed with the ground truth, almost all the points
from Kallisto and Salmon fell on the diagonal line, with very few
outliers (Additional File 5). The superior performance of Kallisto
and Salmon could be observed for both un-stranded and reverse-
stranded samples, for both lncRNAs and protein-coding genes
in GENCODE. Furthermore, it also held true when different tran-
scriptome annotation was used in the analysis, because a simi-
lar pattern was observed for lncRNAs in the analysis with GEN-
CODE and NONCODE transcriptome annotation.

Because both Kallisto and Salmon performed highly con-
cordantly with the ground truth, they were also highly con-
cordant with each other, as previously reported [34, 35]. They
cluster together in the method similarity matrix before cluster-
ing with the ground truth (Fig. 4). However, Kallisto was faster
than Salmon, used less memory (Fig. 7), and performed better
at sample- and gene-level comparison when examining Spear-
man’s correlation, Euclidean distance, mean squared error, and
adjusted R2 values as compared with the ground truth, espe-
cially for the 2 reverse-stranded datasets (Additional File 7).

On the contrary, alignment-based methods HTSeq and fea-
tureCounts underestimated the expression of lncRNAs. They
detected the expression of fewer lncRNA genes and they had
far more discordant genes compared to the ground truth. In
the simulated datasets, the expressed lncRNAs are mainly an-
tisense and lincRNAs. There are more antisense lncRNAs ex-
pressed in the un-stranded samples, compared to the composi-
tion of lncRNA types in the GENCODE annotation (Fig. 5A). How-
ever, >20% of the expressed antisense lncRNAs in un-stranded
samples are discordant, which is much higher than the dis-
cordance rate of expressed lincRNAs in the same dataset. This
further confirms that un-stranded RNA-Seq protocols do not
perform well for expression quantification for overlapping ge-
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Figure 5: Features of total, expressed, and discordant lncRNAs. The proportion of (A) The lncRNA type and (B) the number of transcripts of lncRNAs in GENCODE and
expressed lncRNAs in samples from the 3 datasets. Each point in the box plot represents 1 sample. (C and D) The lncRNA types, number of transcripts, and sequence
uniqueness of expressed lncRNAs (median FPKM > 1 in the dataset). Spearman’s correlation was calculated comparing each method and ground truth. Each point in

the box plot represents 1 gene. Numbers in brackets in x-axis labels are the number of genes in the category. In the box plots, the top and bottom of the rectangle
represent the third and the first quartiles. The band inside the rectangle is the second quartile (the median). The whiskers above and below the box show the upper
and lower fences, which are 1.5 times interquartile range above the third quartile, or 1.5 times interquartile range below the first quartile, respectively.



Zheng et al. 9

Figure 6: Examples of lncRNAs in cancer. The lncRNAs that were previously reported to play a role in cancer are shown in the 3 datasets. The heat maps show the
FPKM value (log transformed) obtained from each method and the ground truth. The Euclidean distance and average linkage were used for clustering.
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Figure 7: Computational resource use comparison of the tools. The box plot
shows the accuracy (Spearman’s correlation in gene- and sample-level com-
parison with ground truth), CPU time (unit: minutes), and computer memory
use (unit: GB) for each tool. The aligners (STAR, HISAT2, and Subread) and the

quantification tools (HTSeq and featureCounts) are displayed separately. The
CPU time and memory for RSEM count in bowtie, the default aligner integrated
by RSEM. In the box plots, the top and bottom of the rectangle represent the
third and the first quartiles. The band inside the rectangle is the second quartile

(the median). The whiskers above and below the box show the upper and lower
fences, which are 1.5 times interquartile range above the third quartile, or 1.5
times interquartile range below the first quartile, respectively.

nomic features such as antisense lncRNAs. The quantification
of antisense lncRNA expression is improved greatly in reverse-
stranded samples, with <2% discordance rate of expressed an-
tisense lncRNAs. The differences observed for the Spearman’s
correlation in the breakdown of lncRNA features (e.g., number
of transcripts, transcript length, number of exons, etc.) in un-
stranded and reverse-stranded datasets can be largely ascribed
to the features of the large numbers of discordant expressed an-
tisense lncRNAs in the un-stranded dataset (Fig. 5, Additional
File 16). Because antisense lncRNAs contribute to the majority of
discordant lncRNAs in un-stranded samples, reverse-stranded
protocol is recommended for future RNA-Seq experiments. Al-
ternatively, if only un-stranded samples are available, it becomes
vital to choose the right method such as Kallisto or Salmon for
the analysis because these 2 pseudoalignment methods are sel-
dom affected by the type of lncRNAs or the type of RNA-Seq pro-
tocols and have very few discordant lncRNAs, even for antisense
lncRNAs, or lncRNAs with low sequence uniqueness.

When the comparison was restricted to only the alignment-
based gene quantification methods (Figs 2 and 3), featureCounts
performed slightly better than HTSeq and also took much
shorter CPU time (Fig. 7). Subread performed slightly better than
the other 2 aligners for un-stranded samples.

It is worth noting that HTSeq is the default workflow for
TCGA data stored in the Genomic Data Commons data por-
tal. Because the majority of TCGA RNA-Seq samples were pre-
pared with un-stranded protocol, it is recommended to use
pseudoalignment methods for analysis. We have reprocessed
the TCGA RNA-Seq datasets using Kallisto with GENCODE an-
notation (version 27). The results are deposited online for the
wider research community studying lncRNAs in TCGA samples,

and we also provide a web interface to investigate and visualize
gene expression in these samples.

The comparison in this analysis was performed at the gene
level. If the goal is to examine transcript-level expression, HT-
Seq and featureCounts are not suitable for the purpose. They
are developed explicitly for gene-level read counts. When they
count the reads mapped to transcripts rather than genes, reads
mapped to exons shared by several transcripts will then be con-
sidered ambiguous and discarded by default. Kallisto, Salmon,
and RSEM are able to produce both transcript- and gene-level
expression output.

We further addressed the problem of using partial transcrip-
tome annotation (Fig. 1, Additional File 3). Full transcriptome
annotation is always recommended for RNA-Seq analysis when
it is available to improve accuracy. When studying organisms
with poorly annotated transcriptome, it is advisable to assem-
ble and reconstruct the transcriptome first. Furthermore, with
the advent of long-read sequencing technologies, more novel
transcripts are expected to be identified even for well-annotated
transcriptome such as the human. Several methods have been
developed for transcriptome assembly and reconstruction, in-
cluding Cufflinks [36], Trinity [37], TransPS [38], and DRUT [39].

One limitation of this study is that the simulated datasets are
based on polyA-selected RNA-Seq. It would be helpful to evalu-
ate RNA-Seq methods that capture more lncRNAs. However, this
study focuses on using existing RNA-seq datasets for profiling
lncRNAs in cancer. More importantly, in cancer research most
of the available datasets, including TCGA, were generated us-
ing polyA-selected RNA-Seq. Thus, our study still provides valu-
able guidelines for researchers studying lncRNAs in cancer. An-
other limitation is that only simulated data were used in the
study. Simulated data may not capture the complexity of real
data and true experimental variability. A more comprehensive
approach to complement the simulated data with experimen-
tal data should be considered in further benchmark studies [40].
More vigorous evaluation using real expression data from other
platforms and experimental validations such as reverse tran-
scriptase PCR can be carried out in future.

Reads from the lncRNAs that cannot be quantified accurately
by HTSeq and featureCounts are either aligned poorly to the
genome, or they can be properly aligned, but HTSeq and fea-
tureCounts cannot determine where to assign the reads be-
cause of overlapping annotation with other genes (Additional
File 17). The superior performance of pseudoalignment methods
and RSEM might be due to the expectation maximization algo-
rithm that they deploy, which focuses on the difficulty of accu-
rate quantification for reads that cannot be uniquely aligned to
the genome or cannot be uniquely assigned to genes. An RNA-
seq experiment can be regarded as the statistical problem of ran-
dom sampling of subsequences (i.e., reads) from spliced tran-
scripts of different length. Several of these transcripts may share
the same exact exons, bringing uncertainty to the reads drawn
from those shared exons. Thus, it is important to properly model
this statistical problem and to capture and resolve such uncer-
tainty as accurately as possible. We speculate that pseudoalign-
ment methods and RSEM methods are able to model this prob-
lem more accurately by iteratively assigning reads to a transcript
or a set of transcripts with a certain probability. Other methods
using an expectation maximization algorithm such as IsoEM [41]
might achieve similar accuracy to pseudoalignment methods
and RSEM. Furthermore, the speed improvement achieved by
pseudoalignment rather than alignment-based methods (Fig. 7)
allows the use of more robust statistical inference techniques
such as bootstrapping.
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Potential Implications

In summary, considering the consistency with the ground truth,
flexibility at both gene- and transcript-level analysis, and the
computational resource use, pseudoalignment methods Kallisto
and Salmon are recommended for RNA-Seq analysis for lncR-
NAs, with Kallisto performing slightly better than Salmon. The
full transcriptome annotation including protein-coding genes,
lncRNAs, and others is also the recommended strategy for RNA-
Seq analysis.

The large amount of data produced by next-generation se-
quencing techniques has posed great challenges for fast and
scalable data analysis. Our study findings imply that for RNA-
Seq datasets, incorporating pseudoalignment methods into the
analytical framework can achieve high accuracy with minimum
computing requirements. Moreover, with more and more RNA-
Seq datasets specifically for studying lncRNAs becoming avail-
able, our work also lays the basis for a more comprehensive eval-
uation of tools for lncRNA expression quantification.

Methods
Definitions

Here we clarify and define relevant terms. (i) Genes and tran-
scripts: a transcript, sometimes also referred to as an isoform, is
composed of exons. An exon is any part of a gene that will en-
code a part of the final mature RNA. A gene is a collection of tran-
scripts. Transcripts of the same gene often share exons. In this
study the analysis was performed at the gene level. (ii) Expressed
genes: when describing a single sample, “expressed genes” refer
to genes with FPKM ≥ 1 in that particular sample. When describ-
ing multiple samples in a dataset, “expressed genes” refer to the
genes with median FPKM ≥ 1 across the cohort of samples. (iii)
Discordant genes: these are defined as genes whose Spearman’s
correlation of FPKM values with the ground truth is <0.7, when
compared across a cohort of samples.

Reference genome and transcriptome

Human transcriptome version GENCODE release 27 (GTF file
and transcriptome fasta file) were downloaded from the GEN-
CODE FTP site. The GENCODE release 27 collects 58,288 genes
and 200,401 transcripts, among which are 19,836 protein-coding
genes (Additional File 1). If lncRNA is defined as non-coding, 3′

overlapping non-coding RNA, antisense, bidirectional promoter
lncRNA, lincRNA, macro lncRNA, sense intronic, and sense over-
lapping, there are 14,168 lncRNAs. The primary assembly of hu-
man genome GRCh38 was also downloaded from the same site.

The NONCODE database [2] collecting 172,216 transcripts
from 96,308 lncRNA genes (version 5) was downloaded from
their website and merged with GENCODE to create a new set of
transcriptome annotation. Both the GENCODE version and GEN-
CODE combined with NONCODE version were used to analyze
the datasets and simulate 2 sets of ground truth for compari-
son.

The indexes for Kallisto and Salmon were built using the
transcriptome fasta file. The indexes for RSEM and STAR were
built using transcriptome GTF file and GRCh38 genome se-
quences. The indexes for Subread and HISAT2 were built using
GRCh38 genome sequences.

Gene features (number of transcripts, number of exons, tran-
script length) were generated from GTF file using in-house
script. Unique k-mers of genes were generated using script from
Computational Genomics Analysis and Training (CGAT).

Pipelines

Nine pipelines were applied to process the datasets, including
2 pseudoalignment methods, Kallisto and Salmon; RSEM with
bowtie as the aligner; and a combination of read aligners (STAR,
Subread, HISAT2) and quantification tools (HTSeq and feature-
Counts).

Kallisto, version 0.44.0, quant mode. Default parameters were
applied. Stand-specific option was set as ”–rf-stranded” for
reverse-stranded samples.

Salmon, version 0.9.1, quant mode. Default parameters were
applied. Stand-specific option: ”-l A.” Kallisto and Salmon mea-
sure the expression level of each transcript by default. To get
gene-level expression results, the package tximport [42] was
used.

STAR, version 2.5.4a. Two-pass mode was used for mapping.
Subread, version 1.6.1. Stand-specific option was set as ”-S ff”

for un-stranded samples and ”-S rf” for reverse-stranded sam-
ples. Other settings: ”–multiMapping -B 4 -t 0 .”

HISAT2, version 2.1.0. Stand-specific option was set as ”–rna-
strandness RF” for reverse-stranded samples.

HTSeq, version 0.7.2. Mapped reads from STAR, Subread,
and HISAT2 were counted for each gene according to the GTF
file from either GENCODE or GENCODE+NONCODE annotations.
Stand-specific option was set as ”-s no” for un-stranded samples
and ”-s yes” for reverse-stranded samples.

featureCounts, version 1.6.1. Mapped reads from STAR, Sub-
read, and HISAT2 were counted for each gene according to the
GTF file from either GENCODE or GENCODE+NONCODE annota-
tions. Stand-specific option was set as ”-s 2” for reverse-stranded
samples. HTSeq and featureCounts output read count for each
gene. FPKM values were generated from read counts with in-
house scripts.

RSEM, version 1.3.0. The command ”rsem-calculate-
expression” was used together with bowtie aligner to obtain
transcript- and gene-level quantification.

To compare the computational resources required by each
tool, RNA-Seq reads from 5 original samples were chosen and
processed with each tool, with the number of threads set at 4.

Sample-level and gene-level comparison

The gene expression measured by each tool was compared with
ground truth at both sample level and gene level. In sample-level
comparison, gene expression from a single sample was com-
pared with ground truth for each method. In gene-level com-
parison, gene expression for a single gene across the samples
was compared with ground truth for each method.

Clustering and heat maps

Hierarchical clustering was performed for the sample method
matrix. Euclidean distance and average linkage were used for
both the columns and rows. The clustering dendrogram was cut
into 4 groups and the number of times that every 2 methods are
clustered together was counted and used to construct a similar-
ity matrix.

Statistical tests

The Mann-Whitney U test was used to test the difference be-
tween 2 continuous variables, and χ2 test was used to test the
difference of 2 ratios. Unless otherwise specified, all the tests
have P-values <0.001; thus, they are not explicitly explained in
the main text.
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Pan-Cancer RNA-Seq analysis

The raw RNA-Seq sequencing data of TCGA samples were down-
loaded from the ISB Cancer Genomics Cloud and processed with
Kallisto, using GENCODE (version 27) as transcriptome reference.

Availability of Source Code and Requirements
� Project name: RNASeq pipeline
� Project home page: https://github.com/gevaertlab/RNASeq p

ipeline (licence: MIT)
� Operating system(s): GNU/Linux
� Programming language: Linux/Bash, R, and Python

Availability of Supporting Data and Materials

The TCGA RNA-Seq re-analysis results and the simulated
datasets are available in the Stanford Medicine Box [43].

The web interface for investigating and visualizing individual
gene expression can be found in Zheng and Gevaert [44].

Supporting data and code are also available via the Giga-
Science database, GigaDB [45].

Additional Files

Additional File 1—The genes and transcripts in GENCODE re-
lease 27.
Additional File 2—The percentage of expressed genes using each
method and different gene annotation sets.
Additional File 3—The effect of incomplete transcriptome anno-
tation on the expression quantification of protein-coding genes.
Additional File 4—The percentage of expressed lncRNA genes
using each method and full annotation.
Additional File 5—Examples of sample-level comparison of each
method and the ground truth.
Additional File 6—Sample-level comparison of gene expression.
Additional File 7—Statistical tests for gene-level comparison be-
tween pseudoalignment methods and alignment-based meth-
ods.
Additional File 8—Gene-level comparison of gene expression.
Additional File 9—Features of total and expressed lncRNAs.
Additional File 10—Feature (lncRNA type) of discordant lncRNAs.
Additional File 11—Features of discordant lncRNAs.
Additional File 12—Number of transcripts of discordant lncR-
NAs.
Additional File 13—Transcript length of discordant lncRNAs.
Additional File 14—Number of exons of discordant lncRNAs.
Additional File 15—Sequence uniqueness of discordant lncR-
NAs.
Additional File 16—Overall feature breakdown of GENCODE, ex-
pressed, and discordant lncRNAs.
Additional File 17—Read mapping of discordant lncRNAs.
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