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Abstract

Background: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well
described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a
hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains
thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from
a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new
excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed
human remains from the site.

Methodology/Principal Findings: We undertook a detailed comparison of cranial, including a virtual endocast for the
Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same
population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and
some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique
and the results show both samples to be from the Pleistocene-Holocene transition: ,14.3-11.5 ka.

Conclusions/Significance: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave
and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North
Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong.
Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong
morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia.
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Introduction

Research about the evolution of modern humans has histori-

cally focused on the fossil records of Europe and Africa as well as

the Levantine corridor connecting them. As a result, the role of the

vast Asian continent in this evolutionary episode remains largely

unknown. Human remains from the Upper Pleistocene of South

Asia are scarce, being confined to just two sites possibly within the

33-25 thousand years (or ka) range [1]. In East Asia, human fossils

are more numerous [2], but their significance has been difficult to

assess due to poor knowledge of their geological context and

inadequate dating [1,2–3]. For clarity, we consider East Asia to

comprise the geographic region bordered by the Ural Mountains

in the west, the Himalayan Plateau in the southwest, Bering Strait

in the northeast, and extending into island southeast Asia.

One widely discussed candidate for the oldest modern human in

East Asia is the skeleton from Liujiang, southern China [2]. Yet,

the geological age of this individual has ‘‘been an everlasting

dispute since the discovery of the fossils in 1958’’ as ‘‘there is no

documentation on the exact stratigraphic position of the human

remains’’ [4, p. 62]. As a result, its estimated age lies within the

broad range of .153-30 ka [2,4]. The age of the Upper Cave
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(Zhoukoudian) remains is similarly problematic and has been a

major source of uncertainty since their discovery in the 1930s, with

estimates ranging from ,33-10 ka [2,4]. Furthermore, the Niah

Cave child from East Malaysia possesses uncertain provenience

[5]. However, a recent field and lab program aiming to assess the

stratigraphy and dating of the deposits at the site has proposed an

age of ,45-39 ka for this cranium [5].

Most other candidates for the earliest modern humans in East

Asia are similarly problematic. Among the human remains

recovered from Tabon Cave, Philippines, the only taxonomically

diagnostic specimen is a frontal bone assigned to H. sapiens [6], and

dated to 16.562 ka [7]. Moreover, the oldest specimen from the site

– directly dated to 47+11/210 ka [7] – might be from an

orangutan [6]. At Callao Cave, Luzon, a hominin metatarsal has

been directly dated to an estimated 66.761 ka [8]. This specimen is,

however, difficult to classify reliably, making its assignment to H.

sapiens uncertain [8]. A recently described individual from Tianyuan

Cave near Zhoukoudian town, northeast China, is estimated to be

,42-39 ka [9]. The Tianyuan partial skeleton comprises 34 pieces

apparently from the same individual, its femur being directly dated

to 40,3286816 cal. yr BP [9]. This specimen seems to provide the

best candidate for the earliest modern human in East Asia, but is

significantly younger (.20 kya) than genetic clock estimates for

colonisation of the region (see below). Finally, a mandibular

fragment from Zhirendong, southern China, has been dated on

stratigraphic grounds to .100 ka [10]. Unfortunately, the specimen

is fragmentary and possesses a mosaic of archaic and modern

characters also making its taxonomic status unclear [10–11].

Given ongoing uncertainty surrounding the human fossil record,

palaeoanthropologists have come to rely on the results of genetic

sequencing of samples from living populations to reconstruct the

origins of modern humans in East Asia. Genetic research suggests

that the earliest humans dispersed into Eurasia from Africa around

70-60 ka, rapidly colonising Southeast Asia and Australasia after

this time [12–15]. This seems to have been followed by a later

migration within Eurasia after 40-30 ka, adding the founding

lineages of modern Northeast Asians and Europeans [15]. Several

later migrations seem to have occurred within the region, some

associated with the Neolithic [12–14]. Finally, DNA extracted from

a .50 ka hominin fossil from Denisova Cave in Central Asia

belonging within the Neandertal lineage shares features exclusively

with Aboriginal Southeast Asians and Australasians [16–18]. This

has been interpreted as: 1) evidence for interbreeding between the

‘Denisovans’ and the earliest modern humans to colonise the region;

and 2) implying occupation of Southeast Asia by this archaic

population during the Upper Pleistocene [16–17].

Given the central importance of the East Asian fossil record to

testing regional and global scenarios of human evolution, in 2008

we began a collaborative research project with the aim of

determining the age and providing detailed comparisons of possible

Pleistocene human remains from southwest China. This paper

focuses on human remains from two localities: Longlin Cave

(Longlin or LL) and Malu Cave (Maludong or MLDG) (Figure 1).

The Longlin human remains were discovered opportunistically in

1979 by a petroleum geologist (Li Changqing) in a cave near De’e,

Longlin County, Guangxi Zhuang Autonomous Region, Guangxi

Province (Figure 1). A block of consolidated fine-grained sediment

containing the human remains, unidentifiable animal bones, charcoal

and burnt clay fragments was removed from the cave and taken to

Kunming in neighbouring Yunnan Province shortly after its

discovery. A partial mandible and some fragments of postcranial

bone were prepared from the block at this time [2], although, the

remainder of the skull and other postcranial bones were only

prepared from the sediment by our team during 2010. During

preparation we recovered a thin flowstone adhering to the surface of

the vault of the partial LL 1 skeleton, while charcoal fragments were

collected from sediment within its endocranial cavity. Association of

cranium, mandible and postcranial elements with similar preserva-

tion from within a small (,1 m3) block of sediment suggests that post-

depositional disturbance was limited. The cave has been closed to the

public and we have so far been unable to undertake research to clarify

the stratigraphy and geological context of the human remains.

Figure 1. Geographic location of Longlin and Maludong in relation to major later Pleistocene human fossil sites in mainland China.
1 = Lijiang; 2 = Longtanshan; 3 = Zhirendong; 4 = Liujiang; 5 = Maba; 6 = Ziyang; 7 = Huanglong; 8 = Salawusu; 9 = Xujiayao; 10 = Zhuoukoudian-Upper
Cave.
doi:10.1371/journal.pone.0031918.g001
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Maludong is a partially mined cave fill located near the city of

Mengzi, Honghe Prefecture, Hani and Yi Autonomous Region,

southeast Yunnan Province [2,19] (Figure 1). The site was originally

excavated in 1989 by a Chinese team including one of us (BZ), and

most of the fossil and archaeological materials were recovered at that

time [19]. Excavations during 2008 by several of the present authors

(DC, JX, AH, BK, BZ, ZY & LY) allowed for a re-evaluation of the

remaining stratigraphic section and the collection of a large number

of samples for dating and archaeomagnetic analysis. Additional

human remains were discovered during the current study, both

during our small-scale excavation (506506370 cm) for stratigraphic

analysis and from unstudied and unsorted fossil collections recovered

during the 1989 field season.

Results

Dating analyses
Radiocarbon dating of charcoal from sediment removed from

within the endocranial cavity of LL 1 provided an age of

11,5106255 cal. yr BP (OZM369) (Table 1; see also, Table S1).

Three U-Th age determinations were attempted on ,25 mg sub-

samples of the flowstone attached to the LL 1 vault (Table 2). Two

of these were too contaminated with detrital Th from cave

sediments to allow calculation of useable age estimates, but were

able to be used to derive a robust estimate of initial 230Th/232Th

activity in this contaminating phase (0.8260.20). The remaining

less-contaminated age determination has been corrected using this

figure to provide an absolute age of 7.860.5 ka (UMB03650) for the

flowstone (Table 2). The flowstone must have formed after the

skeleton was deposited, but its dating confirms the Pleistocene-

Holocene transition age based on radiocarbon dating of charcoal.

During the original excavation at Maludong three stratigraphic

layers were identified [19]. However, in our recent research on the

remaining ,3.7 m section at the site we identified 11 distinct

stratigraphic aggregates (Figure 2). AMS radiocarbon ages from 14

charcoal samples were used to determine an age versus depth

profile (Table 1, Figure 2; see also, Table S1), providing

unambiguous absolute ages for the stratigraphic units recognised

at Maludong. Radiocarbon dating of bone was unsuccessful due to

a lack of preserved collagen. A magnetic susceptibility record

corroborates the stratigraphically coherent and internally consis-

tent radiocarbon-based chronology for the site, indicating that the

dated charcoal was deposited at the same time as its enveloping

sediments (Figure 2; see also, Text S1).

Calibrated radiocarbon ages show that the entire sequence

spans the interval 17,8306240 cal. yr BP (OZM152) to

13,2906125 cal. yr BP (OZM870) (Table 1). All of the human

remains were recovered from within a series of deposits dating

from 14,3106340 cal. yr BP (OZM149; 292 cm depth) to

13,5906160 cal. yr BP (OZM145; 166 cm depth), a period of

about 720 years. Moreover, the high fine-grained ferrimagnetic

content of the deposits (Text S1), with their high magnetic

susceptibility, suggests these were formed under warm, wet

conditions, consistent with the Bølling-Allerød interstadial

(,14.7-12.6 ka [20]). Human remains recovered in situ during

the 2008 excavation and a reasonably complete calotte (specimen

MLDG 1704) derived from a subsection of these deposits dated

between 13,9906165 cal. yr BP (OZM148; 235 cm) and

13,8906140 cal. yr BP (OZM146; 200 cm) (Figure 2).

Morphological description and comparison
A full list of human remains recovered from Longlin and

Maludong is provided in Table 3. Here we describe and compare

the cranial, mandibular and dental remains, as they are the most

informative with respect to evolution and systematics. Details of

comparative samples are provided in Table 4 (see also data

Table 1. Radiocarbon age calculations (arranged by depth: see also, Table S1).{

Lab code Sample code Stratigraphic Conventional Radiocarbon Mean Calibrated Depth

Unit Radiocarbon Age Age Error Age

(Years BP) (±1s, years) (years BP, ±2s error) (m)

Longlin

ANSTO OZM369 - 10014 64 115106255 -

Maludong

ANSTO OZM870 BRRS 11425 50 132906125 20.192

ANSTO OZM143 RS 11527 51 133806125 20.737

ANSTO OZM154 RS 11675 52 135406165 20.894

ANSTO OZM144 DGCA 11874 49 137206150 21.200

ANSTO OZM145 ORS 11749 49 135906160 21.660

ANSTO OZM146 GAS 12037 54 138906140 21.995

ANSTO OZM147 GAS 11982 78 138406200 22.001

ANSTO OZM155 GAS 12020 54 138806140 22.020

ANSTO OZM148 GAS 12137 51 139906165 22.348

ANSTO OZM153 GAS 12430 57 145606425 22.398

ANSTO OZM149 ALROC 12304 59 143106340 22.919

ANSTO OZM150 OROC 13490 65 166306270 23.313

ANSTO OZM151 LGAC 13683 62 168206185 23.500

ANSTO OZM152 BASE 14699 65 178306240 23.900

{BP = Before Present (defined as 1950).
doi:10.1371/journal.pone.0031918.t001
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sources, Text S2). The grade term ‘modern’ is used interchange-

ably with H. sapiens sensu stricto (i.e. beginning with Omo-Kibish 1,

Herto and other so-called anatomically modern humans to recent

humans), while ‘archaic’ grade refers to all other hominin

specimens/taxa.

Preservation. The LL 1 partial skull (Figure 3) preserves a

mostly complete frontal squama with left supraorbital margin, but

lacks the right lateral supraorbital part and zygomatic process. The

superior section of the nasal bones and superomedial orbital walls

are present, as are the left and right frontal processes of the

maxillae. Most of the left facial skeleton is present and comprises a

nearly complete zygomatic process, alveolar process from mid-line

to M1, and a largely intact left zygomatic. The right maxilla is

incomplete save much of the lateral margin of the piriform

aperture and alveolar process. What remains has been rotated

,45u from the median sagittal plane owing to post-burial

compression. The left side (MSP to lateral) is largely free of

distortion, with the landmarks prosthion and nasospinale readily

identifiable. The tip of the anterior nasal spine is broken away, but

its base is easily discerned. The bony palate lacks most of the left

and right palatine processes. The morphology of the preserved left

maxillary tuberosity is consistent with M3 agenesis. Parts of the

sphenoids, anterior occipital, including anterior margin of the

foramen magnum, partial left occipital condyle and basioccipital

clivus remain. The temporal fragment (Figure 4) preserves a

section of the squama, the base of the mastoid process (tip broken

away), tympanic part with a damaged external acoustic meatus,

mostly complete and pathologically unmodified mandibular fossa,

base of the styloid process, vaginal process and stylomastoid

foramen, large carotid canal, preserved foramen lacerum, foramen

ovale and foramen spinosum, and a largely intact petrous part.

The MLDG 1704 calotte (Figure 5) comprises mostly complete

frontal and paired parietal bones, but lacks its occipital, temporals

and most of the sphenoids, as well as the entire viscerocranium.

Evidently the specimen lost its base and facial skeleton owing to

anthropogenic alteration, with cut-marks seen along the walls of

the vault and on the zygomatic process. Its preserved morphology

is unaffected by this alteration. The specimen is free from post-

deposition distortion as indicated by visual inspection and scrutiny

of CT-scans.

The LL 1 mandible (Figure 6) and two partial mandibles

recovered from Maludong (MLDG 1679 and MLDG 1706:

Figure 7) are also compared. Specimen LL 1 comprises a largely

complete body, but is missing its left ramus save the root and

Table 2. Uranium series results and age calculations."

Sample Lab No. & U (ngg21) [230Th/238U] [234U/238U]* [232Th/238U] [230Th/232Th] Age [234U/238U]i
{

Date (ka){

Longlin-1 UMB03649 165 0.775(09) 1.471(05) 1.0317(281) 0.8 215(42) 1.453(51)

Oct-2010

Longlin-2 UMB03650 94 0.146(04) 1.758(08) 0.0321(004) 4.5 7.8(0.5) 1.775(08)

Oct-2010

Longlin-3 UMB03651 236 1.446(11) 1.241(05) 1.5956(180) 0.9 - -

Oct-2010

"Numbers in brackets are 95% uncertainties of the given least significant figures.
*Activity ratios determined after Hellstrom [53] using the decay constants of Cheng et al. [54].
{Age in kyr before present corrected for intial 230Th using eqn. 1 of Hellstrom [55] with [230Th/232Th]i of 0.8260.20 for Longlin.
{Initial [234U/238U] calculated using corrected age.
doi:10.1371/journal.pone.0031918.t002

Figure 2. Maludong site. (A) stratigraphic sequence; (B) GIS plotted stratigraphy based on total station data and indicating excavation units and
plotted finds; (C) stratigraphic aggregates; (D) Upper and Lower age limit of calibrated radiocarbon ages; and (E) magnetic susceptibility record
(61026 m3 kg21).
doi:10.1371/journal.pone.0031918.g002
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coronoid process, and lacks the entire right ramus. The position of

the take-off of the left ramus relative to M3 makes clear that a

retromolar space would have been present (M3 being uncovered

[21]). The external surface of the symphysis has been displaced

superiorly such that the bone is out of alignment with the alveolar

process. This makes accurate assessment of chin development

problematic. The left alveolar part retains the roots and crowns of

I1, canine, P3, partial P4, M2 and partial M3. The first molar is

missing and the alveolar bone shows signs of ante-mortem tooth

loss with resorption and new bone growth/remodelling. Much of

the right body is preserved and retains the mental foramen, I1-P4

and M2 roots and crowns. The right M1 seems again to have been

lost ante-mortem, with signs of remodelling of the alveolar bone.

The transverse tori are somewhat thickened such that the internal

surface of the symphysis is not vertical, a small internal plane being

present.

Specimen MLDG 1679 (Figure 7) comprises a right mandibular

body fragment preserved from just anterior to M2, with intact M2-

M3 crowns and roots, and including a complete ramus in two

pieces. The internal morphology of the body and ramus is well

preserved including the mandibular foramen, pterygoid surface,

and coronoid and condylar parts (the former having been modified

somewhat by osteoarthritis).

Specimen MLDG 1706 (Figure 7) is a right hemi-mandible,

broken just lateral to the symphysis (left side), through to a mostly

complete ramus. The body is damaged (abraded) along its inferior

border, while scoring marks the external surface of the symphysis.

No dental crowns were recovered with the specimen, but all of the

alveoli are open and lack signs of bony remodelling, indicating a

full (adult) set of dentition would probably have been present about

the time of death. Externally, the mental foramen is present and

well preserved. Internally, the morphology of the surface of the

Table 3. Human remains recovered from Longlin and Maludong.

Locality Catalogue No. Description

Longlin LL

1 Partial cranium with left I1-M1; right I2, fragment of M1, partial mandible with left I1, canine, P3, M2-M3; right I1-I2,
canine, P3-P4 and M2, several isolated tooth fragments, almost complete left half of axis (vertebra C2), proximal ulna
fragment and several rib fragments

Maludong MLDG

1678 Femur, proximal ,Mrd

1679 Mandible, right body fragment and ramus, M2 and M3 crowns

1704 Cranium, calotte

1705 Cranial vault fragments

1706 Mandible, right hemi-mandible, no dentition

1707 Manual phalanx

1708 Cranium, zygomatic fragment

1710 Ulna, proximal fragment

1711 Manual phalanx, proximal fragment

1712 Rib fragment

1713 Cranium, maxillary body fragment, no dentition

1714 Rib fragment

1715 Rib fragment

1716 Rib fragment

1717 Femur, ,K head

1718 Sacrum, partial

1722–1730 Parietal fragments

1731–1733 Frontal fragments

1734 Occipital fragment

1735–1739 Parietal fragments

1740 Occipital fragment

1741 Parietal fragment

1742–1744 Parietal fragments

1745 Occipital fragment

1746 Frontal fragment

1747 Left M3

1748 Left upper partial premolar (P3)

1749–1750 Sternum, ,K of manubrium and ,K of body

1751 Left partial I2

1756 Sacrum, partial

doi:10.1371/journal.pone.0031918.t003
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body and ramus is clear: the symphysis expresses enlarged tori, the

mandibular foramen is clear, and the pterygoid surface and

coronoid and condylar parts are well preserved (the former being

modified slightly by osteoarthritis).

Supraorbital region. The supraorbital part of LL 1 is

conspicuous, with a well-developed glabella. It lacks the obvious

signs of division typically seen among modern humans (i.e. lacks a

dividing sulcus between medial and lateral parts), but it does thin

in the vertical dimension mediolaterally. The supraorbital torus of

MLDG 1704 is marked by a strongly developed glabella and

superciliary ridges, but also thins laterally. Its supraorbital part is,

however, divided into medial and lateral components by a distinct

sulcus, being bipartite in form. The presence of a supraorbital

torus is a condition rarely seen in recent humans [22], but is more

frequent among Pleistocene H. sapiens [23]. A bipartite

supraorbital like that seen in MLDG 1704 is characteristic of H.

sapiens and distinguishes it from archaic taxa [23].

Table 5 compares supraorbital projection and vertical thickness

dimensions. Supraorbital projection at the medial location [24] is

moderate in LL 1 (11 mm), but high in MLDG 1704 (17 mm,

measured in MLDG 1704 on CT-scans). Longlin resembles

European early H. sapiens (or EUEHS) in this regard (1363 mm;

z-score adjusted for the size of the comparison sample [25] 20.63),

while MLDG 1704 is identical to West Asian early H. sapiens (or

WAEHS) crania (i.e. Skhul and Qafzeh: mean 17 mm). Values for

both specimens are below the H. neanderthalensis (or NEAND) mean

(2062 mm), the difference from LL 1 being significant (z-score

24.27, p0.001; MLDG 1704 z-1.42). At mid-orbit [24],

supraorbital projection is comparatively weak in LL 1 (11 mm;

EUEHS z-1.58), but moderate in MLDG 1704 (16 mm), and

identical to the EUEHS mean (Table 5). In contrast, mid-orbit

projection [24] is strong in WAEHS (20 mm) and NEAND

(2262 mm; MLDG 1704 z-2.97, p0.002; LL 1 z-5.44, p,0.0001).

At the lateral position [24], projection in LL 1 is similar to EUEHS

(2063 mm; z-0.32), while in MLDG 1704 it is strong (,23 mm;

EUEHS z0.95), the specimen closely resembling WAEHS

(24 mm, n4) and NEAND (2462 mm; z-0.49; LL 1 z-2.47,

p0.009).

Vertically thickness of the supraorbital at the medial location

[24] is similar in LL 1 (15 mm) and MLDG 1704 (L 16.5/R

17 mm) to EUEHS (1763 mm; LL 1 z0.64; MLDG 1704 z-0.08)

and NEAND (1763 mm; LL 1 z-0.63; MLDG 1704 z-0.08).

Their values are, however, slightly reduced compared to WAEHS

(1863 mm; z-0.94, z-0.39). Mid-orbit thickness [24] is moderate

in LL 1 (7 mm) and similar to WAEHS (863 mm; z-0.31), but

well below the NEAND mean (1062 mm; z-1.48). In MLDG

1704, thickness at this location is marked (10/13 mm), and while

exceeding mean values for all comparative samples, it is most

similar to NEAND (z0.74; contrasting with EUEHS z3.11, p0.005;

and WAEHS z1.09). Finally, vertical thickness at the lateral

location [24] is comparatively thin in LL 1 (7 mm) and MLDG

1704 (7/6.5 mm). They both closely resemble the laterally thin

Table 4. Cranial series employed in comparisons (where data were compiled by the present authors: see Text S2 for a list of data
sources for metrical and morphological data and dating estimates).

Sample Taxon & Sample Site/series Estimated

Region Abbrev. Age (kya)

Early Homo sapiens

East Asian EAEHS Baojiyan, Chuandong, Dhongzhongyan, Du’an, Gua Gunung, Hang Cho,
Huanglong PA 842, Liujiang, Mai Da Nuoc, Minatogawa 1, 4, Moh Khiew,
Tubo, Nalai, Upper Cave Zhoukoudian 101, 103, Wushan, Wadjak

,67-10

European EUEHS Barma Grande unnumbered, 1, 2, Combe Capelle, Cotte de St. Brelade,
Cro Magnon 1, 2, 3, Mladec 1, 2, 5, 6, Predmost 1, 3, 4, 9, 10, 14, Grotte de
Enfants 4, 5, 6

,32-.20

West Asian WAEHS Skhul 2, 4, 5, 6, 9, Qafzeh 1, 2, 3, 5, 6, 7, 9 ,173-36

African AFEHS Herto BOU-VP-16/1 and Omo-Kibish 1 ,195-150

Homo neanderthalensis NEAND Amud 1, Arcy-sur-Cure, Ehringsdorf 1, 2, Forbe’s Quarry, Gibraltar 1, Guattari 1,
Krapina C, D, E, 3, 4, 6, 16, 27/28, 34.1, Krapina Par. 5, Par. 20, Par. 21, Par. 32,
Kulna, La Chapelle, La Ferrassie 1, Le Moustier, La Quina 5, 13, Le Moustier,
Monte Circeo, Neandertal, Saccopastore 1, Sal’a 1, Shanidar 1, 2, 4, 5, Spy 1–3,
Tabun 1, Vindija VI 204, 261, 293, 284–230–255–256, VI 224, VI 227, VI 261

.250-,32

East Asian Middle Pleistocene

archaic Hominins EAMPH Dali, Jinniushan, Maba, Xujiayao ,195-.104

Homo erectus sensu stricto ERECT Buku, Chenjiawo, Gongwangling, Hexian, Jianshi PA504, PA502 and PA503,
Luonan, Nanjing, Ngandong 1, 3, 5, 6, 7, 9, 10, 11, 12, 14, Sangiran 1b, 2, 3,
4, 9, 10, 12, 17, 18, 21, 22, 38, Sb 8103, T2, Sumbangmacan 1, 3, 4, Trinil II,
Wushan, Yiyuan, Yunxian, Xichuan, Zhoukoudian 1, 2, 3, 4, 5, 6, 10–13, 18,
20–33, 43–52, 69, 70–74, 80–95, 106–117, 131, 134, 136, 138, 140, 143–144,

146, Zhoukoudian reconstruction

,1600-143

Howells samples

East Asian Ainu, Andaman, Atayal, Buriat, Guam, Hainan, N Japan, Philippines,
S Japan

Recent

Australian Australia, Tasmania Recent

European Berg, Norse, Zalavár Recent

African Bushman, Dogon, Teita, Zulu Recent

doi:10.1371/journal.pone.0031918.t004

Human Remains from Southwest China

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e31918



supraorbitals of EUEHS (861 mm; LL 1 z-0.96; MLDG 1704 z-

1.20) and WAEHS (1063; LL 1 z-0.94; MLDG 1704 z-1.01). In

contrast, NEAND tori are laterally thick (1262 mm; LL 1 z-2.47,

p0.008; MLDG 1704 z-2.59, p0.006).

Vault thickness. Vault thickness measurements are

presented for LL 1 and MLDG 1704 and compared in Table 5.

At bregma, LL 1 has a thick vault (10 mm), being most similar to

the H. erectus (ERECT) mean (962 mm; z0.49). While its value is

within one standard deviation unit of the EUEHS sample mean

(763 mm; z0.94), it is significantly different to the NEAND mean

(761 mm; z2.89, p0.006). Thickness at bregma in MLDG 1704

(7 mm) is identical to mean values for EUEHS, WAEHS and

NEAND (Table 5). At the parietal eminence, thickness in MLDG

1704 (7.6/6.4 mm) is within one standard deviation unit of means

for EUEHS (661 mm, z0.97) and WAEHS (both 862 mm, z-

0.47), but distinct from the means of East Asian Middle Pleistocene

(archaic) hominins (or EAMPH) and ERECT (both 1062 mm; z-

1.37 and z-1.47).

Vault dimensions. Tables 6–7 compare a range of vault

measurements for LL 1 and MLDG 1704 with various Pleistocene

modern (Table 6) and archaic hominin (Table 7) samples. A

comparison of African early H. sapiens (or AFEHS) and NEAND

helps to sort the polarities of features found in Eurasian samples.

The Herto (BOU-VP-16/1) cranium possesses a large endocranial

volume (ECV) (1450 cm3). It is, however, only slightly enlarged

compared with NEAND (14076172 cm3). In contrast, the greatly

enlarged ECV of WAEHS (Skhul-Qafzeh: 1556625 cm3) is

significantly larger than Herto (z-3.87, p0.008) and NEAND (t-

5.44, p0.002), indicating that ECV enlargement is a derived

characteristic of Pleistocene Eurasian H. sapiens. Reconstructed

ECV for MLDG 1704 (,1327 cm3: Figures S1, S2, S3, S4) is

small in comparison with all H. sapiens sample means: its value sits

Figure 3. Longlin 1 partial skull (each bar = 1 cm).
doi:10.1371/journal.pone.0031918.g003
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outside of (below) the ranges of WAEHS (z-8.36, p0.0005) and

EUEHS (z-1.71, p0.05). ECV for East Asian early H. sapiens (or

EAEHS) (14076146 cm3; MLDG z-0.51) is identical to the

NEAND mean (Table 7). Among all samples, MLDG 1704 is

closest to these latter sample means. Thus, MLDG 1704 shares

with EAEHS and NEAND a reduced ECV. This reduction

contrasts late Pleistocene humans in East Asia with earlier

Eurasian and African modern humans with their large ECVs.

The frontal bone of the earliest modern humans is long (AFEHS

frontal chord 124-131 mm, arc 153 mm) and contrasts with the

short frontals of NEAND (chord 11266 mm, arc 12369 mm).

The frontal bones of LL 1 (chord 112 mm, arc 134 mm) and

MLDG 1704 (chord 116 mm, arc 133 mm) are moderate in

length, being similar to EUEHS and ERECT, but distinguishable

from the very long frontals of AFEHS. Minimum frontal breadth

is wide in AFEHS (i.e. Herto 112 mm), contrasting with the

narrower post-orbitals of NEAND (10365 mm). This region is

even narrower in LL 1 (94 mm) and MLDG 1704 (95 mm),

contrasting with the moderately broad anterior frontals of EAEHS

(9965 mm), EUEHS (10165 mm; z-1.36, z-1.17), and WAEHS

and NEAND (both 10365 mm; WAEHS z-1.67, z-1.48; NEAND

z-1.76, p0.04, z-1.56, p0.06). The LL 1 and MLDG 1704 values

are most similar to the mean for ERECT (93610 mm; z0.10,

z0.20). Maximum frontal breadth, measured at the coronal suture,

is moderate in AFEHS and EAEHS (120 mm), and WAEHS

(11964 mm) and NEAND (12266 mm). MLDG 1704 possesses a

broad maximum frontal width (125 mm), in common with

EUEHS (12467 mm, z0.14).

The parietal bones of AFEHS are long (chord 125 mm, arc

135 mm) and contrast strongly with the short parietals of NEAND

(chord 10864 mm, arc 11565 mm). The parietals of MLDG

1704 are short (chord 107 mm, arc 123 mm) by Pleistocene H.

sapiens standards (Table 6). Its parietal chord is significantly shorter

than the EAEHS (11764 mm; z-2.34, p0.02) and EUEHS

(12067 mm; z-1.81, p0.04), and most closely resembles NEAND

(z-0.24). Its arc dimension is, however, closer to H. sapiens (means

132–135 mm; MLDG 1704 z-0.94 to z-1.19) than to archaic

species (means 106–117.5 mm; MLDG 1704 z1.17 to z3.33; with

p0.001 for ERECT). Broad parietals are characteristic of NEAND

(14867 mm), distinguishing them from H. sapiens (means 138–

145 mm) and ERECT (14266 mm). The absolutely narrow bi-

parietal breadth of MLDG 1704 (141 mm) is most similar to the

mean of EUEHS (14367 mm, z-0.28).

The ratio of parietal/frontal chord and parietal/frontal arc

distinguishes samples of Eurasian H. sapiens (means: chord 104–

107%, arc 99–107%) from NEAND (chord 9868%, arc

96610%). The shortened parietals of AFEHS (chord 98%, arc

85%) are, in contrast, a putative ancestral trait shared with

NEAND. Thus, parietal sagittal expansion is characteristic of

Pleistocene Eurasian H. sapiens. For these indices, MLDG 1704

(both 92%) is highly distinct from H. sapiens (EAEHS z2.24, p0.03;

Figure 4. Longlin 1 temporal fragment (each bar = 1 cm).
doi:10.1371/journal.pone.0031918.g004

Figure 5. Maludong 1704 calotte (each bar = 1 cm).
doi:10.1371/journal.pone.0031918.g005
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EUHS z1.67, p0.05), and most closely resembles archaic hominins

such as East Asian Middle Pleistocene hominins (or EAMPH:

chord index 92%), ERECT (chord: 8767%, z0.41) and NEAND

(arc: 96610%, z-0.38).

A commonly deployed index of postorbital width is the frontal

constriction index, or ratio of minimum/maximum frontal

breadth. Its value for MLDG 1704 (76%) is unusually low, and

while it sits (just) within the lower part of the range of EAEHS (76–

89%), it is most similar to the mean for ERECT (8265%, MLDG

z-1.17). In contrast, MLDG 1704 is distinct from mean values for

EUEHS (8262%; z-2.91, p0.005), WAEHS (8363%; z-3.04,

p0.01) and NEAND (8665%; z1.93, p0.03).

Mandibular fossa. Measurements of the left mandibular

fossa of LL 1 (Figure 4) are compared in Table 8. Its mandibular

fossa is moderate in length (A-P 17 mm), being similar to the

WAEHS (Skhul-Qafzeh: 19 mm), ERECT (2062 mm; z-1.04)

and EUEHS (21 mm) means. It is, however, significantly different

to the means of recent Africans (1161 mm; z5.97, p,0.00001), a

sample of Pleistocene early H. sapiens (comprising Ngaloba, Jebel

Irhoud 1 and 2, Singa 1, Omo-Kibish 2, Skhul 4 and 5 [26])

(1162 mm; z2.81, p0.01) and NEAND (1161 mm; z5.74,

p,0.00001). The mandibular fossa of LL 1 is very broad (M-L

c31 mm) and lies outside of the range of all comparative samples,

being closest to EAMPH (30 mm). Its breadth is significantly

different to the means of recent Africans (2062 mm; z5.47,

p,0.00001), Pleistocene early H. sapiens (composition, see above:

2362 mm; z3.74, p0.004) and NEAND (2163 mm; z3.19,

p0.004). Its mandibular fossa is comparatively deep (S-I 13 mm)

like ERECT (1264 mm; z0.23), but shallower than EAMPH

(17 mm). In contrast, samples of H. sapiens exhibit smaller mean

values or much shallower fossae (5–6 mm; z6.55–7.96; p0.0003-

,0.00001). Shallow fossae are also characteristic of NEAND

(662 mm; z3.35, p0.003).

Facial skeleton. The facial skeleton of LL 1 is unusual

compared with early H. sapiens in exhibiting strong alveolar

prognathism. The mid-face is flat, both at the nasal root and

piriform aperture, and zygomatic process of the maxilla. The

specimen lacks a canine fossa, but possesses a deep sulcus maxillaris.

The left zygomatic arch is laterally flared. The zygomatic bone is

strongly angled such that its inferior margin sits well lateral to the

superior part. The zygomatic tubercle is small and sits lateral to a

vertical line projected from the orbital pillar. The anterior section

of the masseter attachment is marked by a broad and deep sulcus,

but the zygomatic tubercle is small. The anterior wall of the

zygomaticoalveolar root is in an anterior position (above P4/M1).

The lateral orbital margin (pillar) exhibits strong transverse

incurvation when viewed in lateral aspect. In most of these

features, LL 1 displays the putative plesiomorphic condition for

later hominins, being highly distinguishable from the modal

condition of H. sapiens.

Tables 9–10 compare standard measurements and indices of

the facial skeleton for LL 1 and a single measurement for MLDG

1704 with Pleistocene modern human (Table 9) and archaic

(Table 10) samples. Data for superior facial breadth are

unavailable for AFEHS. However, the narrower upper face of

Figure 6. Longlin 1 mandible (scale bar = 1 cm).
doi:10.1371/journal.pone.0031918.g006

Figure 7. Maludong mandibles MLDG 1679 (left) and MLDG
1706 (right) (scale bar = 1 cm). NB: MLDG 1706 is broken through its
symphysis just lateral to the MSP.
doi:10.1371/journal.pone.0031918.g007
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NEAND (11864 mm) distinguishes them from the very broad

upper facial skeletons of WAEHS (Qafzeh-Skhul: 12367 mm).

This later morphology is shared by WAEHS with ERECT

(123 mm). Contrasting with both of these conditions are later

Eurasian samples of H. sapiens with their markedly narrow superior

facial skeletons (EAEHS and EUEHS: mean 112 mm). A narrow

superior facial breadth is a shared condition of LL 1 (c110 mm)

and MLDG 1704 (109 mm), both with each other and with later

Pleistocene Eurasians. Their values are, however, highly distinct

from WAEHS (LL 1 z-1.72, p0.07; MLDG 1704 z-1.85, p0.06)

and NEAND (LL 1 z-1.96, p0.03; MLDG 1704 z-2.21, p0.01).

The facial skeleton of LL 1 is broad. Bizygomatic breadth is

estimated to be wide (c144 mm), strongly distinguishing it from

EAEHS, the value for LL 1 being outside of (slightly above) its

range. Its bizygomatic most closely resembles NEAND

(14568 mm; z-0.12), and is similar also to AFEHS (142 mm). A

second index of postorbital constriction is the ratio minimum

frontal breadth/bizygomatic breadth, providing a more direct

measure of the relative size of the temporal fossa. The value for LL

1 is large (66%) by later hominin standards. While it is equal to the

minimum value for EUEHS and WAEHS, its value is distant from

their means (EUEHS (7364%; z-1.67, p0.06; WAEHS 70%). It

Table 5. Bone thickness measurements compared (significant z-scores in bold)."

LL MLDG EUEHS WAEHS NEAND EAMPH ERECT

1 1704

Supraorbital projection

1. Medial 11.0 17.0 1363(9) 17(4) 2062(9) - -

(8–18) (11–21) (18–23)

z-score/p LL 1 20.63/0.27 - 24.27/0.001 - -

z-score/p MLDG 1704 1.26/0.13 - 21.42/0.09 - -

2. Midorbit 11.0 16.0 1663(9) 20(4) 2262(43) - -

(8–19) (16–25) (17–25)

z-score/p LL 1 21.58/0.07 - 25.44/,0.00001 - -

z-score/p MLDG 1704 n.a. - 22.97/0.002 - -

3. Lateral 19.0 23.0 2063(9) 24(4) 2462(35) - -

(15–23) (21–26) (21–25)

z-score/p LL 1 20.32/0.37 - 22.47/0.009 - -

z-score/p MLDG 1704 0.95/0.18 - 20.49/0.31 - -

Supraorbital vertical thickness - -

4. Medial 15.0 16.5/17.0* 1763(11) 1863(7) 1763(9) - -

(12–24) (14–22) (15–22)

z-score/p LL 1 20.64/0.26 20.94/0.19 20.63/0.27 - -

z-score/p MLDG 1704 20.08/0.46 20.39/0.35 20.08/0.46 - -

5. Midorbit 7.0 10.0/13.0* 562(11) 863(7) 1062(48) - -

(6–10) (5–11) (8–12)

z-score/p LL 1 0.96/0.18 20.31/0.38 21.48/0.07 - -

z-score/p MLDG 1704 3.11/0.005 1.09/0.15 0.74/0.23 - -

6. Lateral 7.0 7.0/6.5* 861(11) 1063(7) 1262(42) - -

(6–10) (6–14) (10–14)

z-score/p LL 1 20.96/0.18 20.94/0.19 22.47/0.008 - -

z-score/p MLDG 1704 21.20/0.12 21.01/0.17 22.59/0.006 - -

Vault thickness

7. Bregma 10.0 7.0 763(8) 7(2) 761(13) 8(4) 962(22)

(4–12) (6–8) (4–9) (7–9) (6–16)

z-score/p LL 1 0.94/0.18 - 2.89/0.006 - 0.49/0.31

z-score/p MLDG 1704 n.a. - n.a. - 20.98/0.16

8. Parietal eminence - 7.6/6.4* 661(16) 862(9) 862(30) 1062(5) 1062(16)

(4–10) (5–11) (5–17) (7–13) (5–16)

z-score/p LL 1 - - - - -

z-score/p MLDG 1704 0.97/0.17 20.47/0.32 20.47/0.32 21.37/0.12 21.46/0.08

"Above the line m6s(n), below the line (min.-max.); z-tests corrected for small comparative sample size; Bonferroni correction not employed as per [56]; sample
abbreviations and compositions see Table 4; data sources see Text S2.
*Mean of left and right used in z-test.
doi:10.1371/journal.pone.0031918.t005
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also contrasts strongly with EAEHS (7363%; z-2.16, p0.04) and

NEAND (7462%; z-3.70, p0.006). In contrast, bimaxillary

breadth in LL 1 (108 mm) is most similar to EAEHS

(10566 mm; z0.47). While the index of upper/mid-facial

(bimaxillary) breadth is high for LL 1 (98%), it is similar to

EAESH (9365%; z0.65) and NEAND (9565%; z0.57).

Superior facial height is greatly reduced in LL 1 (64 mm), a

condition distinguishing Eurasian early H. sapiens from AFEHS

(79 mm) and archaic hominins (means: 80.5–87 mm). The

superior facial height of LL 1 is in fact significantly shorter than

the mean for WAEHS (7363 mm; z-3.35, p0.01). Facial

shortening is also seen in archaic EAMPH (74 mm), but not to

the great extent characterising late Pleistocene H. sapiens (but more

so than the AFEHS specimen from Herto). The facial index

(superior height/bizygomatic breadth) for LL 1 (44%) shows its

bony face to be very short relative to breadth. The value in the

specimen is not especially close to any sample mean and is

significantly different to EAEHS (5062%; z2.81, p0.01) and

NEAND (5962%; z-6.94, p0.0004).

While the left orbit of LL 1 is broad (45 mm), being identical to

the WAEHS mean, this measurement has little discriminating

power, as LL 1’s value lies within one standard deviation unit of

Table 6. Vault measurements (cm3, mm) and indices (%) compared to Pleistocene modern humans (significant z-scores in bold)."

Measurement LL MLDG EAEHS EUEHS WAEHS AFEHS1

Abbrev. (Martin No.) 1 1704

1. Endocranial volume - (1327) 14076146(7) 15666134(12) 1556625(5) 1450(1)

ECV (1170–1567) (1375–1880) (1518–1587) -

z-score/p MLDG 1704 20.51/0.31 21.71/0.05 28.36/0.0005 -

2. Frontal chord 112 116 11266(7) 11666(17) 113(4) 127.5(2)

FRC* (M29) (105–119) (91–111) (106–118) (124–131)

z-score/p LL 1 n.a. 20.65/0.26 - -

z-score/p MLDG 1704 0.62/0.27 n.a. - -

3. Frontal arc 134 133 13065(8) 13567(9) 128(4) 153(1)

FAA (M26) (121–136) (121–148) (118–133) -

z-score/p LL 1 0.75/0.23 20.14/0.44 - -

z-score/p MLDG 1704 0.57/0.29 20.27/0.39 - -

4. Minimum frontal breadth 94 95 9965(7) 10165(17) 10365(6) 112(1)

MFB (M9) (95–109) (91–111) (96–110) -

z-score/p MLDG 1704 20.75/0.24 21.17/0.13 21.48/0.09 -

5. Maximum frontal breadth - 125 120(4) 12467(17) 11964(5) 120(1)

XFB* (M10) (112–129) (107–139) (114–125) -

z-score/p MLDG 1704 - 0.14/0.44 1.37/0.12 -

6. Parietal chord - 107 11764(7) 12067(19) 121(4) 125(2)

PAC* (M30) (111–122) (107–143) (112–129) (121–129)

z-score/p MLDG 1704 22.34/0.02 21.81/0.04 - -

7. Parietal arc - 123 13269(8) 13469(19) 133(4) 135(2)

PAA (M27) (120–150) (117–157) (120–145) (130–140)

z-score/p MLDG 1704 20.94/0.18 21.19/0.12 - -

8. Maximum parietal breadth - 141 13866(7) 14367(19) 14563(7) 145(1)

MPB (M8) (131–145) (131–154) (140–148) -

z-score/p MLDG 1704 0.47/0.32 20.28/0.39 21.25/0.12 -

9. Parietal/frontal chord index - 92 10465(7) 10467(17) 107(4) 98(2)

(M30/M29) (95–112) (94–117) (98–113) (92–104)

z-score/p MLDG 1704 22.24/0.03 21.67/0.05 - -

10. Parietal/frontal arc index - 92 10268(8) 9967(19) 107(3) 85(1)

(M27/M26) (94–115) (87–110) (102–111) -

z-score/p MLDG 1704 21.18/0.13 20.97/0.17 - -

11. Frontal constriction index - 76 83(4) 8262(16) 8663(5) 93(1)

(M9/M10) (76–89) (79–86) (80–88) -

z-score/p MLDG 1704 - 22.91/0.005 23.04/0.01 -

"Fossil values in round brackets are estimates; above the line m6s(n), below the line (min.-max.); z-tests corrected for small comparative sample size; Bonferroni
correction not employed as per [56]; sample abbreviations and compositions see Table 4; data sources see Text S2.
1Mostly comprises measurements of Herto BOU-VP-16/1.
*Equivalent to measurements of Howells [57] and employing his abbreviation.
doi:10.1371/journal.pone.0031918.t006
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EAEHS (4462 mm), EUEHS (4364 mm) and NEAND

(4463 mm). In contrast, orbit height is moderate in LL 1

(34 mm), distinguishing the specimen from the short orbits of

EAEHS (3161 mm; z2.81, p0.01) and EUEHS (3063 mm;

z1.29), and tall orbits of NEAND (3861 mm; z-3.88, p0.0007).

The value for LL 1 is identical to AFEHS and similar to WAEHS

(3363 mm). This combination of a broad and moderately tall

orbit results in a moderate orbital index value (76%), being most

similar to WAEMH (7467%; z0.26), but distant from NEAND

(8766; z-1.76).

The piriform aperture is broad in LL 1 (maximum nasal width

32 mm), being identical to the NEAND mean (Table 10). It is

substantially broader than the means for all H. sapiens samples:

EAEHS 2862 mm (z1.89), EUEHS 2662 mm (z2.89, p0.006)

Table 7. Vault measurements (cm3, mm) and indices (%) compared to archaic hominins (significant z-scores in bold)."

Measurement LL MLDG NEAND EAMPH ERECT

Abbrev. (Martin No.) 1 1704

1. Endocranial volume - (1327) 14076172{(28) 1255(2) 10286127$,¥(16)

ECV (1172–1740) (1120–1390) (815–1251)

z-score/p MLDG 1704 20.46/0.32 - 2.28/0.01

2. Frontal chord 112 116 11266{(18) 116(1) 11266£(12)

FRC* (M29) (98–123) - (99–120)

z-score/p LL 1 n.a. - n.a.

z-score/p MLDG 1704 0.65/0.26 - 0.64/0.26

3. Frontal arc 134 133 12369{(12) 134(1) 12567$(12)

FAA (M26) (107–135) - (110–135)

z-score/p LL 1 1.17/0.13 - 1.24/0.12

z-score/p MLDG 1704 1.07/0.15 - 1.10/0.14

4. Minimum frontal breadth 94 95 10365{(21) 114(1) 93610$,¥(23)

MFB (M9) (97–112) - (73–109)

z-score/p MLDG 1704 21.56/0.06 - 0.20/0.42

5. Maximum frontal breadth - 125 12266{(13) - 11868$,¥(23)

XFB* (M10) (108–128) - (102–123)

z-score/p MLDG 1704 0.48/0.33 - 0.86/0.20

6. Parietal chord - 107 10864{(13) 110(2) 10065$,¥(21)

PAC* (M30) (102–114) (107–113) (86–108)

z-score/p MLDG 1704 20.24/0.40 - 1.37/0.09

7. Parietal arc - 123 11565{(10) 117.5(2) 10665$,¥(22)

PAA (M27) (110–126) (114–121) (92–113)

z-score/p MLDG 1704 1.53/0.08 - 3.33/0.001

8. Maximum parietal breadth - 141 14867{(16) 148.5(2) 14266¥(21)

MPB (M8) (138–157) (148–149) (130–153)

z-score/p MLDG 1704 20.97/0.17 - 20.16/0.43

9. Parietal/frontal chord index - 92 9868{(10) 92(1) 8967(11)

(M30/M29) (89–116) - (81–104)

z-score/p MLDG 1704 20.72/0.24 - 0.41/0.34

10. Parietal/frontal arc index - 92 96610(9) 85(1) 8465(11)

(M27/M26) (83–115) - (71–91)

z-score/p MLDG 1704 20.38/0.35 - 1.53/0.07

11. Frontal constriction index - 76 8665(13) - 8265(21)

(M9/M10) (78–94) - (72–89)

z-score/p MLDG 1704 21.93/0.03 - 21.17/0.12

"Fossil values in round brackets are estimates; above the line m6s(n), below the line (min.-max.); z-tests corrected for small comparative sample size; Bonferroni
correction not employed as per [56]; sample abbreviations and compositions see Table 4; data sources see Text S2.
*Equivalent to measurements of Howells [57] and employing his abbreviation.
{T-test EUEHS and NEAND mean difference: one-tailed p,0.05-0.01.
{T-test EUEHS and NEAND mean difference: one-tailed p,0.001.
£T-test EUEHS and ERECT mean difference: one-tailed p,0.05-0.01.
$T-test EUEHS and ERECT mean difference: one-tailed p,0.001.
¥T-test NEAND and ERECT mean difference: one-tailed p,0.001.
doi:10.1371/journal.pone.0031918.t007
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and WAEHS 3061 mm (z1.83). Nasal height is short (45 mm), its

value being distant from the means of early H. sapiens (means 42–

51 mm; z1.37–1.44). It is, however, significantly different to the

NEAND mean (6163 mm; z-4.94, p0.002). The nasal index for

LL 1 (71%) is large by later Pleistocene hominin standards, its

value being significantly different to all comparative sample means

(EAEHS z3.54, p0.004; EUEHS z3.35, p0.003; WAEHS z4.56,

p0.005; NEAND z4.94, p0.002).

Multivariate cranial comparisons. Table 11 summarises

the results of principal components analysis of size-adjusted [27]

variables for three sets of analyses comparing LL 1 or MLDG

1704 to fossil specimens. The first analysis included LL 1 (Figure 8)

and 22 other crania, employed 9 variables (Table 11), and

generated three principal components. For principal component

(PC) 1, the highest loading variables were frontal chord and frontal

arc, and these were contrasted mostly with measures of facial

height (orbit height and upper facial height) and breadth (chiefly

nasal breadth) (Table 11). For PC 2, facial breadth (orbit breadth

and bimaxillary breadth) accounted for most of the variance

(Table 11), while PC 3 contrasted maximum frontal breadth with

bizygomatic breadth (Table 11). A bivariate plot of object scores

for PC 1 and PC 2 (Figure 8A) shows that PC 1 distinguishes

crania belonging to H. sapiens from those of NEAND, H.

heidelbergensis sensu stricto, H. rhodesiensis and ERECT. Specimen

LL 1 lies within the range of H. sapiens, clustering with Skhul 5,

Mai Da Nuoc and Combe Capelle. A plot of PC 2 versus PC 3

(Figure 8B) shows the third principal component to distinguish

ERECT from all other taxa. In this plot, LL 1 sits in a unique

position, well away from all crania owing to a combination of a

high positive score for PC 2 and moderate score for PC 3. Z-tests

of object scores indicate that the difference between LL 1 and the

H. sapiens mean is not significant for all PCs (PC 1 z-0.89; PC 2

z0.95; approaching significance for PC 3 z1.70, p0.05).

The second analysis included MLDG 1704 and 23 other crania,

employed eight variables (Table 11), and generated three principal

components. For PC 1, the highest loading variables were parietal

chord and parietal arc, and these were contrasted mostly with

measures of vault width (biparietal breadth and superior facial

breadth) (Table 11). For PC 2, frontal chord and frontal arc

accounted for most of the variance (Table 11), while PC 3 was

mostly explained by maximum frontal breadth (Table 11). A

bivariate plot of object scores for PC 1 and PC 2 (Figure 9A) shows

PC 1 to separate crania belonging to H. sapiens from those of

NEAND, H. heidelbergensis sensu stricto and ERECT. Specimen

MLDG 1704 sits just outside of the convex hull for H. sapiens, but

clusters close to Cro Magnon 1 and 3 (Figure 9A). A plot of PC 2

versus PC 3 (Figure 9B) shows that these principal components do

not discriminate well among taxa. Principal component 3 does,

however, distinguish MLDG 1704 from all other crania, with its

high positive score. For PC 3, its score is outside of the range of all

crania, exceeding the next highest score by 0.29 eigenfactor units

(almost double the difference between the H. sapiens and NEAND

means). Z-tests of object scores indicate that the difference between

LL 1 and the H. sapiens mean is not significant for all PCs [PC 1

z0.75; PC 2 z1.51; approaching significance for PC 3 (z1.62,

p0.06)]. In contrast, the mean difference for NEAND is significant

for PC 1 (z-6.89, p0.001), but not for PC 2 (z1.70) or PC 3 (z1.22).

The final analysis included MLDG 1704 and 43 other crania,

employed 6 variables (Table 11), and generated two principal

components. For PC 1, parietal chord and parietal arc explained

most of the variance (Table 11). For PC 2, frontal arc was

contrasted with maximum frontal breadth (Table 11). A bivariate

plot of object scores for PC 1 and PC 2 (Figure 10) shows good

separation between H. sapiens on the one hand, and NEAND and

ERECT on the other. Specimen MLDG 1704 sits just within the

H. sapiens convex hull, but near the edge of the ERECT range. It

also sits close to the Nazlet Khater 2 cranium from Egypt, a late

Pleistocene specimen also possessing a mix of modern and archaic

characters [28]. The object score of MLDG 1704 for PC 1 is

closest to the archaic Petralona (0.08 eigenfactor units difference)

and NEAND Amud 1 (0.13) crania. Moreover, z-tests indicate that

for PC 1, the difference is significant between MLDG 1704 and

the H. sapiens mean (excluding Nazlet Khater 2) (z2.00, p0.03), but

not for NEAND (z-0.01) or ERECT (z-1.04). For PC 2, the

difference is significant between MLDG 1704 and NEAND (z2.19,

p0.03), but not for H. sapiens (excluding Nazlet Khater 2: z0.42) or

ERECT (z-0.03).

Comparison of crania to recent humans. In Tables 12–14

we compare cranial measurements of LL 1 and MLDG 1704 with

mixed sex recent humans: East Asian and Eskimo (Table 12),

European and African (Table 13) and Australian (Table 14). These

samples are compiled from Howells’ [29] worldwide dataset (see

also, Table 4). Overall, measures of facial width strongly

distinguish LL 1 from recent humans, with its very broad face.

Bizygomatic breadth (c144 mm) contrasts strongly with recent

human means (125–135 mm; z1.49–3.16, p0.06-0.0008). Bijugal

breadth (c134 mm) is similarly enlarged (recent human means

113–117 mm; z2.57–4.19, p0.005-0.00001). Its bimaxillary

breadth (c108 mm) contrasts strongly with recent sample means

(92–97 mm; z1.83–3.19, p0.03-0.0007). Bifrontal breadth

Table 8. Mandibular fossa dimensions (mm) of Longlin 1
compared (significant z-scores in bold)."

A-P M-L S-I

Length Breadth Depth

LL 1 17 (31) 13

Recent Africans* 1161(99) 2062(99) 561(99)

(8–14) (16–27) (4–8)

z-score/p 5.97/
,0.00001

5.47/
,0.00001

7.96/
,0.00001

EUEHS* 21(3) 25(3) 6(3)

(19–25) (21–30) (5–7)

WAEHS* 19(4) 27(3) 7(4)

(17–22) (26–29) (5–8)

Pleistocene early H. sapiens*,{ 1162(7) 2362(7) 661(7)

(8–14) (21–25) (5–8)

z-score/p 2.81/0.01 3.74/0.004 6.55/0.0003

NEAND* 1161(11) 2163(11) 662(11)

(9–13) (16–26) (4–8)

z-score/p 5.74/
,0.00001

3.19/0.004 3.35/0.003

EAMPH1 27(1) 30(1) 17(1)

ERECT1 2062(6) 25(4) 1264(6)

(17–22) (23–27) (5–15)

z-score/p 21.04/0.10 - 0.23/0.41

"Sample abbreviations see Table 4; LL 1 value in round brackets is an estimate;
above the line m6s(n), below the line data (min.-max.); Bonferroni correction
not employed as per [56].
*Comparative sample descriptive statistics from [26].
{Composition, see text.
1Sample compiled by the authors: compositions see Table 4, data sources see
Text S2.
doi:10.1371/journal.pone.0031918.t008
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(c106 mm) is greatly enlarged (96–100 mm; z2.00-1.50, p0.06-

0.02). Biorbital chord (c114 mm) also contrasts strongly with

recent humans (97–99 mm; z3.40–5.66, p0.001-,0.00001), its

value being outside of the range of all samples. Finally, interorbital

breadth in LL 1 (25 mm) is also broad compared with recent

populations (means 18–23 mm; z1.00–3.48, p0.15-0.0003).

Table 9. Facial skeleton measurements (mm) and indices (%) compared to Pleistocene modern humans (significant z-scores in
bold)."

Measurement LL MLDG EAEHS EUEHS WAEHS AFEHS1

Abbrev. (Martin No.) 1 1704

1. Superior facial breadth [110] 109 11265(5) 11266(11) 12367(6) -

SFB (M43) (106–119) (102–124) (96–110) -

z-score/p LL 1 20.37/0.36 20.32/0.37 21.72/0.07 -

z-score/p MLDG 1704 20.55/0.30 20.48/0.32 21.85/0.06 -

2. Bizygomatic breadth [144] - 13665(6) 14067(10) 148(4) 142(1)

ZYB* (M45) (128–143) (129–156) (140–160) -

z-score/p LL 1 1.48/0.09 0.54/0.29 - -

3. Postorbital constriction index (66) - 7363(6) 7364(10) 70(4) 79(1)

(M9/M45) (70–78) (66–78) (66–76) -

z-score/p LL 1 22.16/0.04 21.67/0.06 - -

4. Bimaxillary breadth [108] - 10566(7) 10168(8) 97(3) 100(1)

ZMB* (M46) (95–114) (85–109) (90–110) -

z-score/p LL 1 0.47/0.32 0.82/0.21 -

5. Upper versus mid-facial breadth 98 - 9367(5) 8865(5) 77(3) -

index (M46/M43) (84–102) (80–92) (69–90) -

z-score/p LL 1 0.65/0.27 1.83/0.07 - -

6. Superior facial height 64 - 6765(8) 6865(13) 7563(5) 79(1)

SFH (M48) (61–75) (59–79) (72–79) -

z-score/p LL 1 20.57/0.29 20.77/0.22 23.35/0.01 -

7. Facial index (44) - 5062(6) 4964(10) 51(4) 56(1)

(M48/M45) (46–52) (44–58) (49–53) -

z-score/p LL 1 22.78/0.01 21.19/0.13 - -

8. Orbit breadth 45 - 4462(8) 4364(14) 4562(5) -

ORB (M51) (42–48) (38–48) (42–47) -

z-score/p LL 1 0.47/0.32 0.48/0.31 n.a. -

9. Orbit height 34 - 3161(7) 3063(14) 3363(5) 34(1)

OBH* (M52) (29–33) (26–36) (29–37) -

z-score/p LL 1 2.81/0.01 1.29/0.11 0.30/0.38 -

10. Orbital index 76 - 7165(7) 7067(14) 7467(5) -

(M52/M51) (67–79) (59–88) (65–84) -

z-score/p LL 1 0.93/0.19 0.83/0.21 0.26/0.40 -

11. Maximum nasal width (32) - 2862(8) 2662(13) 3061(5) 29(1)

NLB* (M54) (25–32) (22–30) (28–32) -

z-score/p LL 1 1.89/0.05 2.89/0.006 1.83/0.07 -

12. Nasal height 45 - 5064(8) 5164(11) 4262(5) 56(1)

NAH (M55) (46–58) (43–59) (42–47) -

z-score/p LL 1 21.18/0.13 21.44/0.09 1.37/0.12 -

13. Nasal index (71) - 5664(8) 5066(11) 5663(5) -

(M54/M55) (50–60) (44–63) (53–62) -

z-score/p LL 1 3.54/0.004 3.35/0.003 4.56/0.005 -

"Fossil values in round brackets are estimates, values in square brackets estimated by measuring to the midline and doubling; above the line m6s(n), below the line
(min.-max.); z-tests corrected for small comparative sample size; Bonferroni correction not employed as per [56]; sample abbreviations and compositions see Table 4;
data sources see Text S2.
1Mostly comprises measurements of Herto BOU-VP-16/1.
*Equivalent to measurements of Howells [57] and employing his abbreviation.
doi:10.1371/journal.pone.0031918.t009
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Frontal chord length for LL 1 (112 mm) is long, but lies within

one standard deviation unit of all samples (means 108–111 mm;

z0.20–0.80). The value for frontal subtense is, however, high

(30 mm), and when this measurement is combined with frontal

chord to calculate the frontal curvature index (subtense/chord), it

is clear that LL 1 exhibits an exaggerated degree of frontal

curvature (27%). This index distinguishes the Chinese fossil from

recent humans (means 23–25%; z1.00–2.00, p0.15–0.02). Glabella

Table 10. Facial skeleton measurements (mm) and indices (%) compared to archaic hominins (significant z-scores in bold)."

Measurement LL MLDG NEAND EAMPH ERECT

Abbrev. (Martin No.) 1 1704

1. Superior facial breadth [110] 109 11864{(27) - 123(2)

SFB (M43) (107–128) - (121–125)

z-score/p LL 1 21.96/0.03 - -

z-score/p MLDG 1704 22.21/0.01 - -

2. Bizygomatic breadth [144] - 14568(6) 148(1) -

ZYB* (M45) (130–153) - -

z-score/p LL 1 20.12/0.45 - -

3. Postorbital constriction index (66) - 7462(6) 77(1) 71.5(2)

(M9/M45) (71–77) - (69–74)

z-score/p LL 1 23.70/0.006 - -

4. Bimaxillary breadth [108] - 11265{(13) - 107(2)

ZMB* (M46) (104–120) - (98–116)

z-score/p LL 1 20.77/0.22 - -

5. Upper versus mid-facial breadth 98 - 9565(10) - 87(2)

index (M46/M43) (85–101) - (81–93)

z-score/p LL 1 0.57/0.98 - -

6. Superior facial height 64 - 8765{(13) 74(1) 80.5(2)

SFH (M48) (107–128) - (77–82)

z-score/p LL 1 24.43/0.0004 - -

7. Facial index (44) - 5962(6) 50(1) 53(2)

(M48/M45) (58–61) - (52–55)

z-score/p LL 1 26.94/0.0004 - -

8. Orbit breadth 45 - 4463(12) 47(3) 42(2)

ORB (M51) (40–49) (44–52) (40–44)

z-score/p LL 1 0.32/0.37 - -

9. Orbit height 34 - 3861{(16) 36(3) 37(2)

OBH* (M52) (36–41) (34–39) (34–40)

z-score/p LL 1 23.88/0.0007 - -

10. Orbital index 76 - 8766(11) 71(2) 88(2)

(M52/M51) (78–98) (67–76) (85–91)

z-score/p LL 1 21.76/0.05 - -

11. Maximum nasal width (32) - 3264{(16) 31(1) 27(2)

NLB* (M54) (23–39) - (24–30)

z-score/p LL 1 n.a. - -

12. Nasal height 45 - 6163{(6) - 50.5(2)

NAH (M55) (58–66) - (48–53)

z-score/p LL 1 24.94/0.002 - -

13. Nasal index (71) - 5563(6) - 56.5(2)

(M54/M55) (50–59) - (56–57)

z-score/p LL 1 4.94/0.002 - -

"Fossil values in round brackets are estimates, values in square brackets estimated by measuring to the midline and doubling; above the line m6s(n), below the line
(min.-max.); z-tests corrected for small comparative sample size; Bonferroni correction not employed as per [56]; sample abbreviations and compositions see Table 4;
data sources see Text S2.
*Equivalent to measurements of Howells [57] and employing his abbreviation.
{T-test EUEHS and NEAND mean difference: one-tailed p,0.001.
doi:10.1371/journal.pone.0031918.t010
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projection (4 mm) is well within the range of recent humans except

for Africans (non-African: means 3–5 mm, z1.00 to -1.00; African:

261 mm, z2.0, p0.02). Supraorbital projection (6 mm) is indistin-

guishable from recent humans (means 5–7 mm; z0.00–1.00/

21.00). Posterior breadth of the frontal bone (STB) is narrow

(103 mm) and closely resembles Australian (10267 mm; z0.14)

and Eskimo (10167 mm; z0.28) means.

Facial height, or nasion-prosthion height in LL 1 (64 mm), is

short, but well within the range of recent humans (means 62–

67 mm; z0.40 to -0.50). In contrast, its face is short relative to its

breadth (facial index = height/bizygomatic breadth) (c44%),

distinguishing the specimen from most recent human samples

(means 47–51%; z-1.00 to -2.33, p0.16-0.01). Nasal height

(47 mm) is identical to the mean for Africans (4764 mm) and

similar to Australians (4863 mm), but distinct from all other

samples (means 50–51 mm; z1.00 to -1.66). The nasal breadth of

LL 1 (c32 mm) is broad and significantly different to all recent

human sample means (means 24–28 mm; z2.00–3.98, p0.02-

0.00006). The nasal index (breadth/height) (c71%) indicates the

nasal skeleton of LL 1 to be unusually broad and highly distinct

Figure 8. Object plots from principal components analysis
including LL 1 and 23 later Pleistocene fossil crania. (A) PC 1
versus 2, and (B) PC 2 versus PC 3 (NB: Gray star = LL 1; AFEHS = African
early H. sapiens; Amd = Amud; BG = Barma Grande; CC = Combe Capelle;
CM = Cro Magnon; Kei = Keilor; Hof = Hofmeyr; Kab = Kabwe; LaC = La
Chapelle; LaF = La Ferrassie; Liu = Liujiang; MDN = Mai Da Nuoc;
Mld = Mladec; Oas = Oase; Pred = Predmost; S = Sangiran; SCr = Sima de
Los Huesos cranium; Skh = Skhul; Tab = Tabun; UC = Upper Cave-
Zhoukoudian; and Zkd = Zhoukoudian ERECT).
doi:10.1371/journal.pone.0031918.g008

Table 11. Results of principal components analysis (two
highest loading variables for each component in bold).

Component Component Component

1 2 3

LL 1

Set 1–9 variables x 23 objects

Eigen score 4.07 1.41 1.13

% Variance 45.23 15.63 12.55

Variable loadings

FRC 0.956 0.026 0.083

FAA 0.949 0.008 0.040

MFB 0.530 20.283 20.720

NPH 20.678 20.393 20.125

ORB 0.122 0.775 0.094

OBH 20.725 20.110 0.272

NLB 20.801 20.121 20.086

ZMB 20.449 0.646 20.093

ZYB 0.365 20.355 0.698

MLDG 1704

Set 1–8 variables x 23 objects

Eigen score 3.61 2.44 1.11

% Variance 45.09 30.50 13.86

Variable loadings

FRC 20.072 0.953 20.147

PAC 20.906 20.368 20.136

FAR 20.235 0.938 0.024

PAR 20.931 20.334 20.065

MFB 0.582 20.573 0.331

BPB 0.902 0.118 20.007

XFB 20.133 0.215 0.929

SFB 0.831 20.120 20.303

Set 2–6 variables x 43 objects

Eigen score 2.77 1.84 -

% Variance 46.21 30.68 -

Variable loadings

FRC 0.694 0.581 -

PAC 20.890 0.019 -

FAA 0.496 0.825 -

PAA 20.878 0.258 -

MFB 0.494 20.782 -

XFB 0.486 20.378 -

doi:10.1371/journal.pone.0031918.t011
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from recent humans (means 45–59%; z2.40–6.47, p0.008-

,0.00001). The value for orbit height (34 mm) sits well within

the range of recent humans (32–36 mm; z0.00 to -1.00), while

orbit breadth (44 mm) contrasts strongly with them (means 39–

41 mm; z1.49–2.50, p0.06-0.006). Orbit index (height/breadth)

reinforces the relatively short (for its breadth) left orbit of LL 1

(76%), its value being significantly different to the sample means

for East Asian (8765%; z-2.20, p0.01) and Eskimo (8765; z-2.19,

p0.01). The simotic chord is small in LL 1 (4 mm), emphasising the

narrowness of its nasal bones superiorly. Its value strongly

distinguishing the specimen from East Asian (862 mm; z-2.00,

p0.02), Australian (962 mm; z-2.50, p0.006), European (962 mm;

z-2.50, p0.006) and African (963 mm; z-1.66, p0.04) samples.

The inferior length of the zygomatic bone of LL 1 (26 mm) is

short and distinguishes the fossil from East Asian (3564 mm;

z1.67, p0.04), Eskimo (4064 mm, z-3.48, p0.0003) and European

(3563 mm; z1.66, p0.04) means. Malar subtense, providing a

measure of projection of the malar at its angle, is low in LL 1

(8 mm), in keeping with its broad and laterally flared zygomatics.

Its value is significantly different to means for the East Asian

(1262 mm; z-2.00, p0.02) and Eskimo (1262 mm; z-1.99, p0.02)

samples.

Specimen MLDG 1704 can be compared with mean values for

five measurements (Tables 12–14). Bistephanic breadth (114 mm)

lies within the range of recent humans (means 101–116 mm), but

its value is significantly different to the Eskimo (10167 mm; z1.85,

p0.03) and Australian (10267 mm; z1.71, p0.04) means. Maxi-

mum frontal breadth (125 mm) is also wide in MLDG 1704 and

distinguished from the means of recent humans (means 109–

115 mm; z1.00–3.73, p0.15-0.0008). Bifrontal breadth (107 mm) is

characterised by statistically significant values when compared

with all recent human samples (means 96–100 mm; z2.20 to -3.50,

p0.01-0.0003). The frontal chord of MLDG 1704 is comparatively

long (116 mm), but sits within the range of recent humans (means

108–110 mm; z1.00–1.60). The parietal chord is short (107 mm),

but sits comfortably within the recent human range (110–114 mm;

z-0.43 to -1.00). Finally, the ratio parietal/frontal chord in LL 1 is

low (92%). Its value is distant from the means of most recent

humans samples (non-Australian means 98–102 mm; z-1.00 to -

1.66, p0.15-0.05), being significantly different to the Australian

mean (10566 mm; z-2.16, p0.01).

Virtual endocast. A 3D virtual endocast was rendered from

CT-scans of MLDG 1704 (Figure 11A–D; Figures S1, S2, S3, S4).

Measurements of the frontal and parietal lobes were made and are

compared in Table 15. They reinforce the visual impression of

modern frontal lobes, which are long (86 mm), broad (121 mm)

and tall (92 mm), being most like EUEHS (breadth: 12068 mm,

z0.11; height: 10066 mm, z-0.15; chord length: 9067 mm, z-

0.52). Compared to recent East Asians, its frontal lobe is very long.

The Maludong endocast is broader and taller than the Chinese

Pleistocene H. sapiens cranium from Liujiang (breadth 115 mm,

height 95 mm), and much broader than the endocast of the late

Upper Pleistocene Japanese Minatogawa I cranium (112 mm). Its

frontal lobe is, however, very distinct from the endocast of the H.

rhodesiensis Kabwe cranium (breadth 108 mm, height 88 mm,

chord 78 mm), broader and longer than NEAND endocasts

(breadth 107 mm, chord 82 mm) and broader, longer and taller

than ERECT (breadth: 9968 mm; z2.64, p0.01; height:

74611 mm; 2.18, p0.02; chord: 7666 mm; z1.60).

In contrast, the parietal lobes of MLDG 1704 are very short

(99 mm), contrasting with the long parietal lobes of EUEHS

(12267 mm; z-3.00, p0.01), recent Chinese (10664 mm; z-1.72,

p0.04) and recent Japanese (10767 mm; z-1.13). The parietal

chord length for NEAND is also moderate (106 mm), like Liujiang

(107 mm) and Minatogawa 1 (103 mm). While the parietal lobes

of MLDG 1704 are short, much shorter even than Kabwe

(104 mm), they are longer than ERECT (8767 mm, z1.64).

Figure 11E is a bivariate plot of the breadth of the frontal lobes

versus frontal height. It confirms the modern size and shape of the

frontal of MLDG 1704, its value sitting well within the range of

EUEHS (i.e. Predmost crania) and recent Japanese. Figure 11F

compares frontal chord and parietal chord dimensions of the

endocast and shows MLDG 1704 to be just within the range of

recent Chinese, outside of the range of fossil H. sapiens, and very

close to the ERECT specimen Zhoukoudian 10.

Mandibles. Table 16 compares a range of commonly

employed mandibular characters and Table 17 body metrics for

distinguishing among later Pleistocene hominins. While the

symphyseal region of LL 1 has been damaged, in our

judgement, it would probably have possessed a chin of Rank 3

Figure 9. Object plots from principal components analysis
including MLDG 1704 and 23 later Pleistocene fossil crania. (A)
PC 1 versus 2, and (B) PC 2 versus PC 3 (NB: Gray star = MLDG 1704;
BG = Barma Grande; CM = Cro Magnon; GdE = Grotte de Enfants;
LaC = La Chapelle; LaF = La Ferrassie; Liu = Liujiang; LQ = La Quina 5;
MC = Monte Circeo; MDN = Mai Da Nuoc; Nea = Neandertal; Pet = Pe-
tralona; Pred = Predmost; S = Sangiran; Skh = Skhul; UC = Upper Cave-
Zhoukoudian; and Zkd = Zhoukoudian ERECT).
doi:10.1371/journal.pone.0031918.g009
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[30]. The chin of MLDG 1706 is Rank 3 [30], and while relatively

common among Eurasian early H. sapiens (29.2–49.5%), the

Chinese Tianyaun 1 and Zhirendong 3 mandibles possess Rank 4

chins. Specimens LL 1 and MLDG 1706 lack a vertical keel and

lateral tubercles, features which form the major components of the

modern human ‘inverted-T’ form chin [31]. In inferior view, the

anterior border of the body (beneath the symphysis) is rounded in

both LL 1 and MLDG 1706, more like the condition seen in

archaic hominins [31]. The mental foramen is located below P4/

M1 in LL 1 and MLDG 1706. Location of this foramen mesial to

M1 is characteristic of early H. sapiens (88–100% presence versus

12.2% NEAND). Mandibular foramen bridging is absent in

MLDG 1679, but present in MLDG 1706 (cannot be scored on

LL 1). Absence of bridging is common in NEAND (57.1%

presence), but rare in Eurasian early H. sapiens (0–7% presence).

Both Maludong mandibles show asymmetry of the mandibular

notch. However, the coronoid process of MLDG 1679 is

disproportionately large, a feature common among NEAND,

while in MLDG 1706 it is greatly reduced, the H. sapiens condition.

In LL 1, the coronoid process is large, but its proportions cannot

be assessed owing to an absence of the notch and condylar process.

Specimens LL 1 and MLDG 1679 possess a retromolar space (M3

is uncovered [21]), a common characteristic of NEAND (presence:

75%, versus 32.9–40% in early H. sapiens). In MLDG 1706, the

M3 is partially covered; scored here as absence of a retromolar

space. While the medial pterygoid attachment area is strongly

scarred in both Maludong mandibles, they lack a prominent

superior pterygoid tubercle (present: NEAND 81.2%, Eurasian

early H. sapiens 10–76.7%). Finally, the crest of the mandibular

notch meets the condyle laterally in MLDG 1679, but it is more

medially located in MLDG 1706. Medial placement of the crest is

found frequently in NEAND (63% presence, versus 100% absence

in Western and European H. sapiens) and characterises the Dar-es-

Soltane 5 mandible with its apparent archaic affinities [1,32].

Internally, the alveolar plane of LL 1 and MLDG 1706 is

posteriorly inclined and the transverse tori are thickened. This is a

common feature among archaic later Pleistocene hominins such as

Témara 1 (North Africa), but is largely absent from early H. sapiens

[32]. Externally, the symphysis is somewhat undercut in lateral

aspect, and its anterior symphyseal angle is low (77u), a value closest

to NEAND (80.867.3u; z-0.51) and the Témara 1 mandible (80u).
In contrast, Pleistocene H. sapiens angles are more acute (means

86.6–96.5u; z-1.34 to -3.02), as seen also in the East Asian mandibles

Tianyuan 1 (,96u) and Zhirendong 3 (91u). Body height (26.9 mm)

and thickness (13.3 mm) at the level of the mental foramen in

MLDG 1706 are comparatively low, showing the specimen to be

similar to modern humans in its size. Its body height sits just outside

of the range of Pleistocene East Asian H. sapiens mandibles (range

27.4–33.7 mm), but body thickness is comfortably within their

range (11.3–14.4 mm). Body height (28 mm) and thickness (14 mm)

measured slightly posterior to the mental foramen in LL 1 is similar

to the Maludong specimen (Table 16).

Figure 10. Object plot from principal components analysis including MLDG 1704 and 43 later Pleistocene fossil crania. NB: Gray
star = MLDG 1704; AFEHS = African early H. sapiens; Amd = Amud; BG = Barma Grande; Buk = Buku; CC = Combe Capelle; CM = Cro Magnon;
Kei = Keilor; Hof = Hofmeyr; GdE = Grotte de Enfants; Kab = Kabwe; LaC = La Chapelle; LaF = La Ferrassie; Liu = Liujiang; LQ = La Quina 5; MC = Monte
Circeo; MDN = Mai Da Nuoc; Mld = Mladec; Nea = Neandertal; Ng = Ngandong; NK = Nazlet Khater 2; Oas = Oase; Pet = Petralona; Pred = Predmost;
S = Sangiran; SCr = Sima de Los Huesos cranium; Skh = Skhul; Sp = Spy; Tab = Tabun; UC = Upper Cave-Zhoukoudian; and Zkd = Zhoukoudian ERECT.
doi:10.1371/journal.pone.0031918.g010
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Dentition. The mostly well preserved, but worn, dental

crowns of LL 1 and MLDG 1706 (Figure 6–7), and an isolated

maxillary third molar (MLDG 1747: Figure 12), also reveal

important information about their morphology and affinities.

Buccolingual (BL) crown diameters and descriptive statistics for

comparative samples are provided in Table 18 (mandibular

dentition) and Table 19 (maxillary dentition).

The LL 1 I2 crown (6.7 mm) is narrow, its value sitting well

within the range of comparative samples except NEAND with

their broad incisors (H. sapiens means 6.9–7.2 mm; z-0.20 to -0.95;

NEAND 7.760.5; z-1.97, p0.02; ERECT 7.160.5 mm; z-0.77).

The mandibular canine crowns of LL 1 are also small (8.4/

7.6 mm), and while not significantly different to any comparative

sample mean, its BL diameter is closest to EAEHS (8.360.5 mm;

z-0.56) and a Middle Palaeolithic H. sapiens sample (8.360.8 mm;

z-0.36). In contrast, its P3 BL diameters (9.3/9.4 mm) are large like

NEAND (9.060.7; z0.56) and ERECT (10.060.6 mm; z-0.97). Its

P3 crown width is significantly different to mean values for EAEHS

(8.460.1 mm; z-9.13, p0.0003) and a Western Middle Upper

Palaeolithic Human sample (8.560.5; z-1.75, p0.04). The M2

crown of MLDG 1679 is broad (11.9 mm), but its value is not

significantly different to comparative sample means (11.0–

12.8 mm; although it is approaching significance for EAEHS

z1.87, p0.05). Mandibular M3 crown BL diameters for LL 1 (10.7/

10.3 mm) and MLDG 1679 (11.6 mm) are moderate to large. The

crown of the former specimen is not significantly larger than

comparative means (10.4–11.5 mm; z-0.23 to -0.88), while the

latter is distinct from EAEHS (10.460.4 mm; z2.81, p0.01).

Table 12. Comparison of LL 1 and MLDG 1704 with Howells [29] recent East Asian and Eskimo samples (significant z-scores in
bold)."

Howells Fossil E. Asian Eskimo

Measurement (Abbrev.) Value (n = 681) (n = 108)

m6s z p m6s z p

LL 1

Bistephanic breadth (STB) 103 11267 21.28 0.09 10167 0.28 0.38

Bizygomatic breadth (ZYB) [144] 13268 1.50 0.06 13566 1.49 0.06

Nasion-prosthion height (NPH) 64 6766 20.50 0.30 6964 21.24 0.10

Facial index (NPH/ZYB) 44 5163 22.33 0.01 5163 22.32 0.01

Nasal height (NLH) 47 5164 21.50 0.06 5263 21.66 0.05

Bijugal breadth [JUB] [134] 11667 2.57 0.005 11766 2.82 0.002

Orbit height (OBH) 34 3462 n.a. n.a. 3662 21.00 0.16

Orbit breadth (OBB) 44 3962 2.50 0.006 4162 1.49 0.06

Orbit index (OBH/OBB) 76 8765 22.20 0.01 8765 22.19 0.01

Nasal breadth (NLB) [32] 2762 2.50 0.006 2462 3.98 0.00006

Nasal index (NLB/NLH) 71 5265 3.80 0.00005 4564 6.47 ,0.00001

Bimaxillary breadth (ZMB) [108] 9766 1.83 0.03 9666 1.99 0.02

Bifrontal breadth (FMB) [106] 9665 2.00 0.02 9764 2.24 0.01

Biorbital breadth (EKB) [114] 9765 3.40 0.0003 9864 3.98 0.00006

Interorbital breadth (DKB) 25 2162 2.00 0.02 1862 3.48 0.0003

Simotic chord (WNB) 4 862 22.00 0.02 662 21.00 0.16

Malar length, inferior (IML) (26) 3564 1.67 0.04 4064 23.48 0.0003

Supraorbital projection (SOS) 6 661 n.a. n.a. 561 1.00 0.16

Malar subtense (MLS) 8 1262 22.00 0.02 1262 21.99 0.02

Glabella projection (GLS) 4 361 1.00 0.15 361 1.00 0.16

Frontal chord (FRC) 112 11065 0.60 0.27 11165 0.20 0.42

Frontal subtense (FRS) 30 2663 1.33 0.09 2763 1.00 0.15

Frontal curvature index (FRS/FRC) 27 2362 2.00 0.02 2462 1.49 0.06

MLDG 1704

Bistephanic breadth (STB) 114 11267 0.29 0.38 10167 1.85 0.03

Maximum frontal breadth (XFB) 125 11567 1.43 0.07 11064 3.73 0.0001

Bifrontal breadth (FMB) 107 9665 2.20 0.01 9764 2.49 0.007

Frontal chord (FRC) 116 11065 1.40 0.08 11165 1.00 0.16

Parietal chord (PAC) 107 11067 20.43 0.33 11366 21.00 0.16

Parietal/frontal chord index (PAC/FRC) 92 10166 21.50 0.06 10266 21.66 0.05

"Fossil values in round brackets are estimates, values in square brackets estimated by measuring to the midline and doubling; sample compositions see Table 4;
descriptive statistics for Howells’ samples calculated by us from raw data; z-test results do not employ Bonferroni correction as per [56].
doi:10.1371/journal.pone.0031918.t012
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The measurable maxillary crowns of LL 1 are comparatively

broad. Its P4 BL (11.0 mm) is most like ERECT (11.561.0 mm; z-

0.49, p0.31) and is distinct from H. sapiens (Qafzeh-Skhul

10.260.8 mm; z0.95; Upper Palaeolithic H. sapiens 9.960.6 mm;

z1.80, p0.04) and NEAND (10.060.7 mm; z1.40). In contrast, its

M1 crown is narrow (11.7 mm), and while its value is well within the

range of all comparative samples, it is closest to the NEAND mean

(12.060.8; z-037). The BL diameter of an isolated M3 MLDG 1747

(12.5 mm) is comparatively large, but sits within the range of all

samples listed in Table 19, being equally close to the Qafzeh-Skhul

(11.760.6; z0.42) and NEAND (11.961.4; z0.42) means.

Measurements made on CT-scans of the in situ M3 of MLDG

1679 (not given) indicate that this tooth is taurodont (Taurodontism

index [33] 26.1%, or hypotaurodont). Additionally, MLDG 1747 is

also taurodont (Figure 12), its three roots being fused for most of

their course. Taurodontism is rare among recent and EUEHS

humans [34–35], but is commonly considered a distinguishing

feature of NEAND [35–36].

Discussion

The partial human skull from Longlin Cave and the human

calotte, partial mandibles and teeth from Maludong both present a

range of individual features and a composite of characters not seen

among Pleistocene or recent populations of H. sapiens. It is clear

that they share no particular affinity with either Pleistocene East

Asians, such as Liujiang or Upper Cave 101, or recent East Asians.

These features belong to multiple developmental-functional

Table 13. Comparison of LL 1 and MLDG 1704 with Howells [29] recent European and African samples (significant z-scores in
bold)."

Howells Fossil European African

Measurement (Abbrev.) Value (n = 317) (n = 365)

m6s z p m6s z p

LL 1

Bistephanic breadth (STB) 103 11667 21.85 0.03 10867 0.71 0.23

Bizygomatic breadth (ZYB) [144] 13066 2.33 0.01 12566 3.16 0.0008

Nasion-prosthion height (NPH) 64 6665 20.40 0.34 6266 0.33 0.36

Facial index (NPH/ZYB) 44 5163 22.33 0.01 5064 21.50 0.06

Nasal height (NLH) 47 5063 1.00 0.15 4764 n.a. n.a.

Bijugal breadth [JUB] [134] 11465 3.99 0.00004 11365 4.19 0.00001

Orbit height (OBH) 34 3362 0.50 0.30 3362 0.50 0.30

Orbit breadth (OBB) 44 3962 2.50 0.006 3962 2.50 0.006

Orbit index (OBH/OBB) 76 6669 1.11 0.13 8466 21.33 0.09

Nasal breadth (NLB) [32] 2562 3.49 0.0002 2862 2.00 0.02

Nasal index (NLB/NLH) 71 5064 5.24 ,0.00001 5965 2.40 0.008

Bimaxillary breadth (ZMB) [108] 9265 3.19 0.0007 9465 2.80 0.002

Bifrontal breadth (FMB) [106] 9764 2.25 0.01 9864 2.00 0.02

Biorbital breadth (EKB) [114] 9763 5.66 ,0.00001 9764 4.24 0.0001

Interorbital breadth (DKB) 25 2262 1.50 0.06 2362 1.00 0.15

Simotic chord (WNB) 4 962 22.50 0.006 963 21.66 0.04

Malar length, inferior (IML) (26) 3563 1.66 0.04 3664 1.00 0.15

Supraorbital projection (SOS) 6 661 n.a. n.a. 661 n.a. n.a.

Malar subtense (MLS) 8 1062 1.00 0.15 1162 21.50 0.06

Glabella projection (GLS) 4 361 1.00 0.15 261 2.00 0.02

Frontal chord (FRC) 112 11065 0.40 0.34 10865 0.80 0.21

Frontal subtense (FRS) 30 2663 1.33 0.09 2763 1.00 0.15

Frontal curvature index (FRS/FRC) 27 2362 2.00 0.02 2562 1.00 0.15

MLDG 1704

Bistephanic breadth (STB) 114 11667 20.29 0.38 10867 0.89 0.19

Maximum frontal breadth (XFB) 125 11966 1.00 0.15 11166 2.33 0.01

Bifrontal breadth (FMB) 107 9764 2.50 0.006 9864 2.25 0.01

Frontal chord (FRC) 116 11065 1.20 0.11 10865 1.60 0.05

Parietal chord (PAC) 107 11166 20.67 0.25 11166 20.67 0.25

Parietal/frontal chord index (PAC/FRC) 92 10166 21.50 0.06 9866 21.00 0.15

"Fossil values in round brackets are estimates, values in square brackets estimated by measuring to the midline and doubling; sample compositions see Table 4;
descriptive statistics for Howells’ samples calculated by us from raw data; z-test results do not employ Bonferroni correction as per [56].
doi:10.1371/journal.pone.0031918.t013
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complexes [37], spanning the neurocranial vault, including

endocranium, cranial base, facial skeleton, mandible and denti-

tion. Where they can be assessed, metrical dimensions involved are

characterised mostly by moderate to high heritability [38–41].

Given their morphological similarity, close geographical proximity

(,300 km apart) and young geological age (i.e., Pleistocene-

Holocene transition), it seems likely that both samples belong to

the same population.

Multivariate analysis of vault shape, a method shown to track

neutral genetic distances [42], indicates a somewhat mixed picture

with respect to the phenetic affinities of LL 1 and MLDG 1704.

The dominant phenetic signal in these analyses, as indicated by

the first principal component (accounting for 45–46% of total

variance), shows LL 1 and MLDG 1704 to be at the edge of

variation within Pleistocene H. sapiens, and in some analyses, on

the edge also of H. erectus variability. A weaker phenetic signal,

revealed particularly by principal component 3 (,12–14% of total

variance), shows them to exhibit a unique cranial shape among all

later Pleistocene hominins.

A range of features support the conclusion that these remains

show affinities to H. sapiens:

N Neurocranium: moderately projecting and laterally thin

supraorbital part, which has the bipartite form in MLDG

1704; frontal bone with a moderate chord and arc length, but

broad maximum width; and an endocast with long, broad and

tall frontal lobes.

N Viscerocranium: narrow superior facial breadth; vertically

short facial skeleton (superior facial height, orbit height and

nasal height); and moderate nasal breadth relative to height.

N Mandible: mesial position of the mental foramen; and

absence of a medial pterygoid tubercle.

N Dentiton: small (narrow) anterior dental crowns.

At the same time, the Longlin and Maludong fossils possess

many features that are either rare or absent among Pleistocene

and recent H. sapiens, many of them being putative plesiomorphies

of later Homo. These include:

N Neurocranium: moderate endocranial volume; highly

arched frontal squama; short parietal bones; endocast with

short parietal lobes; narrow postorbital region; and absence of

a bipartite supraorbital morphology in LL 1.

N Cranial base (LL 1 only): a mandibular fossa that is long (A-

P), broad (M-L) and deep (S-I).

N Viscerocranium (LL 1 only): strong alveolar prognathism;

flat mid-face, both at the nasal root and aperture and

zygomatic process of the maxilla; broad facial skeleton

(interorbital, bizygomatic and bimaxillary); very narrow nasal

bones; broad piriform aperture; absence of a canine fossa, and

possessing a deep sulcus maxillaris; zygomatic arch is laterally

flared; zygomatic strongly angled such that its inferior margin

sits well lateral to the superior part; zygomatic tubercle is small

and sits lateral to a line project from the orbital pillar (anterior

aspect); the anterior masseter attachment area is marked by a

broad and deep sulcus; strong transverse incurvation of lateral

orbital pillar (lateral aspect); and anterior placement of the

anterior wall of the zygomaticoalveolar root (above P4/M1).

N Mandible: absence of a sagittal keel and distinct lateral

tubercles; small chin (MLDG 1706 Rank 3, LL 1 Rank ?3);

mandibular foramen bridging (MLDG 1706); thickened

transverse tori; asymmetrical mandibular notch (MLDG

1679); retromolar space; crest of the mandibular notch

positioned laterally (MLDG 1679); and a low anterior

symphyseal angle (MLDG 1706).

N Dentition: broad post-canine crowns (large BL diameters);

and taurodont molars.

The finding of human remains with such a combination of

modern (H. sapiens) and archaic (putative plesiomorphic) characters

is unusual, especially in Eurasia. In Africa, there are several

Pleistocene remains that also combine modern features with

putative later Homo plesiomorphies: from Klasies River Mouth

Cave [43–44] and Hofmeyr [45] (South Africa), Iwo Eleru (Nigeria)

[46], Nazlet Khater (Egypt), and Dar-es-Soltane and Témara

(Morocco) [1,28,45]. Most of them are, however, much older than

Longlin and Maludong: Dar-es-Soltane and Témara are undated,

Table 14. Comparison of LL 1 and MLDG 1704 with Howells
[29] recent Australian samples (significant z-scores in bold)."

Howells Fossil Australian

Measurement (Abbrev.) Value (n = 165)

m6s z p

LL 1

Bistephanic breadth (STB) 103 10267 0.14 0.44

Bizygomatic breadth (ZYB) [144] 13167 1.85 0.03

Nasion-prosthion height (NPH) 64 6265 0.40 0.34

Facial index (NPH/ZYB) 44 4763 21.00 0.16

Nasal height (NLH) 47 4863 20.33 0.37

Bijugal breadth [JUB] [134] 11666 2.99 0.001

Orbit height (OBH) 34 3262 1.00 0.16

Orbit breadth (OBB) 44 4162 1.50 0.06

Orbit index (OBH/OBB) 76 8066 20.66 0.25

Nasal breadth (NLB) [32] 2762 2.49 0.006

Nasal index (NLB/NLH) 71 5865 2.59 0.005

Bimaxillary breadth (ZMB) [108] 9466 2.33 0.01

Bifrontal breadth (FMB) [106] 10064 1.50 0.06

Biorbital breadth (EKB) [114] 9964 3.74 0.0001

Interorbital breadth (DKB) 25 2162 1.99 0.02

Simotic chord (WNB) 4 962 22.50 0.006

Malar length, inferior (IML) (26) 3964 0.25 0.40

Supraorbital projection (SOS) 6 761 21.00 0.16

Malar subtense (MLS) 8 1162 21.50 0.06

Glabella projection (GLS) 4 561 21.00 0.16

Frontal chord (FRC) 112 10965 0.60 0.27

Frontal subtense (FRS) 30 2562 2.50 0.006

Frontal curvature index (FRS/FRC) 27 2362 1.99 0.02

MLDG 1704

Bistephanic breadth (STB) 114 10267 1.71 0.04

Maximum frontal breadth (XFB) 125 10965 3.19 0.0008

Bifrontal breadth (FMB) 107 10064 23.50 0.0003

Frontal chord (FRC) 116 10965 1.40 0.08

Parietal chord (PAC) 107 11466 21.16 0.12

Parietal/frontal chord index (PAC/FRC) 92 10566 22.16 0.01

"Fossil values in round brackets are estimates, values in square brackets
estimated by measuring to the midline and doubling; sample compositions see
Table 4; descriptive statistics for Howells’ samples calculated by us from raw
data; z-test results do not employ Bonferroni correction as per [56].
doi:10.1371/journal.pone.0031918.t014
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but they were associated with the Aterian lithic assemblage which

has recently been dated to between 10763 ka and 9664 ka at

another Moroccan site (La Grotte des Contrebandiers) [47]; the

Klasies River Mouth remains are from two units dating .101 ka

and .64–104 ka [48]; Nazlet Khater 2 is perhaps <42 ka [28]; and

Hofmeyr 36.263.3 ka [49]. However, the recently described Iwo

Eleru calvaria has been dated ,16.3-11.7 ka [46] and is clearly of

similar age to the Chinese remains.

Various Upper Pleistocene fossils outside of Africa have also

been described as exhibiting an unusual mosaic of characters [e.g.

28]. Some of them, such as from Skhul and Qafzeh (Israel) and

Pestera cu Oase (Romania) have been included in our analyses,

and overall seem to be metrically well within the range of

Pleistocene H. sapiens (e.g. Figures 8–9). The former (Levantine)

samples do, however, show some similarities to LL 1 and MLDG

1704 in univariate comparisons.

How might the presence of this unusual morphology during the

Pleistocene-Holocene transition of East Asia be explained? The

remains from Longlin and Maludong could represent very robust

individuals within a previously unknown Epipalaeolithic popula-

Figure 11. Virtual endocast of MLDG 1704. Left panel: (A) left lateral aspect, (B) superior aspect, (C) anterior aspect, and (D) posterior aspect.
Right panel: (E) plot of frontal breadth versus frontal height, and (F) plot of frontal chord versus parietal chord (Gray star = MLDG 1704; ellipses are
ranges for samples; Chinese = recent Chinese; Japanese = recent Japanese; Kab = Kabwe; Liu = Liujiang; Min 1 = Minatogawa 1; Nea = Neandertal
Pred = Predmost; Zkd = Zhoukoudian).
doi:10.1371/journal.pone.0031918.g011
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tion in southwest China. We consider this to be an unsatisfactory

explanation because of the presence of several apparently unique

features combined with an unusual mixture of modern and archaic

features is seen in several specimens and spans multiple

developmental-functional complexes (as noted above). Moreover,

this hypothesis could also be invoked to explain the morphology of

remains from Klasies River Mouth Cave, Hofmeyr, Iwo Eleru,

Nazlet Khater, Dar-es-Soltane, Témara and Zhirendong, but has

not because many of their archaic features are rare or absent

among H. sapiens. The same situation applies to the Longlin and

Maludong remains, as shown strongly here.

In our opinion, there are more plausible explanations. One

possibility is that the Longlin and Maludong remains represent a

late surviving archaic population, perhaps similar to that sampled

at Dar-es-Soltane and Témara [1,28,32]. Unfortunately, little is

known of the morphology of these North African remains, and

their affinities and taxonomy are unclear [1,28,32]. Within East

Asia, the recently described mandibular fragment from Zhiren-

dong also possesses a mosaic of modern and plesiomorphic

characters making its taxonomic status problematic [3,10–11]. It

has, although, been dated on stratigraphic grounds to .100 ka

[10], similar in age to the North African Aterian assemblage, but

much older than Longlin and Maludong. Another recently

described specimen from the site of Salkhit (Mongolia) has also

been described as belonging to an unspecified archaic taxon [50].

Dating is uncertain, although, a preliminary date of ,20 ka has

apparently been reported [3]. Moreover, doubts about its archaic

affinities have been expressed [3] (Note: we have been unable to

include this specimen in our analyses as we found errors in the

measurements of this and other specimens included in Table 1 of

Coppens et al. [50]).

Another possible explanation is that the unusual morphology of the

Longlin and Maludong remains results from the retention of a large

number of ancestral polymorphisms in a population of H. sapiens. The

concept of incomplete lineage sorting is commonly invoked to explain

morphologically mixed groups where the features of interest are

present also in allopatric populations belonging to the same taxon

[51]. Related to this, recent morphological studies have suggested

that Pleistocene H. sapiens was deeply geographically subdivided

within Africa prior to its dispersal into Eurasia [52]. This explanation

has also been invoked to explain the unusual morphology of the Iwo

Eleru calvaria [46]. The morphology documented at Longlin and

Maludong might be interpreted as consistent with this hypothesis, the

Table 15. Endocast chord measurements (mm) compared
(significant z-scores in bold)."

Sample Frontal Frontal Frontal Parietal

Breadth Height Chord Chord

MLDG 1704 121 99 86 99

Liujiang 115 95 89 107

Minatogawa 1 112 - 71 103

Kabwe 108 88 78 104

EUEHS 12068(5) 10066(5) 9067(5) 12267(5)

(106–126) (93–109) (84–101) (105–122)

z-score/p 0.11/0.45 20.15/0.44 20.52/0.31 23.00/0.01

Recent Chinese 11265(31) 9264(31) 7965(31) 10664(31)

(103–122) (86–100) (69–89) (98–114)

z-score/p 1.77/0.04 1.72/0.04 1.38/0.08 21.72/0.04

Recent Japanese 12064(32) 9565(32) 7765(32) 10767(32)

(112–129) (83–105) (64–84) (95–119)

z-score/p 0.25/0.40 0.79/0.21 1.77/0.04 21.13/0.13

NEAND 107(6) -* 82(6) 106(3)

(103–111) -* (72–92) (104–110)

ERECT 9968(12) 74611(12) 7666(11) 8767(11)

(84–110) (44–88) (68–85) (70–96)

z-score/p 2.64/0.01 2.18/0.02 1.60/0.07 1.64/0.06

"Above the line m6s (n), below the line (min.-max.); z-test results do not
employ Bonferroni correction as per [56]; data sources see Text S2.
*Data not available because published height for this taxon has been measured
from the frontal pole-occipital pole; cannot be measured in MLDG 1704 owing
to absence of the occipital bone.
doi:10.1371/journal.pone.0031918.t015

Table 16. Mandibular body traits compared."

Sample Mentum Mental foramen Mandibular Mandibular notch Retromolar Medial pterygoid

osseum rank location foramen bridging symmetrical space tubercle

(% rank 4) (% mesial of M1) (% absent) (% present) (% absent) (% absent)

LL 1 ?3 P4/M1 - - ?Present -

MLDG 1679 - - Absent Asymmetrical Present Absent

MLDG 1706 3 P4/M1 Present Asymmetrical Absent Absent

Tianyuan 1 4 P4/M1 Absent Symmetrical - Absent

Zhirendong 3 4 P4 - - - -

EAEHS 50.5(4) 90.9(11) 100(3) 100(3) - 33.3(3)

EUEHS 70.8(4) 92.0(25) 100(16) 100(17) 77.1(17) 90.0(10)

Western EHS 85.7(7) 100(5) 83.3(3) 66.7(3) 60(5) 100(3)

AFEHS 68.8(8) 87.7(7) 100(5) 100(4) - 100(6)

NEAND 0.0(23) 12.2(31) 42.9(21) 30.8(13) 25(28) 18.8(16)

ERECT
ˆ

- 33(12) - - - -

"Sample abbreviations and compositions see Table 4, except Western EHS ( = MIS3 early modern humans [9–10]); data sources [9–10] and see Text S2.
ˆMost ERECT mandibles possess multiple mental foramina. We have scored a mandible as having a mental foramen mesial to M1 only when all foramina are in this position.
doi:10.1371/journal.pone.0031918.t016
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Chinese remains perhaps sampling a previously unknown human

population (or migration?) that may not have contributed genetically

to recent East Asians. Ancient DNA could allow for a test of this idea,

however, our ongoing attempts to extract DNA from a specimen

from Maludong have so far proven unsuccessful owing to a lack of

recoverable genetic material.

Either way, the presence of the unusual morphology sampled at

Longlin and Maludong during the Pleistocene-Holocene transition

indicates that the evolutionary history of humans in East Asia is

more complex than has been understood until now. It further

highlights the need for much more research in the region as a

matter of priority.

Methods

Radiocarbon dating
Fifteen charcoal samples for AMS radiocarbon assay were prepared

and measured at the ANTARES-STAR Accelerator Mass Spectrom-

etry Facility at the Australian Nuclear Science and Technology

Organisation described in [60]. All samples were pre-treated and

converted to graphite following methods described by [61]. The

external surfaces of charcoal pieces selected for assay were scraped

with a cleaned scalpel to remove sediment and soil attached to

charcoals. The samples were then cut into smaller pieces to increase

surface areas for more efficient chemical pre-treatment. Each sample

was then treated with an acid-base-acid sequence as follows:

N 2 M HCl at 60uC for 2 hours to remove carbonate and any

infiltrated fulvic acid contaminants,

N 0.5–4% NaOH at 60uC for 10 hours to remove infiltrated

fulvic and humic acid contaminants. This treatment is

commenced with a very weak alkali solution of 0.5% NaOH

Table 17. Mandibular body measurements compared (significant z-scores in bold)."

Sample Anterior symphyseal Body height at Body thickness at

angle mental foramen mental foramen

(6) (mm) (mm)

LL 1 - (28)* 14*

MLDG 1706 ,77 26.9 13.3

Tianyuan 1 ,96 28.7 11.3

Zhirendong 3 91 27.4 16.0

EAEHS 94 29.0,31.0,33.7 12.0,13.0,14.4

EUEHS 96.566.2(12) 31.664.4(12) 12.461.4(11)

Z-score/p LL 1 - 20.79/0.22 1.09/0.14

Z-score/p MLDG 1706 23.02/0.005 - 0.62/0.27

Western EHS 89,91 27.5,33.2,35.3 11.6,12.2,15.7

AFEHS 86.466.4(5) 35.0,36.0,40.5 13.2,15.0,16.6

Z-score/p MLDG 1706 21.34/0.12 - -

NEAND 80.867.31(18) 32.363.6(26) 15.561.81(26)

Z-score/p LL 1 - 21.17/0.12 20.82/0.21

Z-score/p MLDG 1706 20.51/0.30 - 21.20/0.12

ERECT 68.9612.7(6) - -

Z-score/p MLDG 1706 0.59/0.29 - -

"Sample abbreviations and compositions see Table 4, except Western EHS ( = MIS3 early modern humans [9–10]); data sources [9–10] and see Text S2; m6s(n); z-test
results do not employ Bonferroni correction as per [56].
*Value taken slightly distal to mental foramen owing to damage.
1T-test EUEHS and NEAND mean difference: one-tailed p,0.05-0.01.
doi:10.1371/journal.pone.0031918.t017

Figure 12. Isolated M3 – specimen MLDG 1747 (scale
bar = 1 cm) exhibiting marked taurodontism.
doi:10.1371/journal.pone.0031918.g012
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then with successively stronger solutions until the solution is

clear or until all humic acids are removed,

N 2 M HCl at room temperature for 4 hours to remove any

atmospheric CO2, which was absorbed by the samples during

the alkali treatment.

The cleaned charcoal pieces are finally placed into an oven at

60uC for 2–3 days to dry and then taken for combustion using

routine methods for conversion of charcoal to graphite [60]. A

portion of each graphite sample was used to determine d13C for mass

fractionation correction from the graphitisation process. Measured

AMS 14C/13C ratios are converted to conventional radiocarbon

ages after background subtraction and d13C fractional correction.

Radiocarbon ages (see Table 1) are given with 1 standard deviation

(1s) precisions ranging from 60.3 to 0.5. All radiocarbon ages were

converted to calibrated calendar ages BP (before-present, 1950)

using the CALIB 6.02 calibration software and the IntCal09 data

sets [62]. All calendar age errors quoted in this paper are given as 2

standard deviation errors (2s). Table 1 provides radiocarbon ages

and calibrated calendar ages for each charcoal sample measured by

AMA. Table S1 provides ancillary information pertaining to sample

pretreatment, graphite AMS mass and d13C values used to correct

AMS radiocarbon data from Maludong.

Archaeomagnetics
Detailed theories and methods related to the use of magnetic

measurements for reconstructing palaeoclimate and anthropogenic

alteration are outlined in [63–65]. Bulk sediment samples were

taken from every single excavated stratigraphic unit during

excavation. These bulk samples were divided into sub-samples, air

dried and sieved to remove any large non-magnetic particles (i.e.

limestone clasts). The sieved bulk sub-samples were then subjected

to a range of mineral magnetic measurements. Low temperature

and room temperature dual frequency magnetic susceptibility

measurements were undertaken on a Bartington MS2 system.

Isothermal remanent magnetisation (IRM) acquisition and backfield

curves, hysteresis loops and thermomagnetic curves were run on a

Magnetic Measurements Variable field Translation Balance (MM-

VFTB).

Endocast rendering and volume estimation
A virtual endocast of MLDG 1704 was generated from

computed tomography (CT) data in Mimics (Ver. 13.02) by:

1. Segmenting out extraneous material and generating a mask for

MLDG 1704,

2. Generating a cutting plane and converting this mask into a 3D

object,

3. Positioning the 3D object such that it closed the open region of

the cranium,

4. Generating a mask from the repositioned 3D of the cutting

plane,

5. Combining the mask of MLDG 1704 with that of the cutting

plane,

Table 18. Comparison of mandibular dental crown buccolingual diameters (mm) (significant z-scores in bold)."

Fossil/Sample I2 C P3 M2 M3

LL 1 6.7 8.4/7.61 9.3/9.51 - 10.7/10.31

MLDG 1679 - - - 11.9 11.6

Tianyuan 1 7.1 8.9 8.2 10.7 11.3

Zhirendong 1, 2 - - - 10.3 10.1, 0.3

Eastern EMH 6.960.3{(6) 8.360.5{(6) 8.460.1{(5) 11.160.4{(7) 10.460.4{(7)

z-score/p LL 1 20.64/0.28 20.56/0.30 29.13/0.0003 - 20.23/0.41

z-score/p MLDG 1679 - - - 1.87/0.05 2.81/0.01

Western MUP{ 6.860.5(22) 8.660.7(19) 8.560.5(18) 11.060.8(28) 10.860.9(17)

z-score/p LL 1 20.20/0.42 20.08/0.46 21.75/0.04 - 20.88/0.19

z-score/p MLDG 1679 - - - 1.11/0.13 0.86/0.20

Western EMH{ 7.260.5(5) 8.760.8(6) 8.4,9.0 11.261.1(7) 10.0,11.7,14.2

z-score/p LL 1 20.91/0.20 20.81/0.22 - - -

z-score/p MLDG 1679 - - - 0.60/0.28 -

Middle Palaeolithic MH{ 7.260.5(10) 8.360.8(10) 8.860.5(8) 11.060.7(10) 10.860.6(8)

z-score/p LL 1 20.9/0.18 20.36/0.36 1.13/0.14 - 20.88/0.19

z-score/p MLDG 1679 - - - 1.23/0.12 1.26/0.12

Neandertals{ 7.760.5(28) 8.960.7(33) 9.060.7(33) 11.060.7(36) 11.060.8(42)

z-score/p LL 1 21.97/0.02 21.27/0.10 0.56/0.28 - 20.88/0.19

z-score/p MLDG 1679 - - - 1.27/0.10 0.74/0.23

ERECT{ 7.160.5(11) 9.160.7(11) 10.060.6(16) 12.860.9(18) 11.561.1(14)

z-score/p LL 1 20.77/0.23 21.05/0.08 20.97/0.17 - 20.88/0.19

z-score/p MLDG 1679 - - - 20.97/0.17 20.09/0.46

"Sample abbreviations and compositions see Table 4 and [9–10]; m6s(n); z-test results do not employ Bonferroni correction as per [56].
{Comparative samples from Shang et al. [9].
{Data compiled by the authors from literature (see Table 4 and Text S2).
1Mean of left and right used in z-test.
doi:10.1371/journal.pone.0031918.t018
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6. Using the ‘cavity fill’ tool to create a partial endocast from this

combined mask,

7. A 3D surface mesh was then generated from this mask of the

endocast and imported into Strand7 (ver. 2.4), and

8. A solid mesh of the partial endocast was then created in Strand7

and the volume taken from the model summary.

Six endocasts and their respective volumes were generated from

CT scans of complete Holocene age southern African San crania

using this same general approach (Figure S1). In these instances ‘holes’

in the masks of the crania representing nerves and blood vessels were

filled before applying the ‘cavity fill’ tool to produce the endocasts.

A template of Type I, Type II and Type III [66] landmark

points was created to capture the whole surface morphology of the

six modern human endocasts (Figure S2). Warping of cranial

exterior surface morphology using a mixture of landmark points

and slid semi-landmarks has been shown to be highly effective at

reproducing target cranial shape [67]. Here we apply a similar

methodology, utilising landmarks, pseudo-landmarks and slid

semi-landmarks, to these endocrania. The landmark template

was designed to capture as much as possible of the endocranial

shape that was common to all six modern humans.

Our landmark template consisted of 715 landmarks. We used 33

single points (Type I and II landmarks), 9 curves (the beginning and

end of the curves were defined by Type II landmarks, with 8

additional Type III semilandmarks slid between these across the

endocranial surface) and 12 polygon regions (9 user defined Type II

landmarks with additional slid semilandmarks). The polygon regions

were used to capture the morphology of the different lobes of the

brain. Four of the polygons were defined by 100 landmarks (9 Type

II, 91 slid semilandmarks), with the remaining 8 polygons defined by

25 landmarks (9 Type II, 16 slid semilandmarks). Once the

landmarks were placed on all of the crania, Template Optimisation

was used to create the ‘mean’ endocranial whole surface shape of

these six humans (Figure S3). Template Optimisation has been

shown to be accurate in reproducing the target mesh shapes [68].

The mean endocranial shape was registered with NMB 1204

using an Iterative Closest Point (ICP) registration algorithm [69–

71], to place it in a 3D space relevant to that of the other human

endocrania. The modern human endocrania and that of MLDG

1704 were ICP registered with the mean endocranium to minimise

any orientation differences between endocranial specimens and the

mean shape (Figure S4). STLs of the registered ‘mean’ the San and

MLDG 1704 endocasts were imported into Mimics and a cutting

plane was generated and positioned as above, with the endocast of

MLDG 1704 superimposed (Figure S4). This was used to separate

that part of the mean San endocast that was not preserved in

MLDG 1704. The volume of this separated portion amounted to

39% of the original total brain volume for the mean San endocast.

The total brain volume of MLDG 1704 is estimated to be 1327 cm3

assuming similarity in proportions between the two.

Supporting Information

Figure S1 Endocasts generated from computed tomog-
raphy. a, MLDG 1704, and San crania: b, NMB 4. c, NMB

1271. d, NMB 1640. e, NMB 1204. f, NMB 1707. g, NMB 1240.

(TIF)

Figure S2 Varying views of the BW 1204 modern human
(San) endocranium specimen showing the landmark and
slid semilandmark template as applied to each of the 6
modern human specimens. Aspect viewed: A) inferior, B)

superior, C) frontal, D) L frontal-inferior E) lateral F) L inferior-

lateral.

(TIF)

Figure S3 Landmark template. A) applied to BW 1204 (as in

Figure S2), B) same landmark template applied to specimen BW

1240, C) and mean modern (San) endocranial shape generated

from the average landmark configuration of the 6 modern human

specimens.

(TIF)

Figure S4 Registered mean San (dark gray) and MLDG
1704 (light gray) endocasts superimposed showing
cutting plane.
(TIF)

Table S1 Radiocarbon data for Maludong.
(DOCX)

Text S1 Archaeomagnetics - results.
(DOCX)

Text S2 Additional references: sources of metrical and
morphological data and dating estimates.
(DOCX)
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