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Eukaryotic gene regulation involves a balance between
packaging of the genome into nucleosomes and enabling
access to regulatory proteins and RNA polymerase.
Nucleosomes are integral components of gene regulation
that restrict access to both regulatory sequences and the
underlying template. Whereas canonical histones pack-
age the newly replicated genome, they can be replaced
with histone variants that alter nucleosome structure,
stability, dynamics, and, ultimately, DNA accessibility.
Here we consider how histone variants and their inter-
acting partners are involved in transcriptional regulation
through the creation of unique chromatin states.

The basic unit of chromatin is the nucleosome, consist-
ing of DNA wrapped around a core of histone proteins.
Nucleosomes likely evolved to protect and compact in-
creasingly large eukaryotic genomes (Malik and Henikoff
2003). As a consequence, however, nucleosomes also
restrict access to cellular components such as DNA-
binding transcription factors and RNA polymerase (Li
et al. 2007). Accordingly, distinct mechanisms have
evolved to influence the dynamic competition between
nucleosomes and DNA-binding transcription factors in
addition to orchestrating RNA polymerase II (RNAPII)
translocation across a nucleosomal template. This dy-
namic mode of regulation is mediated in a number of
ways, including post-translational modification of his-
tones, altering the position or eviction of nucleosomes by
ATP-dependent chromatin remodelers, and replacement
of canonical histones with histone variants. Canonical
histones (H2A, H2B, H3, and H4) are deposited in a rep-
lication-coupled manner to package the newly replicated
genome. In contrast, histone variants are expressed through-
out the cell cycle and replace canonical histones or take
their place when nucleosomes are evicted (for reviews on
evolutionary conservation, see Malik and Henikoff 2003;
Talbert and Henikoff 2010). Histone variants have dis-

tinct amino acid sequences that can influence both the
physical properties of the nucleosome and nucleosome
dynamics. These properties are especially important
during transcription, where histone variants shape the
chromatin landscape of cis-regulatory and coding regions
in support of specific transcription programs.

Here we consider core variants of H2A and H3 that
are implicated in transcription (Table 1). We discuss the
mechanisms responsible for shaping the histone variant
landscape, focusing on recent genome-wide mapping
studies of these variants, their chaperones, RNAPII, and
nucleosome dynamics. We review how these chromatin
landscapes and deposition pathways influence the dynamic
interplay between nucleosome occupancy, regulatory
DNA-binding proteins, and, ultimately, RNAPII elongation
across nucleosomes. Our ultimate focus is on how histone
variants create distinct chromatin landscapes with different
dynamics and how this influences gene regulation.

Nucleosome organization and dynamics

Each nucleosome wraps ;147 base pairs (bp) of DNA 1.7
turns around an octamer consisting of two each of H2A,
H2B, H3, and H4. At the center of the DNA wrap, an (H3/
H4)2 tetramer is formed due to a strong four-helix bundle
interaction between the two H3 proteins (Luger et al.
1997). Interacting with the (H3/H4)2 tetramer are two
heterodimers of H2A/H2B, which dock at the DNA entry
and exit sites through the H2A C terminus-docking do-
main (Fig. 1A). Additionally, the two H2A histones in-
teract through their L1 loop, and H2B interacts with H4
through a weak four-helix bundle.

Nucleosomes are energetically stable; however, they
can turn over in vivo (Fig. 1B). H2A and H2B turn over
much faster than H3 and H4 in both genic and intergenic
regions (Kimura and Cook 2001; Jamai et al. 2007). H2A/
H2B turnover occurs due to weaker intranucleosomal
contacts and because the dimers dock at DNA entry and
exit sites, which are prone to transiently unwrap (Li et al.
2005b). Active processes such as RNA polymerase transit
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drive unwrapping, which increases dimer turnover and
DNA exposure (Sheinin et al. 2013). A functional conse-
quence of both transient unwrapping and dimer loss is
exposure of DNA to binding by regulatory proteins.

In order for the (H3/H4)2 tetramer to turn over, the
nucleosome must be almost completely unwrapped, a
process that can occur many times at a given location
during interphase. In yeast and Drosophila cells, nucleo-
some turnover measured by new H3 incorporation cor-
relates with transcription (Dion et al. 2007; Deal et al.
2010). In Drosophila cells, nucleosome turnover is also
high over cis-regulatory regions, consistent with a competi-
tion between nucleosomes and transcription factors for
occupancy of these sites (Mito et al. 2007; Deal et al.
2010). A consequence of the dynamic nature of nucleosomes
is erasure of post-translational modifications on histones.
Thus, modulation of DNA accessibility through regulated
nucleosome turnover can perpetuate gene expression states.

Replication-independent deposition of variants
punctuates the chromatin landscape

H2A.Z alters nucleosome properties

H2A variants are the most diverse, perhaps reflective of
relaxed structural constraint within the nucleosome. One

such variant, H2A.Z, arose once early in eukaryotic
evolution and has remained distinct from H2A ever since
(Talbert and Henikoff 2010). At the amino acid level,
H2A.Z is only ;60% identical to H2A within species but
is relatively conserved between species and is essential in
metazoans (Zlatanova and Thakar 2008). Remarkably,
the structure of the H2A.Z nucleosome is quite similar to
H2A; however, there are key structural differences (Suto
et al. 2000). On the surface, H2A.Z has an extended acidic
patch, which stimulates remodeling activity with the
ISWI ATP-dependent remodeler (Goldman et al. 2010).
Within the core, the L1 loop is structurally distinct, and
in the docking domain with H3/H4, a glutamine-to-
glycine substitution in H2A.Z compromises three hydro-
gen bonds, which is predicted to weaken the interaction.
Despite these structural differences, the change in the
stability of the particle is subtle, with contrasting results
reported. Overall, the consensus is that H2A.Z slightly
stabilizes in vitro and destabilizes in vivo (Zlatanova and
Thakar 2008; Bonisch and Hake 2012). This discrepancy
might be attributable to post-translational modifications
in vivo, where H2A.Z is acetylated at active genes (Bruce
et al. 2005; Valdes-Mora et al. 2012); differences in DNA
sequence; or the fact that H2A.Z nucleosomes can be
hybrid in vivo, either heterotypic (Z/A) or homotypic
(Z/Z) (Viens et al. 2006; Luk et al. 2010; Weber et al. 2010).

H2A.Z deposition and a futile cycle

In yeast, H2A.Z can be bound by the general H2A/H2B
chaperone Nap1 or Chz1, which preferentially bind H2A.Z
over H2A (Luk et al. 2007). These chaperones provide
a source of H2A.Z for the Swr1 remodeling complex,
which exchanges H2A.Z for H2A (Mizuguchi et al.
2004). Some metazoans contain two Swr1 orthologs that
organize into at least two distinct complexes, P400/TIP60
and SRCAP, which, like Swr1, catalyze the exchange
reaction. While these complexes share some components,
there are many differences (Billon and Cote 2012). For

Table 1. Histone variants discussed in this review and the
lineages where they are present

Histone variant Presence

H2A.Z Universal
macroH2A

macroH2A Invertebrates
macroH2A.1.1/2 Vertebrates
macroH2A.2 Vertebrates

H2A.B Vertebrates
H2A.Lap1 Mouse
H2A.Bbd Human

H3.3 Universal (only H3 in fungi)

Figure 1. (A) Structure of nucleosome core par-
ticle, showing that (H3/H4)2 is at the center of
the DNA wrap, with two dimers of H2A/H2B
docked at the edges, near the DNA entry and exit
locations. (B) Nucleosomes modulate access to
transcription factor (TF)-binding sites. Transient
DNA unwrapping exposes transcription factor-
binding sites. As nucleosomes unwrap, H2A/H2B
dimers can be lost, exposing more DNA, and
when the nucleosome is completely unwrapped,
(H3/H4)2 is lost, and DNA is completely exposed.
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example, a human H2A.Z-specific chaperone, ANP32E,
was recently characterized as part of P400/TIP60 but not
the SRCAP complex (Obri et al. 2014). Intriguingly, the
ANP32 family has many members of uncharacterized
function, where at least one other, ANP32B, has been
shown to be an H3/H4 chaperone (Tochio et al. 2010). It is
likely that many other histone chaperones remain to be
discovered.

H2A.Z comprises ;15% of total H2A and is distributed
throughout the genome nonrandomly in both euchroma-
tin and heterochromatin, where it is monoubiquitinated
(Sarcinella et al. 2007); however, it has remained unclear
how H2A.Z becomes enriched at particular sites in the
genome. High-resolution ChIP (chromatin immunopre-
cipitation) and biochemistry of the yeast Swr1 complex
revealed that Swr1 preferentially acts at nucleosome-
depleted regions (NDRs) that are >50–70 bp and requires
the Swc2 subunit to bind DNA (Ranjan et al. 2013; Yen
et al. 2013). NDRs are predominately located at the
promoter region of active genes and are characterized by
two well-positioned flanking nucleosomes. Certain tran-
scription factors and chromatin remodelers are required
for NDR establishment and maintenance, but H2A.Z and
Swr1 are dispensable (Whitehouse et al. 2007; Hartley and
Madhani 2009). Whereas recruitment to the NDR might
be sufficient to explain H2A.Z enrichment at nucleo-
somes that flank promoters, H2A.Z is also enriched to
some extent in gene bodies of all eukaryotes studied.
Additionally, NDR recruitment does not explain how
some organisms, including Arabidopsis (Zilberman et al.
2008) and Drosophila (Mavrich et al. 2008), lack upstream
H2A.Z nucleosomes (Fig. 2A).

In metazoans, H2A.Z enrichment correlates with ex-
pression level. One attractive possibility is that dimer
loss followed by replacement with H2A.Z contributes to
genic enrichment patterns and low-level incorporation
genome-wide. In support of this possibility, homotypic
Z/Z nucleosomes are enriched over active genes (Weber
et al. 2010; Nekrasov et al. 2012), which could be the
result of transcription-mediated dimer loss and then op-
portunistic replacement with H2A.Z, which is produced
throughout the cell cycle. Consistent with transcription-
coupled replacement, the presence of upstream H2A.Z
nucleosomes seen in some organisms correlates with
bidirectional transcription in yeast and mammals (Core
et al. 2008; Xu et al. 2009), whereas upstream H2A.Z
enrichment is not seen in Arabidopsis and Drosophila.
DNA methylation and H2A.Z are anti-correlated in
plants and animals (Conerly et al. 2010; Zemach et al.
2010), and in Arabidopsis, there is mutual antagonism
(Zilberman et al. 2008), suggesting that epigenetic factors
also contribute to H2A.Z localization.

In mammalian cells, preferential H2A.Z localization
also is seen at a subset of gene promoters associated with
transcription factor binding (Gevry et al. 2007; Gallant-
Behm et al. 2012). Additionally, work in embryonic stem
cells (ESCs) has shown that H2A.Z preferentially local-
izes to promoters of silent genes occupied by the Poly-
comb-repressive complex 2 (PRC2) (Creyghton et al.
2008; Illingworth et al. 2012). H2A.Z is also enriched at

enhancers in ESCs and facilitates the binding of PRC2
and H3K4me3 and H3K27me3 modifications (Hu et al.
2013). Also in ESCs, H2A.Z increases nucleosome acces-
sibility at FoxA2-binding sites (Li et al. 2012) and tran-
scription factor accessibility (Hu et al. 2013). Despite
these intriguing observations, it remains unclear how
H2A.Z becomes enriched at developmentally regulated
regions.

Figure 2. (A, top) The H2A.Z futile cycle of deposition by
Swr1 or orthologous complexes and then removal by Ino80,
Anp32E, or Swr1 when H3K56 is acetylated. (Bottom) H2A.Z
enrichment patterns and promoter architecture differences
in different organisms. (B) macroH2A is deposited in the in-
active X (Xi) and inactive/active genes on autosomes. (C) H3.3
deposition is mediated by the HIRA complex at genes and
regulatory elements, whereas Atrx and Daxx mediate H3.3 in-
corporation at telomeres and pericentric heterochromatin. It is not
clear how H3.3 is enriched at some cis-regulatory elements.
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H2AZ can be actively removed from chromatin. For
example, the recently described ANP32E chaperone spe-
cifically removes H2A.Z from nucleosomes, including
those at cis-regulatory sites (Obri et al. 2014). The Ino80
complex catalyzes replacement of H2A.Z with canonical
H2A (Papamichos-Chronakis et al. 2011), just the reverse
of the Swr1 complex, thus completing a futile cycle when
both complexes act successively on the same nucleo-
some. In an Ino80 mutant, H2A.Z is globally mislocal-
ized, suggesting that Ino80 clears out H2A.Z that is
spuriously incorporated. Ino80 is also found at yeast
NDRs, where high-resolution ChIP suggests that Nhp10,
les5, and Arp8 subunits are important for binding, similar
to the Swc2 subunit of the Swr1 complex (Yen et al. 2013).
In addition, Swr1 can carry out the reverse reaction when
H3K56 is acetylated in yeast (Watanabe et al. 2013).
However, when Swc2 is present, this activity is inhibited,
suggesting that this subunit functions as a lock to prevent
further remodeling. In yeast, H3K56 is acetylated during
replication-coupled nucleosome assembly and is present
on ;30% of total histone H3 (Xu et al. 2005), whereas it
marks <1% in human cells (Xie et al. 2009). Considering
its paucity in metazoans, it remains unclear how general
a role H3K56ac plays in removal of H2A.Z.

Other H2A variants: life on the edge

Unlike H2A.Z, which is nearly universal across eukary-
otes, other replication-independent H2A variants impli-
cated in transcription have evolved only in animals. For
example, H2A.B, first described as H2A.Bbd (Barr body-
deficient) has been found only in mammals. H2A.B is
only ;50% identical to H2A and is rapidly evolving
(Ishibashi et al. 2010). The C terminus of H2A.B is 19
amino acids shorter than that of H2A, reducing the tail
and part of the docking domain. H2A.B lacks an acidic
patch on its surface and is also referred to as H2A.Lap1
(lacks acidic patch 1) (Soboleva et al. 2012). These
modifications to the structure substantially alter the
physical properties of H2A.B-containing nucleosomes.
For example, human H2A.B nucleosome arrays inhibit
the formation of compact chromatin fibers (Zhou et al.
2007). Mouse H2A.B can form partially compacted arrays
due to a single aspartate residue in the acidic patch,
which is not found in humans (Soboleva et al. 2012).
Consistent with an integral role for the docking domain
in modulating nucleosome stability, H2A.B nucleosomes
are less stable, protect ;30 bp less DNA against micro-
coccal nuclease digestion, and exchange much faster by
FRAP than canonical H2A (Bao et al. 2004; Gautier et al.
2004; Doyen et al. 2006b; Bonisch and Hake 2012;
Tolstorukov et al. 2012). These effects are largely attribut-
able to the docking domain because adding the H2A
C-terminal tail, including the docking domain, onto H2A.B
partially reverses the instability (Doyen et al. 2006b).

Currently, it remains unclear whether there are specific
chaperones or mechanisms for H2A.B deposition. How-
ever, the general chaperone NAP-1 can efficiently assem-
ble and disassemble H2A.B dimers in vitro (Okuwaki
et al. 2005). In HeLa cells, ectopically expressed H2A.B

localizes over gene bodies and correlates with expression
level (Tolstorukov et al. 2012). Similarly, in ESCs, endog-
enous H2A.B is enriched over the body of actively
transcribed genes (Chen et al. 2014). In contrast, in mouse
testis where H2A.B is especially abundant, it is enriched
over gene promoters and lowly over gene bodies (Soboleva
et al. 2012). It remains unclear why H2A.B localization is
different; nonetheless, H2A.B deposition results in a dis-
tinct chromatin landscape that is destabilized and less
compact.

Another H2A variant implicated in transcription,
macroH2A, is distinct from all other histones in that it
contains a nonhistone globular (macro) domain. The macro
domain on the C terminus is connected through an
unstructured linker to a histone fold domain that is
;60% identical to canonical H2A, resulting in a histone
protein that is approximately three times the size of
H2A (Chakravarthy et al. 2005). Macro domain-containing
proteins are found in many organisms; however, macroH2A
is restricted to vertebrates and a few invertebrates (Talbert
and Henikoff 2010). Macro domains are known to bind
metabolites of NAD+, including poly(ADP-ribose), and
have distinct biological roles, including transcriptional
regulation (Han et al. 2011). In vertebrates, there are
three macroH2A isoforms: macroH2A.1.1, macroH2A.1.2,
and macroH2A.2. The first two are splice isoforms from
a single gene, whereas a separate gene encodes the latter.
However, only macroH2A.1.1 is capable of binding metab-
olites of NAD+. In contrast to both H2A.Z and H2A.B,
macroH2A preferentially forms heterotypic nucleo-
somes in vitro, whereas H2A.Z shows no preference
(Chakravarthy et al. 2004; Chakravarthy and Luger 2006).
macroH2A has a higher salt-dependent stability than
H2A, where four residue changes in the L1 loop are most
important (Abbott et al. 2005; Chakravarthy and Luger
2006).

In vivo, macroH2A is enriched on the transcriptionally
inactivated female X chromosome, senescence-associated
heterochromatic foci (SAHF), and large transcription-
ally silent domains (Costanzi and Pehrson 1998; Zhang
et al. 2005; Gamble et al. 2010; Tolstorukov et al. 2012).
macroH2A localization to the inactive X is disrupted when
Xist RNA is deleted, suggesting a role for this essential cis-
regulatory RNA in macroH2A recruitment (Csankovszki
et al. 1999). Both the histone and nonhistone segments of
macroH2A are sufficient for targeting to the inactive X
(Chadwick et al. 2001; Nusinow et al. 2007). In SAHF,
macroH2A deposition is promoted by histone regulator A
(HIRA), a chaperone responsible for histone variant H3.3
incorporation at genes, and the nucleosome assembly and
disassembly factor Asf1 (Zhang et al. 2005). Rather than
directly deposit macroH2A, these chaperones might help
to clear the way for macroH2A deposition. Consistent with
higher stability and a generally repressive role, macroH2A
appears to impair transcription factor binding and has been
suggested to impair remodeling by SWI/SNF and ISWI
(Angelov et al. 2003). Although more recent results suggest
that macroH2A is an excellent substrate for remodeling by
these remodelers, macroH2A reduces recruitment of the
SWI/SNF remodeler (Chang et al. 2008). macroH2A also
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associates with the SWI/SNF family DNA translocase
ATRX (a-thalassemia/MR, X-linked), which, like Ino80
for H2A.Z, negatively regulates macroH2A deposition
(Fig. 2B; Ratnakumar et al. 2012). Despite identification
of these partners for macroH2A, it remains unclear how it
is localized into specific genomic regions.

H3.3: filling gaps and more

When a nucleosome is lost independent of replication,
the (H3/H4)2 tetramer is replaced by the H3.3 variant and
its H4 partner. Most eukaryotes express canonical H3 for
replication-coupled deposition and the replication-inde-
pendent H3.3 variant; however, some eukaryotes, such as
fungi, express only the H3.3 type (Malik and Henikoff
2003). In metazoans, H3.3 differs from H3 by only four to
five amino acids (Filipescu et al. 2013). Three of these
differences are found within the core histone fold domain
and specify the alternative deposition pathways (Ahmad
and Henikoff 2002). The fraction of the genome occupied
by H3.3 is variable, depending largely on dilution by can-
onical H3 during replication. For example, H3.3 com-
prises ;90% of the histone 3 in terminally differentiated
neurons (Pina and Suau 1987); however, in dividing cells,
H3.3 comprises only ;20% (McKittrick et al. 2004). H3.3
incorporation is largely opportunistic, occurring when
DNA is exposed at dynamic regions such as gene pro-
moters, the body of active genes, and cis-regulatory elements
(Mito et al. 2007; Ray-Gallet et al. 2011; Schneiderman
et al. 2012). H3.3 was also found to be enriched over
a subset of repressed genes in mammalian ESCs that
exhibit lower dynamics, suggesting an expanded role for
H3.3 beyond simply filling gaps in active chromatin
(Goldberg et al. 2010). H3.3 enrichment over genes, both
active and inactive, depends on the HIRA complex
(Tagami et al. 2004). In addition, HIRA-independent
mechanisms of H3.3 incorporation have been described
(Banaszynski et al. 2013). For example, Daxx has been
identified as a novel H3.3-specific chaperone, which,
together with the SWI/SNF family remodeler Atrx, is
responsible for incorporation at telomeres and pericentric
heterochromatin (Drane et al. 2010; Goldberg et al. 2010).
A single methionine-to-glycine substitution at position
90 in H3.3 appears to be a dominant contributor to the
specificity of H3.3 interaction with the Daxx chaperone
(Elsasser et al. 2012). In Drosophila, Daxx and Dek
have been shown to deposit H3.3 in regulatory elements
(Sawatsubashi et al. 2010).

From a structural perspective, H3 occupies the center
of the nucleosome, and so it might not be surprising that
the sequence of an H3 variant would be more constrained
than is seen for variants of H2A. However, this constraint
is not observed in the centromere-specific H3 variant
cenH3, which shares only ;50%–60% identity with H3
within the histone fold domain (Malik and Henikoff
2003). Considering that the alterations to H3.3 are subtle,
it is not surprising that no destabilization attributable to
H3.3 nucleosomes has been detected in vitro (Thakar
et al. 2009; Chen et al. 2013). However, analysis of chro-
matin from chicken cells found that H3.3-containing nu-

cleosomes are more sensitive to salt-dependent disruption
and that H3.3/H2A.Z double-variant nucleosomes were
most unstable (Jin and Felsenfeld 2007). This effect was
independent of acetylation, a modification associated
with destabilization of nucleosomes, suggesting that the
effect is intrinsic or is due to incorporation at active
regions of the genome. In support of the latter explana-
tion, H3.3/H2A.Z nucleosomes are enriched over regula-
tory elements and NDRs, which are frequently disrupted
(Jin et al. 2009). However, nucleosome turnover and
HIRA binding to chromatin are reduced after H3.3 de-
pletion (Banaszynski et al. 2013). HIRA was recently
shown to directly interact with transcription factors and
the Brg1 chromatin remodeling complex (Pchelintsev
et al. 2013). These results overall suggest that incorpora-
tion of H3.3 promotes a hyperdynamic state through its
interaction partners within the nucleus.

Histone variants in transcriptional regulation

H2A.Z: the positive, the negative, and the unknown

A role for H2A.Z in transcription was initially proposed
>30 years ago with the observation that Tetrahymena
H2A.Z is present in the transcriptionally active macro-
nucleus but not in the inactive micronucleus (Allis et al.
1980). Initial studies investigating the effect of H2A.Z
on transcription were conducted in yeast, where it was
shown to antagonize telomeric silencing, interact with
activators, and help recruit RNAPII (Santisteban et al.
2000; Adam et al. 2001; Meneghini et al. 2003). Upon
activation, H2A.Z is lost from 59 ends of genes, suggesting
that it poises genes for activation by enabling access to
the promoter/transcription start site (TSS). In human
cells, H2A.Z is exchanged prior to RNAPII loading, likely
as a consequence of promoter remodeling, where it has
a role in RNAPII recruitment (Hardy et al. 2009). It is
possible that the difference in the action of H2A.Z be-
tween yeast and metazoans stems from the fact that, in
yeast, there is a nucleosome over the TSS that must be
removed for RNAPII to load (Fig. 2A; Rhee and Pugh 2012).
Regardless of the nucleosome architecture at promoters,
H2A.Z consistently plays an activating role (Fig. 3).

In addition to roles in activation and initiation, H2A.Z
has been found to promote elongation (Santisteban et al.
2011). To explore the molecular basis for this role, we
developed a single-base-resolution method to map the
position of RNAPII through the 39 end of nascent tran-
scripts (39 NT) in Drosophila. We found an anti-correlation
between H2A.Z occupancy and RNAPII stalling as it
transcribes across nucleosomes genome-wide (Weber et al.
2014). When H2A.Z levels were reduced both directly and
by impairing Swr1 activity, the nucleosome barrier to
RNAPII increased. Our results favor a model in which
H2A.Z/H2B dimers are more easily lost when the nucle-
osome is unwrapped, aiding RNAPII transcriptional elon-
gation. It is also possible that elongation factors such as
the FACT complex have increased activity with H2A.Z
nucleosomes to ease the barrier or that acetylation ‘‘un-
locks’’ H2A.Z nucleosomes by destabilizing them. For
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example, in yeast, H2A.Z and Spt16, a component of the
FACT complex, are synthetic-lethal (Biswas et al. 2006).
Also, H2A.Z is hyperacetylated only when genes are
expressed (Bruce et al. 2005; Valdes-Mora et al. 2012),
and acetylation is required to achieve proper transcript
levels (Halley et al. 2010; Valdes-Mora et al. 2012).

Despite a generally positive role for H2A.Z in transcrip-
tion, negative effects have also been reported. For example,
yeast h2a.zD mutants derepress silencing at the HMR
locus (Dhillon and Kamakaka 2000), and whole-genome
transcriptome analysis identified both positive and nega-
tive changes (Meneghini et al. 2003). In mammals, H2A.Z
negatively regulates p21 and targets of the p63 transcrip-
tion factor and occupies the promoters of genes that are
silenced during mitosis (Gevry et al. 2007; Kelly et al.
2010; Gallant-Behm et al. 2012). Intriguingly, the h2a.zD

phenotype, which extends beyond transcription defects, is
partially suppressed by also mutating integral components
of the Swr1 complex (Halley et al. 2010; Morillo-Huesca
et al. 2010). This suggests that Swr1 activity in the ab-
sence of H2A.Z causes ‘‘mischief’’ by removing H2A
but is unable to replace it. In the absence of both H2A.Z
and Swr1, more yeast genes are down-regulated than up-
regulated (Morillo-Huesca et al. 2010). However, in

Arabidopsis, h2a.zD swr1D (pie1-5) mutants are worse
off than either individual mutant, suggesting nonredun-
dant functions for Swr1 (Coleman-Derr and Zilberman
2012). In Arabidopsis mutants that cannot incorporate
H2A.Z, there is also global misregulation of transcription,
with many genes up-regulated and many down-regulated.
Interestingly, in Arabidopsis, H2A.Z is lost at elevated
temperatures independent of transcription, and the tran-
scriptome of the incorporation mutant resembles that
of temperature-shifted plants (Kumar and Wigge 2010).
Thus, in both yeast and plants, where H2A.Z mutants are
viable, loss of the H2A.Z deposition pathway results in
global effects on transcription.

How might H2A.Z function to exert both positive
and negative effects on transcription? An attractive
explanation is that H2A.Z facilitates binding of both
activating and repressive complexes by keeping regions
of the genome accessible. Support for this model comes
from work in ESCs and during differentiation that has
shown that H2A.Z facilitates binding of PRC2, MLL, and
transcription factors (Creyghton et al. 2008; Li et al. 2012;
Hu et al. 2013). In this context, H2A.Z deposition in-
creases the fraction of the genome that is nuclease-
hypersensitive and decreases nucleosome occupancy at
enhancers (Hu et al. 2013). Interestingly, nucleosome
depletion at transcription factor-binding sites is depen-
dent on SWI/SNF and Ino80 chromatin remodeling com-
plexes (Li et al. 2012). This suggests that a function of the
futile cycle of deposition and removal might be to
modulate accessibility to various regulatory proteins. It
was previously suggested that H2A.Z regulates nucleo-
some positioning around promoters, which could influ-
ence accessibility of cis-regulatory regions (Guillemette
et al. 2005; Marques et al. 2010). However, we and others
failed to detect changes in nucleosome positioning fol-
lowing H2A.Z knockdown or deletion (Li et al. 2005a;
Hartley and Madhani 2009; Weber et al. 2014). Although
there might be intrinsic effects of H2A.Z on translational
or rotational positioning in yeast (Albert et al. 2007), it is
also possible that these attributes are due to enriching for
promoter-flanking nucleosomes, having little to do with
the properties of H2A.Z.

Overall, H2A.Z functions to support transcriptional
activation and elongation, which helps to explain its
enrichment near promoters and over the coding region
of most genes in eukaryotes. Future work will determine
which components are involved in H2A.Z dynamics and
how these accessible regions are regulated both positively
and negatively. This is especially relevant in mammalian
cells, which deposit H2A.Z through P400 and SRCAP
complexes, whose independent functions are not yet
clear. That H2A.Z functions to facilitate access to both
repressive and active regulatory complexes explains the
vexing dual nature of H2A.Z in transcription and helps to
explain why H2A.Z is essential in development.

H2A.B

Whereas the role of H2A.B in transcription has not been
as thoroughly investigated as that of H2A.Z, recent ex-

Figure 3. Models to explain the general role of histone variants
and their deposition pathways on transcriptional regulation.
Plus or minus expression level denotes the effect of the variant
on transcriptional output.
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periments have provided interesting results. H2A.B
knockdown in HeLa cells resulted in substantial changes
in gene expression, with more genes down-regulated than
up-regulated (Tolstorukov et al. 2012). In mouse ESCs,
H2A.B knockdown resulted in a more modest effect on
gene expression; however, most genes were down-regulated.
Included in the differentially expressed set are a few
imprinted genes where it was shown that H2A.B facili-
tates elongation over the differentially methylated region
of the gene (Chen et al. 2014). Consistent with a role for
H2A.B in transcriptional elongation, H2A.B has also been
shown to associate with components of the spliceosome,
and, upon knockdown, RNA splicing is less efficient
(Tolstorukov et al. 2012). In mouse testis, H2A.B is as-
sociated with promoter regions, as discussed above,
although it is not yet known whether it has any specific
effect on expression (Soboleva et al. 2012). Overall, H2A.B
appears to promote transcriptional elongation, likely as
a consequence of creating less-stable nucleosomes that
are more easily disrupted upon interaction with RNAPII
(Fig. 3).

macroH2A

macroH2A localization on the inactivated female X
chromosome, silent SAHF, and large transcriptionally
silent domains (Costanzi and Pehrson 1998; Zhang et al.
2005; Gamble et al. 2010; Tolstorukov et al. 2012) sug-
gests a role in transcriptional repression, although macroH2A
is not required for X-chromosome inactivation (Changolkar
et al. 2007). Genome-wide studies in human NT2 cells have
shown that macroH2A is enriched at developmentally regu-
lated genes, including overlap with the PRC2 complex.
Nevertheless, it also represses transcription in vitro (Doyen
et al. 2006a); in vivo, it represses IL8 transcription in a human
B-cell line and endogenous retroviruses in mice (Agelopoulos
and Thanos 2006; Changolkar et al. 2008). Knockdown of
macroH2A increased the sensitivity of genes in the HOXA
cluster to retinoic acid, further suggesting that it acts to
repress transcription (Buschbeck et al. 2009). In the human
breast cancer cell line MCF-7, most genes with macroH2A
enrichment are not expressed; however, macroH2A depletion
did not cause their up-regulation. Somewhat surprisingly,
activating roles have also been reported for macroH2A, such
as serum starvation-induced genes (Fig. 3; Gamble et al. 2010).
Currently, the mechanism for this dual role of macroH2A
remains unclear. It is possible that some of these discrep-
ancies can be explained by macroH2A.1.1 inhibition of
PARP-1 (Ouararhni et al. 2006) or poly(ADP-ribose) mod-
ification, both of which are known to be involved in
transcriptional regulation.

H3.3: a dynamic memory

The function of H3.3 in transcription remains some-
what unclear. Studies in Tetrahymena showed that
H3.3 is not essential for transcription or viability (Cui
et al. 2006). In adult Drosophila males, the loss of both
H3.3 genes results in partial lethality and mostly affects
highly expressed genes, with more genes up-regulated

than down-regulated overall (Sakai et al. 2009). How-
ever, constitutive expression of H3 largely rescued
these effects, suggesting that transcription differences
were a consequence of nucleosome depletion and not
specifically H3.3. In H3.3-depleted or HIRA�/� ESCs,
a minor fraction of genes showed differences in tran-
script levels, some of which are developmentally regu-
lated; however, there is a much larger effect when H3.3
is depleted in partially differentiated mouse embryonic
fibroblasts (Goldman et al. 2010; Banaszynski et al.
2013).

Recent evidence suggests that there are unique roles for
H3.3 and its interacting partners in transcription. For
example, H3.3 is important for early gene activation in
cell lines and during myogenic differentiation (Placek
et al. 2009; Tamura et al. 2009; Yang et al. 2011). In
Xenopus, HIRA-mediated deposition of H3.3 is required
for the transcriptional memory of active genes after
somatic cell transfer into enucleated eggs (Ng and Gurdon
2008; Jullien et al. 2012). H3.3 has also been shown to
prime genes for later activation after genotoxic stress
(Adam et al. 2013). Although the molecular basis for
transcriptional memory is unknown, it is intriguing that
H3.3/H4 tetramers at human enhancer elements split
during replication (Huang et al. 2013). H3.3 deposition
might facilitate transcription factor binding by keeping
these regions of the genome accessible (Fig. 3). Experi-
ments in ESCs also support this general role, where H3.3
knockdown compromised PRC2 binding as well as
H3K27me3 at ‘‘bivalent promoters’’ (Banaszynski et al.
2013). A similar role has been ascribed to H2A.Z, and it is
thus conceivable that there is some cross-talk or that
increased H2A.Z dynamics influence H3.3 deposition and
dynamics.

Perspective

Over the past few years, there has been a growing appre-
ciation for histone variants in transcriptional regulation.
From the evidence described in this review, chromatin-
mediated gene regulation acts primarily through modula-
tion of nucleosome dynamics and access to the underlying
DNA. Although variants are structurally distinct from
their canonical counterparts, replacement of a canonical
histone with a variant is not the only way to alter the
stability and dynamics of nucleosomes. An emerging
theme is that variants function as an ensemble, coordi-
nately modifying nucleosome properties and interacting
with an expanding catalog of other factors within the
nucleus. Differences in physical properties of variants and
interactions with trans-acting factors result in the dy-
namic punctuation of chromatin that profoundly influ-
ences accessibility of the genome and, ultimately, tran-
scriptional regulation. This is perhaps most evident during
development in metazoans, which involves global changes
in chromatin organization and transcriptional programs.
A major area of interest for the future will be the charac-
terization of metazoan deposition complexes, where we
anticipate many context-dependent roles and the emer-
gence of many additional players.
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