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Centrosomes are best known as the microtubule organizing centers (MTOCs) of
eukaryotic cells. In addition to their classic role in chromosome segregation,
centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation
and quiescence. Metazoan centrosomes and their functional doppelgängers from lower
eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that
orchestrate signaling events essential for cell cycle progression, cellular responses to DNA
damage, sensory reception and cell homeostasis. Here, we provide a critical overview of
the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of
eukaryotic cells.
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1 INTRODUCTION

Ever since the centrosome was first discovered in the late 1800s, intense research efforts have been
devoted to understanding its roles and life cycle in eukaryotic organisms. In their classic roles as
microtubule-organizing centers (MTOCs), centrosomes and SPBs are classified amongst the most
primitive organelles but gained complex ancillary functions throughout evolution (Bornens and
Azimzadeh, 2007; Nabais et al., 2020). Increasingly, centrosomes are now recognized as important
determinants of cell differentiation, self-renewal and aging processes in multicellular organisms.

Visualized for the very first time through electron microscopy, SPBs were described as “small
knobs” found at either ends of a long straight fiber during mitosis (Robinow and Marak, 1966).
Subsequent studies uncovered that SPBs and centrosomes are morphologically distinct; SPBs are tri-
layer structures closely embedded in the nuclear membrane whereas centrosomes are surrounded by
pericentriolar material. However, both function as MTOCs. Interestingly, a third class of eukaryotic
organelle, the nucleus-associated bodies (NABs), is typically responsible forMTOC-related functions
in amoebozoans (Gräf et al., 2015; Gräf, 2018; Ito and Bettencourt-Dias, 2018).

BeyondMTOC activities, centrosomes/SPBs also promote cell signaling events induced by diverse
stimulatory and stress signals. Here, we will review the non-canonical roles of MTOCs in cell
homeostasis, with a specific focus on how the structural organization and subcellular position of
centrosomes/SPBs play a central role in the modulation of cellular processes.

1.1 Function and Structural Organization of Eukaryotic MTOCs: An
Overview
1.1.1 Centrosomes as MTOCs
Characterized as a protein-dense scaffolding structure responsible for the nucleation of α- and β-
tubulin, centrosomes arrange and anchor microtubules that form the bipolar spindle in mitosis
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(reviewed in Wu and Akhmanova, 2017; Gomes Pereira et al.,
2021) (Figure 1). The main microtubule nucleator is the γ-
tubulin ring complex (γ-TuRC), a highly conserved complex
responsible for the capping of microtubule minus ends
(Oakley et al., 1990; Zheng et al., 1995). Formed of several
proteins including γ-tubulin and actin (Liu et al., 2020;
Wieczorek et al., 2020), this complex is located in the
pericentriolar material (PCM) and was shown to rely on
pericentriolar proteins such as CDK5RAP2 to attach to
centrosomes (Fong et al., 2008). The γ-TuRC complex,
operating as an organizational template for the nucleation of
microtubules, forms the cytoplasmic microtubule array in
interphase as well as the mitotic spindle during mitosis and
was shown to regulate nucleation dynamics via conformational
changes (Consolati et al., 2020). From interphase to mitosis, the
function of centrosomes as MTOCs is highly dynamic and
supports the ongoing division of proliferating cells (Mazia,
1987). Both the size and function of centrosomes as MTOCs
may fluctuate according to the state of a given cell, or even its cell
type (Decker et al., 2011). To behave in such a dynamic manner,
MTOCs rely on centrosomal components and associated proteins
that enrich at the centrosomes to stabilize or release microtubule
organization and involve a large array of components that can
even selectively enrich to one centriole over the other throughout

the cell cycle (Andersen et al., 2003; Jakobsen et al., 2011).
Combined together, all these factors allow for a personalized
MTOC function specifically catered to cell conditions at a given
time to accurately support cell cycle progression through
microtubule nucleation.

Aside from its classic function as MTOC, the centrosome also
plays crucial roles in cell polarity, shape and migration. When
Van Beneden first discovered the centriole in 1883 (Van Beneden,
1883), he hypothesized that the polarity of a cell could be
conferred by the orientation of both its nucleus and
centrosome (Luxton and Gundersen, 2011). The nuclear-
centrosomal (NC) axis exists in the majority of metazoan
differentiated cell types, as well as in some unicellular
organisms including yeast (Nelson, 2003). The polarity of a
cell defined by the orientation of its centrosome is an
important feature at the core of many biological processes.
Research performed on normal fibroblast to study wound
healing reported that both the Golgi apparatus and the
centrosome (MTOC) were necessary for directional migration
towards the edge of a lesion. Authors speculated that the
coordinated orientation of both the MTOC and the Golgi
apparatus towards the wound was required to modulate
vesicular transport to the edge of the cell, thus leading to the
growth of this extremity towards the wound (Kupfer et al., 1982).

FIGURE 1 | (A) Schematic representation of the centrosome. PCM, Pericentriolar material; iPCM, Inner PCM; imPCM, Intermediate PCM; oPCM, Outer PCM (B)
Centrosome duplication cycle. The duplication of centrosomes is termed semi-conservative, as each older centriole will generate a new centriole. 1–2. At the G1/S
transition, the two centrioles separate. 3. In S phase, PCM forms around each parting centriole. 4. Daughter centrioles expand orthogonally and reach opposite poles.
See text for more details.
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Akin to this, the centrosome was also reported to play a crucial
role in directional mesenchymal cell migration. In a study
published in 2017, Zhang and others used micropatterned
one-dimensional adhesive strips to study cell polarity in
mesenchymal cells and reported that the centrosome was
involved in directional cell migration. Specifically, the
centrosome was proposed to dynamically localize at the rear
of mesenchymal cells to organize the microtubule network and
distribute signals related to protrusive activity as a way to
establish tail formation during directional migration (Zhang
and Wang, 2017).

Asymmetric cell division, a process equally reliant on cell
polarity for its occurrence, can also depend on the orientation of
centrosomes to effectively reach completion (as reviewed in Chen
and Yamashita, 2021). Asymmetric cell division is a common
process routinely observed from yeast to humans. In S. cerevisiae,
aging determinants are partitioned asymmetrically, resulting in a
young daughter bud expanding from an older parental yeast. This
process directly impacts the replicative lifespan of both parental
and daughter cells, which represents the finite number of
divisions a cell can undertake before reaching senescence
(Longo et al., 2012). Spindle orientation and other factors
established by the cell polarity machinery can guide this
asymmetric process, which results in the transfer of new
components such as mitochondria, endoplasmic reticulum
(ER), vacuoles and rejuvenating factors to the daughter cell
whilst a number of older components remain in the parental
cell (Higuchi-Sanabria et al., 2014). Moreover, SPBs themselves
undergo asymmetric inheritance. The older parental SPB
migrates towards the new daughter bud, whilst the daughter
SPB remains in the parental yeast cell (see section “MTOC
duplication cycle” for more details). The asymmetric SPB
segregation was shown to be regulated by the spindle
positioning protein Kar9 as well as the SPB component Nud1,
via its role in the mitotic exit network (MEN) (Hotz et al., 2012a).
Along the same lines, asymmetric division is also a feature
broadly reported in stem cells, in which the cell type of
resulting cells –one self-renewed stem cell and one
differentiating cell –differs. In Drosophila male germ lines,
adult stem cells (GSCs) were shown to asymmetrically divide
by relying on the inheritance pattern of mother and daughter
centrosomes through directional orientation of the mitotic
spindle (Yamashita et al., 2003). Using specific labeling
techniques, Yamashita and others later observed that the
mother centrosome preferentially remains affixed to the GSCs,
whilst the daughter centrosomemigrates to the differentiating cell
(Yamashita et al., 2007). The authors hypothesized that a high
number of astral microtubules may be responsible for the
anchorage of the mother centrosome to the GSC, thereby
keeping them in close proximity during asymmetric cell
division. In accordance with this, the predetermined anchoring
of the mother centrosome was suggested to act as an orientation
mechanism for the mitotic spindle as a way to ensure the success
of asymmetric stem cell division and highlights the core role that
centrosomes can play in asymmetric stem cell division. Yet, the
non-random segregation of mother and daughter centrosomes is
not always a prerequisite for spindle alignment and subsequent

asymmetric division. After each of the asymmetric divisions
undergone by the germline lineage of the nematode C. elegans,
centrosome rotation occurs as a way to re-align the spindle to the
anterior-posterior (AP) axis. This rotation requires that one of the
centrosomes, called the leading centrosome and chosen
randomly, travels near the anterior border of the cell (Hyman
and White, 1987; O’Connell, 2000). This example demonstrates
that the non-random segregation of centrosomes during
asymmetric division is a common occurrence in some species
and does not represent an essential feature of spindle alignment
for asymmetric cell division in all biological systems.

Another important function for centrosomes as MTOCs can
also be observed in neuronal development. A decisive part of
neuronal differentiation lies in axon specification, a process
through which one of the neurites matures into a functional
axon. This is of high importance for the fate of a neuron, as this
process permanently defines its polarization and connectivity. In
the current literature, the contribution of centrosomes to this
specific stage of neuronal development has met some controversy
(as reviewed in Meka et al., 2020). Several reports describe a key
role for the centrosome in axonal outgrowth and specification
(Rivas and Hatten, 1995; Schaar and McConnell, 2005; Tsai and
Gleeson, 2005; Higginbotham and Gleeson, 2007; Kuijpers and
Hoogenraad, 2011), whilst other studies seem to contradict such
statement and rule out a potential requirement for centrosome
function throughout this neuronal process (Esch et al., 1999;
Andersen and Bi, 2000; Bradke and Dotti, 2000). In cultured
hipoccampal neurons, growing axons were reported to organize
microtubule arrays in a centrosome-independent way once axon
specification is complete. This observation is supported by the
fact that during axonal elongation, centrosome ablation was
shown to have no effect on axon extension or regeneration
and suggests that centrosomal function may be required only
in the earlier stages of neuronal development (Stiess et al., 2010).
Recent studies also argue for a role for centrosomes as F-actin
organization centers in developing cultured neurons (Meka et al.,
2019). Disruption of centrosome function was shown to alter the
content of somatic F-actin and decreased peripheral F-actin
matter in neuronal growth cones, suggesting a key role for the
centrosome in F-actin organization (Meka et al., 2019). During
neuronal differentiation, centrosomes as MTOCs can have
various other functions. The most classical and well-known
function of MTOCs in neuron biology is probably cargo
transport across dendrites and axons, a function performed in
partnership with motor proteins (Kapitein et al., 2010). In mouse
and chick neural tube cells, centrosomes were also shown to
influence neuronal delamination, a process by which novel
neurons detach from the neuroepithelium throughout
differentiation and morphogenesis. For delamination, the
centrosome has to be retained in the newborn neuron and
nucleates a wheel-like microtubule organization that supports
apical abscission. In this process, the centrosome is thus of high
importance in mediating microtubule activity and is involved in
nervous system growth and expansion (Kasioulis et al., 2017).
Another interesting function for centrosomes in neuron biology
is in neuronal activity. Using fluorescent microscopy, Hu and
others reported that microtubules also have the propensity to
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invade dendritic protrusions. This observation suggests that
MTOCs, through microtubules, may have an implication in
the operative exchanges between neurons. An increase in
neuronal activity was notably shown to correlate with an
increased number of spines occupied by microtubules, as well
as with an increased contact time between microtubules and
dendritic protrusions (Hu et al., 2008). However, more work is
needed to establish the precise function of these microtubules in
neuronal plasticity. Taken together, these examples display the
various ways in which centrosomes as MTOCs can impact
neuronal development and highlight the specialized –and still
debated– contribution of this organelle in neuron biology.

1.1.2 Structural Organization of MTOCs
Despite lacking a finite membrane border, the centrosome
maintains its unique tri-dimensional shape via centrosome-
interacting proteins, 500 of which have been identified to date
(Andersen et al., 2003; Gupta et al., 2015; Gheiratmand et al.,
2019). Throughout the cell cycle, its size and composition vary,
allowing for diverse arrangements in microtubule organization
(Devi et al., 2021; Gomes Pereira et al., 2021). Centrosomes
contain centrioles, a pair of cylindrical organelles
perpendicularly positioned to one another (Figure 1A).
Surrounding the centrioles is the pericentriolar material
(PCM), a fibrous coiled-coil protein platform (Schatten, 2008)
formed by the main microtubule nucleator γ-tubulin, γ-turc,
actin (Liu et al., 2020; Wieczorek et al., 2020) and pericentrin
proteins (Salisbury, 1995; Levy et al., 1996; Lutz et al., 2001;
Martinez-Campos et al., 2004; Wu and Akhmanova, 2017). This
platform allows for sustained or transient anchoring of specific
signaling proteins, such as the Nuclear Mitotic Apparatus Protein
(NuMA), a key effector of the mitotic machinery. Similar to
NuMA, centriolin was also reported to connect to the
centrosomes during specific phases of mitosis to facilitate cell
cycle progression and cytokinesis (Gromley et al., 2003).
Importantly, the size of the PCM varies according to levels of
γ-tubulin recruited to centrosomes in a way that supports the
ongoing cell cycle state. Accordingly, the PCM is a smaller and
tighter structure during interphase and becomes much larger
during mitosis to support spindle formation through γ-tubulin
nucleation (Robbins et al., 1968; Khodjakov and Rieder, 1999).

Aside from this core centrosomal structure comprised of
centrioles and their surrounding PCM, other accessory
structures including centriolar appendages and satellites
positioned around the PCM further decorate centrosomes and
provide this essential organelle with extra key features. The
mother and daughter centrioles are different in that additional
appendages can only be found on the mother centriole. Distal
appendages (DAPs), existing at the distal end ofmother centrioles
across eukaryotic species except for C. elegans and D.
melanogaster (Azimzadeh, 2014), are required for the docking
of the centriole to the membrane and for the process of
ciliogenesis (Tanos et al., 2013; Ye et al., 2014). Subdistal
appendages (sDAPs) are found in close proximity to DAPs
and are also involved in cilia formation and microtubule
anchoring. In the literature, the relationship between DAPs
and sDAPs remains elusive but recent evidence suggests that

DAPs are important for sDAPs functionality and positioning
(Chong et al., 2020). Apart from these appendages, centrosomes
are also surrounded by centriolar satellites, small particles that
congregate around the PCM of centrosomes (Kubo et al., 1999).
These satellites are mainly composed of proteins involved in the
maintenance of centrosomes, neurogenesis and ciliogenesis
(reviewed in Prosser and Pelletier, 2020; Odabasi et al., 2020).
Centriolar satellites can also play key roles in the transduction of
several other biological cues and vary in form and function
throughout the cell cycle and across cell types (Kubo and
Tsukita, 2003; reviewed in Tollenaere et al., 2015).

Analogous to centrosomes, SPBs of lower eukaryotes act as key
microtubule organizing centers but differ dramatically in their
mechanism-of-action and structural features (Jaspersen, 2021).
Across yeast species, SPBs are functionally conserved but display
key architectural differences. Here, we provide a brief description
of both budding yeast and fission yeast SPBs as we compare and
contrast their organizational features.

In comparison to the more diffuse centrosomal organization,
budding yeast S. cerevisiae SPBs are tightly embedded in the
nuclear membrane through three highly organized
interconnected disk-like structures (see Figure 2A for a
detailed representation of budding yeast SPB structure)
(Robinow and Marak, 1966; Bullitt et al., 1997; Rüthnick and
Schiebel, 2018). The outer plaque is responsible for the nucleation
of cytoplasmic microtubules, whereas the inner plaque generates
nuclear microtubules. The central plaque anchors the SPB into
the nuclear membrane and connects to the half-bridge, an
important structure for SPB duplication (Figure 2A). Two
tightly packed and organized disks, called intermediate layer 1
(IL1) and intermediate layer 2 (IL2), act as spacers between the
outer plaque and the central plaque. In budding yeast, 17 proteins
have been identified as SPB structural components (Figure 2A),
six of which constitute the core of the spindle pole body: Spc42,
Cnm67, Nud1, Spc72, Spc29 and Spc110 (Adams and Kilmartin,
1999; Francis and Davis, 2000; Viswanath et al., 2017). Through
reciprocal interactions, these SPB components are integral for
creating and maintaining the core SPB structure (Jaspersen and
Winey, 2004; Jaspersen, 2021). Most SPB genes are essential for
viability and single point mutations in these genes often result in
temperature-sensitivity or even lethality.

Fission yeast S. pombe SPBs are bipartite structures which,
akin to budding yeast SPBs, are implanted in the nuclear
membrane. In opposition to budding yeast SPBs, the
cytoplasmic domain of fission yeast SPBs represents the bulk
of its structure. The architecture of S. pombe SPBs also differs
from that of budding yeast in that it lacks intermediate spacers
and does not contain multiple separate strata except from the
outer (cytoplasmic), central and inner (nuclear) layers. Despite
these architectural differences, fission yeast SPBs nucleate both
cytoplasmic and nuclear microtubules as budding yeast SPBs do
and encompass a half bridge required for SPB duplication (Ito
and Bettencourt-Dias, 2018). Several components of S. pombe
SPBs were classified as confirmed or probable homologues of S.
cerevisiae SPBs, denoting a certain degree of functional and
structural conservation in terms of SPB constituents across
these species. These include (S. cerevisiae/S. pombe): Tub4/
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Gtb1; Spc97/Alp4; Spc98/Alp6; Spc110/Pcp1; Spc72/Mto1;
Spc42/Ppc89; Cmd1/Cam1; Cnm67/Sid4; Nud1/Cdc11; Cdc31/
Cdc31; Sfi1/Sfi1; Mps3/Sad1; Mps2/Kms2. For more details on S.
pombe SPB and its structural intricacies, we direct readers
towards the study of Bestul et al. (2017).

1.1.3 MTOC Duplication Cycle
Centrosome duplication occurs once per cell cycle and is a semi-
conservative process (i.e., the two centrioles present in each cell
duplicate to generate two pairs where one template centriole is
older than the newly generated copy; Figure 1B) (Gomes Pereira
et al., 2021). Importantly, the process of centriole assembly occurs
throughout three full cell cycles. At the onset of replication,
procentrioles (new centrioles) separate and by S1 phase start
their assembly (Figures 1B, step 2). Both procentrioles elongate
throughout S1 phase, G21 phase and M1 phase and grow
perpendicularly from their template side (Figures 1B, step 3).
At the beginning of M1 phase, additional PCM is built around
each pair of centrioles as they start to separate (Figures 1B,
step 4). To form the mitotic spindle, procentrioles and their
developing centrosome separate in early prophase of M1. This
event, mainly achieved by motor proteins, is supported by push-
and-pull forces mediated by the kinesin motor Kif1 and the
minus end-directed dynein motor complex. In the literature, the
mechanistic intricacies of dynein function in MTOC positioning
and separation remained elusive for many years (Holzbaur and

Vallee, 1994; Vallee and Sheetz, 1996; Gönczy et al., 1999). Recent
studies performed in one-cell C. elegans embryos report that
different pools of dynein, localized at the cell cortex and on the
nuclear surface, can influence centrosome separation. Whilst the
pool of dynein located on the nuclear surface moves centrosomes
by sliding the centrosome-associated microtubules, the pool of
dynein at the cell cortex pulls centrosomes throughMT-mediated
cortical tugging forces. In this process, dynein was shown to
behave as a coupling device that transfers forces produced by
polarized actomyosin cortical flows to centrosomes, thereby
promoting centrosome separation (De Simone and Gönczy,
2017; Torisawa and Kimura, 2020). Along with this, the plus
end-directed kinesin-related motor protein Eg5 creates outward
pushing forces by tethering to plus-end antiparallel MTs
(Kapitein et al., 2005). Thus, dynein and Eg5 have the ability
to create opposite forces that further promotes centrosome
separation (Raaijmakers et al., 2012; Agircan et al., 2014). At
the end of M1 phase, procentrioles are separated and individually
assemble their PCM. This occurrence, termed centriole
disengagement, signifies that the mother and daughter
procentrioles are not in close association anymore. Thus, at
this stage of centrosome duplication, disengaged procentrioles
can be defined as daughter centrioles. FromG12 to S2 phase of the
following cell cycle, daughter centrioles acquire appendages and
further increase in length. Upon entry into S2 phase of the
second cell cycle, each newly formed daughter centriole begins

FIGURE 2 | (A) Schematic representation of budding yeast SPB organization and duplication cycle. OP, Outer plaque; IL1, Intermediate layer 1; IL2, Intermediate
layer 2; HB, Half-bridge; NM, Nuclear membrane; CP, central plaque; IP; Inner plaque. Core SPB components are highlighted in bold. (B) SPB duplication cycle in
budding yeast. The duplication process of the SPB is conservative and highly dynamic. Step 1: In early G1, the half-bridge is connected to the SPB central plaque andwill
act as a scaffold for SPB duplication. Step 2: The half-bridge elongates and the core of the daughter SPB (satellite) is generated on the cytoplasmic face of the half-
bridge. Step 3: The duplication plaque, resulting from the elongation and growth of the satellite SPB, matures and mimics the cytoplasmic organization of a mature SPB.
Step 4: The half-bridge retracts and fuses to the nuclear membrane. The daughter SPB is assembled and is embedded in the nuclear membrane next to themother SPB.
Step 5: The link between mother and daughter SPBs breaks, leading to the separation of the two organelles.
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its own cycle of centrosome duplication once more. During this
process, the younger mother centriole persistently accumulates
additional PCM from S2 phase to G22, until its PCM resembles
the older mother centriole PCM prior to M2 phase. In G22 phase
of the second cell cycle, the younger daughter centriole still
develops and acquires distal appendages (DAPs) and subdistal
appendages (sDAPs). These appendages will evolve and mature
until the G23 phase of the third cell cycle, after which the
corresponding round of centriole assembly is complete
(Sullenberger et al., 2020).

Centrosome duplication produces two spindle poles that
localize perpendicular to the plane of cell division. Achieving
this precise orientation is required to support balanced
chromosome segregation in mitosis (Kaseda et al., 2012;
Silkworth et al., 2012; Nunes et al., 2020). Accordingly, defects
in centrosome duplication can have drastic consequences for the
cell. If the process of duplication fails and generates extra
centrosomes, a resulting scenario may be multipolar mitosis.
In multipolar mitosis, chromosomes are segregated to more
than two poles during cell division and often leads to gross
aneuploidy, chromosome instability (CIN) and clonal
evolution (Kwon et al., 2008; Yi et al., 2011; Yang et al., 2012;
Telentschak et al., 2015; LoMastro and Holland, 2019). In some
cases, clustering mechanisms allow for the formation of a
functional bipolar spindle despite the presence of additional
centrosomes (Kwon et al., 2008). In other cases, centrosomes
may gather at the center of the cell to form amonopolar spindle, a
scenario equally threatening to the maintenance of genomic
integrity (Chatterjee et al., 2020). Many factors can influence
the organization of the mitotic spindle following defective
centrosome duplication. Overall, accurate centrosome
duplication and partitioning in mitosis is decisive in the
maintenance of genome stability and prevention of
tumorigenesis.

Like centrosome duplication, SPB duplication is a prerequisite for
effective cell division in lower eukaryotes, however, since dynamic
exchanges between new and old components occur throughout
duplication, SPB duplication cannot be viewed as fully
conservative. In budding yeast, the half-bridge elongates in early
G1 and remains connected to the central plaque and the IL2 spacer
throughout the duplication process (Figures 2B, step 1) (Byers and
Goetsch, 1974). Once sufficiently elongated, the daughter SPB is built
from satellite material (Figures 2B, step 2), developing into a
duplication structure formed by Cnm67, Nud1 and Spc72
through Spc42-directed self-assembly (Winey et al., 1991; Adams
andKilmartin, 1999) (Figures 2B, step 3), after which the half-bridge
retracts, allowing for the duplication plaque to embed itself into the
membrane. At the end of G1 phase, the parental and daughter SPBs
are leveled and connected through a full bridge (Figures 2B, step 4),
the disassembly of which allows the parental SPB to preferentially
migrate into the daughter bud (Figures 2B, step 5), and form a
bipolar metaphase spindle (Roof et al., 1992; Jaspersen, 2021).
Following the initial formation of both spindle poles, additional
material is added to each SPB in a dynamicmanner, hence why SPBs
are considered to be dynamic: their growth process should not be
viewed as exclusively conservative (Lengefeld and Barral, 2018).
Instead, the continuing SPB maturation increases the ability to

maintain functional integrity and has been proposed to be a
mechanism for SPB repair (Jaspersen and Winey, 2004).

In fission yeast, the process of SPB duplication differs from that
observed in budding yeast. The interphase SPB of S. pombe localizes
in the cytoplasm, in close proximity to the nuclear envelope (NE), and
embeds itself in the nuclear membrane only upon mitotic entry. In
the literature, the timing of fission yeast SPB duplication throughout
the cell cycle has been controversial for many years. Older studies
state that SPB duplication occurs inG2/M (Ding et al., 1997), whereas
newer studies suggest that the process instead begins in G1/S phase of
the cell cycle (Uzawa et al., 2004). When describing SPB duplication
andmaturation,Uzawa and others separate thematuration process of
S. pombe SPB into early and late SPB maturation. Early maturation,
reported to occur upon S phase completion, represents growth of the
lamellae bodies (laminated structure corresponding to the premature
SPB) on the half-bridge, nuclear membrane invagination and
gathering of material linking the premature SPB to the nuclear
membrane. Akin to what is reported in budding yeast, the early
event of SPB duplication giving rise to the lamellae bodies in fission
yeast relies on the elongation of the half-bridge. The latter, without
which SPB duplication could not take place, is required to support the
development of the premature SPB. The newly created laminated
structure, still undergoing maturation, remains linked to the mother
SPB through an ellipsoid bridge (Ding et al., 1997). Late maturation,
shown to take place in M phase of the cell cycle, encompasses the
separation of mother and daughter SPBs, NE fenestration for SPB
insertion and establishment of the mitotic spindle (Uzawa et al.,
2004). While individual steps of SPB duplication differ in some
respects across yeast species, the process remains broadly conserved
overall.

1.1.4 Centrosomes and SPBs: Same, but Different?
Although centrosomes are significantly larger in size than SPBs
(Gräf, 2018), they share several characteristics in duplication modes
and main MTOC functions (see Figure 3 for centrosome/SPB
homologs and orthologs). For example, Kendrin and CG-NAP
are human orthologs of yeast Spc110 that localize at the PCM
(Flory et al., 2000; Takahashi et al., 2002). Likewise, coiled-coil
domains required to establish interactions with analogous binding
partners are conserved across yeast Nud1 and human centriolin,
both of which are important players in cell cycle progression, mitotic
exit and cytokinesis (Gromley et al., 2003; Fraschini, 2019)
(Figure 3). However, microtubules nucleated by the centrosome
uniquely enables motility, subcellular trafficking, and anchoring of
receptors at the surface of the cell (Bettencourt-Dias, 2013), whereas
yeast SPBs remain restricted to roles asMTOCs and docking stations
for various signaling events.

2 CENTROSOMES AS SIGNAL
TRANSDUCTION ORGANIZING CENTERS

In recent years, an emerging body of evidence support non-
canonical roles for centrosomes/SPBs in coordination of signal
transduction events (Rincón and Monje-Casas, 2020). Indeed, in
response to stimuli and cell cycle cues, kinases with functions
unrelated to MTOC activity become transiently enriched at
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centrosomes/SPBs in a manner that is both necessary and sufficient
to promote downstream signaling events. Thus, centrosomes/SPBs
can modulate kinase activity in a structural capacity as signal
transduction organizing centers (STOCs) (Arquint et al., 2014).
This function is analogous to that of supramolecular organizing
centers involved in the regulation of innate immunity and
programed cell death (Kagan et al., 2014), except that
centrosome-mediated events occur at much larger and
structurally complex scales. In this section, we will explore the
surprising relationship between several kinase families and
centrosomes/SPBs and how these organelles act as powerful STOCs.

2.1 Centrosomes as STOCs: A Platform to
Enable Specialized Functions of Polo-Like
Kinases
2.1.1 The Polo-Like Kinase Family
The polo-like kinase (PLK) family, comprised of PLK1-PLK5 in
humans, are serine/threonine kinases that regulate fundamental
aspects of cell cycle progression (Zitouni et al., 2014; Iliaki et al.,
2021). Within this family, polo-like kinase 1 (PLK1) is arguably
the most prominent effector of cell cycle events. PLK1 and its
functional homologs in budding and fission yeasts (Cdc5 and
Plo1, respectively) require phosphorylation by Cdk1/Cdc28/Cdc2
kinases and/or Aurora kinases for full activation in vivo.
Following this initial activation stage, PLK1 and its yeast
counterparts play crucial roles in the regulation of mitotic
entry, spindle assembly, chromosome condensation, sister

chromatid segregation, cytokinesis, and adaptation to DNA
damage (Toczyski et al., 1997; St-Pierre et al., 2009; Ratsima
et al., 2011; Zitouni et al., 2014). Importantly, PLK1 function is
also essential for centrosome maturation and aberrant PLK1
activity can lead to serious diseases in humans, including
cancer (Liu et al., 2017).

All PLKs share a C-terminal polo-box domain (PBD) and a
highly conserved multi-domain structure with an N-terminal
kinase domain (KD) that harbors a T-loop with an activating
phosphorylation site (Rodriguez-Rodriguez et al., 2016; reviewed
in; Serrano and D’Amours, 2016). To recognize pre-
phosphorylated substrates including CDK1/Cdc28 targets,
members of the PLK family use their PBD as a signal
amplification module to locate and hyperphosphorylate
aforementioned targets. However, the distinctive tripartite
architecture of PLK4 PBD differs from the PBDs described
across other PLK members and was shown to operate in a
phospho-independent manner, making PLK4 PBD an
exception on that matter (Slevin et al., 2012). The PBD also
behaves as a subcellular targeting domain that allows PLKs to
recognize and bind specific structures –such as centrosomes and
SPBs– and promote specialized cell cycle functions (Colicino and
Hehnly, 2018).

The other members of the PLK family perform distinct but
sometimes overlapping functions in cell biology. PLK2, involved
in centriole duplication, is dynamically expressed throughout the
cell cycle and peaks at the G1/S transition of the cell cycle
(Warnke et al., 2004). Given its implication in centriole

FIGURE 3 |Overview of conserved yeast and human proteins involved in MTOC structure, signaling, duplication and function. Underlined are physical constituents
of centrosomes/SPBs. SPB, Spindle pole body; O/I, Outer/Inner; Hippo, Hippo pathway; Pericentrin, Kendrin/CG-NAP (Fraschini, 2019).
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biology, PLK2 was reported to endogenously localize at the
centrosomes throughout the cell cycle. The expression of
PLK2 varies widely across tissues and, given its importance in
mammary gland development, was shown to be particularly high
in mammary tissues (Villegas et al., 2014). On the other hand,
PLK3 is more steadily expressed throughout the cell cycle and its
function mostly relates to stress response pathways involving p53
during DNA damage and spindle disruption (Donohue et al.,
1995; Xie et al., 2001). PLK4, derived from PLK1 (Carvalho-
Santos et al., 2010) and sharing with PLK2 a role in centriole
duplication, is characterized as a master regulator of MTOC
formation and centrosome amplification (Habedanck et al.,
2005). The last member of the PLK family, PLK5, has a
slightly different structure than other members of its group in
that it completely lacks a kinase domain in humans. Opposite to
its other orthologs, the expression of PLK5 was shown to be very
low throughout cell division and high in quiescent cells. PLK5
expression is highest in brain tissues and plays a core function in
the nervous system, including neuron differentiation (de Cárcer
et al., 2011a). For more information regarding the PLK family, its
family members and its evolution across species, we direct readers
towards reviews covering these topics (Archambault and Glover,
2009; de Cárcer et al., 2011b).

MTOCs are crucial scaffolding structures used by PLKs to
reach specific substrates and promote cell division (Figure 4). In
S. cerevisiae, Cdc5 decorates the nuclear surface of duplicating
SPBs from late S phase to early anaphase and is also located in the
nucleus. In late anaphase, Cdc5 enriches specifically on the
cytoplasmic side of the parental SPB segregated to the

daughter bud as well as on the bud neck (Botchkarev and
Haber, 2017). Once the cell cycle is completed, Cdc5 is
degraded by the anaphase-promoting complex (APC)
throughout the G1 phase of the next cell cycle (Visintin et al.,
2008).

In fission yeast, the polo-related kinase Plo1 shows equally
important roles in cell cycle progression and displays high levels
of functional overlap with budding yeast Cdc5 and human Plk1
(Lee et al., 2005). Amongst its key roles, Plo1 is required for
mitotic entry, formation of the mitotic spindle, establishment of
the actin ring prior to cytokinesis as well as septation activation
preceding mitotic completion (Ohkura et al., 1995). Similar to
Cdc5 and Plk1, Plo1 requires the SPBs as a docking platform and
transiently enriches on the structure in a spatiotemporal manner
throughout the cell cycle. Similar to the enrichment of Cdc5 at the
SPBs, which is low in S-phase but high in G2/M (Simpson-Lavy
and Brandeis, 2011), the enrichment of Plo1 on the SPBs is high
during mitosis but absent in interphase. Additionally, Plo1
activity at the SPBs is highly reliant on the activity of the
kinase Cdc2 (Mulvihill et al., 1999). Upon Cdc2 activation,
Plo1 enriches at the SPBs and remains until spindle
breakdown whilst keeping steady expression levels throughout
the cell cycle (Lee et al., 2005).

The enrichment of Plo1 at the SPBs plays a pivotal role in the
commitment to cell division andmitotic progression. The process
of mitotic commitment is tightly regulated by M-phase
promoting factor (MPF) (Ohi and Gould, 1999), composed of
the regulatory subunit cyclin B and the catalytic subunit Cdc2.
Following its recruitment to the SPBs in G2 phase (Alfa et al.,

FIGURE 4 | Dynamic localization of Cdc5/Polo kinase at SPBs. G1: Cdc5 is absent from cells. S: Cdc5 enriches at the non-duplicated SPB. G2 to metaphase:
Cdc5 decorates the nucleus and the nuclear surface of both SPBs. Early anaphase: Cdc5 concentration at the nuclear surface of both SPBs increases. Late anaphase:
Cdc5 relocates from the inner to the outer surface of both SPBs (and bud neck) where it stimulates mitotic exit. Blue color represents enrichment of Cdc5. Color intensity
represents Cdc5 concentration levels.
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1989; Decottignies et al., 2001; Grallert et al., 2013), MPF activity
can promote mitotic entry at any point during the cell cycle.
Consequently, its activity must remain strictly restrained to the
instant where cell division is timely and suitable. The kinase
Wee1, via the phosphorylation of Cdc2, is responsible for such
inhibitory effect on MPF activity (Russell and Nurse, 1987). Once
all conditions for mitotic progression have been fulfilled, the
phosphatase Cdc25 removes the inhibitory phosphorylation on
Cdc2 and thus promotes cell division. Once MPF is activated, the
complex creates a positive feedback loop that further promotes
mitotic commitment through increased Cdc25 activity and Wee1
inhibition. Downstream of this feedback loop instigated by MPF,
Plo1 interacts with the SPB component Cut12 in a way that
supports entry into mitosis. The NIMA-related kinase Fin1, along
with Plo1, was also reported to contribute to this positive
feedback loop (Grallert and Hagan, 2002).

Apart from its involvement in mitotic entry, Plo1 is equally
important throughout cell division. Plo1 shows two
mechanistically distinct activity peaks during mitotic
progression: First during prophase, where the formation of the
actin ring occurs; second in late mitosis, corresponding to septum
formation (Tanaka et al., 2001). Indeed, Plo1 was reported to
localize to the medial ring structures as soon as they arise, a
subcellular zone that correlates with its key function in the setting
of partition sites (Bähler et al., 1998). Akin to Cdc5 in budding
yeast, fission yeast Plo1 relies on the APC for its disassociation
from the SPBs upon mitotic completion (Mulvihill et al., 1999).
Overall, the enrichment of Plo1 at the SPBs is reflective of its
implication in the spatial organization of mitotic processes and
represents an essential step in the regulation of mitotic entry and
cell cycle progression (Lee et al., 2005; Grallert et al., 2013).

In human cells, the Aurora-A kinase, in complex with its co-
factor Bora, phosphorylates Plk1 on a conserved residue located
in the T-loop of its kinase domain (T210). This G2 phase
phosphorylation event uniquely occurs at the centrosomes
(Bruinsma et al., 2015). Throughout the cell cycle, Plk1
localization and activity varies greatly. In late G2/early
prophase, Plk1 preferentially enriches at the centrosomes to
promote mitotic entry and then becomes enriched at the
kinetochores to support microtubule-kinetochore connections
in prometaphase, with lower Plk1 levels remaining at the
centrosomes to instruct spindle assembly.

2.1.2 PLK1 in the DNA Damage Response
The dynamic localization of Cdc5/Plk1 at MTOCs has major
implications for signal transduction events during the cellular
response to DNA damage. Upon DNA damage, cells initiate a
checkpoint response that allows time for DNA repair by
preventing the G2/M transition (Sandell and Zakian, 1993;
Rhind and Russell, 1998; Cagney et al., 2006; Chao et al.,
2017). After successful DNA damage repair, cells resume
cycling through a process termed checkpoint recovery (Vaze
et al., 2002). However, not all DNA lesions can be safely
repaired, and the extent of damage suffered determines the
fate of the damaged cells. When DNA damage is too
extensive, apoptotic signals lead to programmed cell death
thereby preventing the transfer of deleterious genomic errors

to daughter cells. When DNA damage is less extensive, cells can
resume their cell cycle through checkpoint adaptation (or bypass)
despite the presence of “permanent” DNA damage (Sandell and
Zakian, 1993; Toczyski et al., 1997; Lee et al., 1998; Vidanes et al.,
2010; Ratsima et al., 2011). Consequently, the process of
checkpoint adaptation postpones the repair of DNA lesions to
subsequent phases of the cell cycle.

The exact signaling pathway responsible for the adaptation
response to persistent DNA damage is still not fully understood.
In both human and yeast cells, PLK activity is required for
adaptation, and Cdc5 enrichment at the SPBs is both
necessary and sufficient to promote adaptation to persistent
DNA damage in budding yeast cells (Ratsima et al., 2016).
These observations suggest that SPBs function as docking
platforms for Cdc5 to execute the adaptation response. How
this is achieved is unclear, however a possible link connecting
PLK, BRCA1 and centrosomes was recently proposed in human
cancers (Yoshino et al., 2021). In some cases, aberrant expression
of the tumor suppressor gene BRCA1 in mammary tissues can
dysregulate centrosome duplication and generate a higher
centriole number in vivo. This reported process requires the
tethering of BRCA1 to centrosomes via RACK1. This protein
also acts as a scaffolding factor that promotes Aurora A and PLK1
interaction in S phase. Previous literature linked RACK1
overexpression to centriole overduplication and involved
BRCA1 as a component in this process (Yoshino et al., 2019;
Yoshino et al., 2020). This centriole overduplication event was
shown to stem from higher levels of phosphorylated PLK1,
resulting in kinase hyperactivity at centrosomes. The reported
centrosome aberration phenotype in response to PLK1
hyperactivity is intriguingly reminiscent of the supernumerary
SPB and polyploidy/multinucleation phenotypes observed in
adaptation-defective cdc5-16 mutants (Ratsima et al., 2011;
Ratsima et al., 2016) and in cells overexpressing CDC5 (Song
et al., 2000; Bartholomew et al., 2001). However, more research is
needed to assess whether there are cross-species phenotypic
similarities between these two cellular processes and how this
might be related to the adaptation response to unrepairable DNA
damage. Despite the impact of BRCA1 aberrations reported
above in centrosome amplification (Yoshino et al., 2019;
Yoshino et al., 2020), other studies demonstrated that
mutations in BRCA1 can induce a variety of phenotypes that
do not always result in amplified centrosomes. To further
evaluate the influence of BRCA1 in centrosome biology in
vivo, Kais and others explored the effect of a subset of
mutations in the BRCA1 locus on centrosome behavior.
Remarkably, these mutations induced a range of phenotypes
affecting two separate branches of centrosome biology, namely
centriole pairing and centrosome number. This result suggests
that BRCA1 regulates these two branches of centrosome
duplication separately, and nicely underlines the separation-of-
function aspect of certain BRCA1 mutations (Kais et al., 2012).
Thus, somemutations in BRCA1 can affect functions unrelated to
centrosome number and do not always correlate with centrosome
amplification in transformed cells.

The process of DNA damage-induced centrosome
amplification (DDICA) (Zou et al., 2014) represents another
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intriguing link connecting DNA damage responses, PLKs and
MTOCs. After treatment with the DNA crosslinker mitomycin C,
higher levels of BRCA1 and PLK1 were detected at centrosomes
alongside increased centrosome amplification. How DDICA
might enhance genomic stability and/or survival remains
unclear to this day. On one hand, DDICA may promote the
elimination of cells bearing extensive amounts of DNA damage
through mitotic catastrophe, whilst contributing to DNA damage
repair via local increase of DNA repair factors at the centrosomes
(Yoshino et al., 2021). The rationale behind this is that an
increased amount of DNA repair factors at the centrosomes
stemming from DDICA could constitute an extra source of
DNA repair proteins available for relocation from the
centrosomes to nuclear sites of DNA damage, consequently
supporting nuclear DNA repair as well as DDICA processing.
This theory, however, remains to be proven and is a work in
progress in the current literature. On the other hand, this process
was suggested to be beneficial for cancer cells seeking a
proliferative advantage in specific growth environments, as
centrosome amplification in p53-deficient cancer cells can
encourage chromosome mis-segregation (Yoshino et al., 2021),
a key promoter of genomic heterogeneity. The mitotic
catastrophe phenotype resulting from DDICA, observed
primarily in breast cancer cells, is intriguingly evocative of the
phenotype reported in budding yeast with the adaptation-
defective cdc5-16 allele. In response to DNA damage, this
mutant fails to enrich at the SPB and gradually fragments its
SPB, akin to DDICA (Ratsima et al., 2011). It would be
informative for future research to explore the mechanistic
similarities between Cdc5-related SPB fragmentation in yeast
and PLK1/BRCA1-related DDICA in breast cancer cells.

In damaged cells, the generation of extra centrosomes can also
be an outcome of circumstances unrelated to PLK1 or BRCA1
expression. Dodson and others notably reported that centrosome
amplification can ensue an extended G2 phase caused by DNA
damage checkpoint activation, in which DNA replication is
paused but centrosome duplication remains. Interestingly, the
small portion of cells able to override this G2/M cell cycle arrest
were shown to contain a normal number of centrosomes (Dodson
et al., 2004). Other potential causes of centrosome amplification
also include cytokinesis failures, as well as cell-cell fusion
(reviewed in Godinho and Pellman, 2014). Overall, the
relationship between centrosome amplification and DNA
damage is an ongoing work in progress in the field of
centrosome biology and its intricacies are yet to be fully
uncovered.

2.2 Centrosomes as STOCs: PIDDosome
Signaling Axis and the Centrosome
Surveillance Pathway
Centrosome biogenesis is a process finely coordinated with other
cell cycle cues to minimize errors during centriole duplication. In
some cases, this control system fails despite its global efficacy and
consequently leads to aberrations in centrosome biogenesis. In
the literature, centrosome aberrations sometimes are described as
a common outcome of neoplastic transformation (LoMastro and

Holland, 2019). However, research shows that these aberrations
can in fact be at the core of neoplasia, acting as an instigator of cell
transformation (Lingle et al., 2002; Pihan et al., 2003; Segat et al.,
2010; Lopes et al., 2018; Burigotto et al., 2021). In recent years, a
link between centrosomes and the tumor suppressor p53 was
unraveled and pointed to a control system for centrosome
biogenesis. This control system, termed the PIDDosome
signaling axis, acts as a mitotic clock that can detect and react
to centrosome aberrations and DNA damage during cell
proliferation to monitor and minimize genomic instability
(Tinel and Tschopp, 2004; Ando et al., 2012; Ando et al.,
2017; Fava et al., 2017; Sladky et al., 2017; Tsabar et al., 2020).
The PIDDosome signaling axis is composed of the “cell-death
effector caspase-2” (CASP2), the “p53-induced death domain-
containing protein 1” (PIDD1) as well as the “CASP2 and RIPK1
domain containing Adaptor with Death Domain” (CRADD). In
response to stress signals such as extra centrosomes or genotoxic
insults, the local concentration of centrosomal PIDD1 increases
and specifically enriches at the mother centriole via ANKRD26, a
distal appendage protein (Burigotto et al., 2021). Processing of
PIDD1 at the centrosome via auto-cleavage leads to its release in
the cytoplasm, where the auto-catalytic and proximity-driven
activation of CASP2 occurs (Tinel and Tschopp, 2004). Resulting
CASP2 activity stimulates the cleavage of the E3 ubiquitin-ligase
MDM2, a negative regulator of p53 stability, ultimately leading to
the activation of the tumor suppressor p53 and upregulation of
p21, a cell cycle inhibitor (Oliver et al., 2011). To limit cell
proliferation, this sequence of events leads to a cell cycle arrest
or cell death and thereby supports the maintenance of genomic
stability (Evans et al., 2021). The increased local recruitment and
resulting enrichment of centrosomal PIDD1 at the distal
appendages of the mother centriole is suggested to stem from
a cellular surveillance mechanism, in which an abnormally high
number of mature centrioles can stimulate the activation of the
PIDDosome signaling axis (Fava et al., 2017).

Similarly to the PIDDosome signaling axis in response to
centrosome amplification, another pathway termed the
centrosome surveillance pathway monitors and reacts to
centrosome loss or prolonged mitosis (Lambrus et al., 2016;
Meitinger et al., 2016; Lambrus and Holland, 2017). In
response to disturbed mitosis, the scaffolding protein 53BP1
acts as a platform to recruit the protein deubiquitinase USP28
as well as p53. The resulting proximity between USP28 and p53
leads to the deubiquitination and subsequent change in p53
activity and p21 upregulation, leading to a proliferation arrest
in G1 phase of the cell cycle (Fong et al., 2016; Lambrus et al.,
2016; Meitinger et al., 2016). The mechanistic intricacies
responsible for the activation of the centrosome surveillance
pathway are not fully understood. However, variations in
PLK4 expression and activity appear to be linked to
centrosome loss and subsequent activation of the centrosome
surveillance pathway (Wong et al., 2015). Despite both 53BP1
and USP28 proteins being known binding partners involved in
DNA damage response pathways (Zhang et al., 2006; Knobel
et al., 2014; Panier and Boulton, 2014; Zimmermann and de
Lange, 2014), evidence shows that the activity of the centrosome
surveillance signaling pathway is independent from their
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canonical functions in DNA damage and uncovers a new separate
line of defense against the loss of genomic integrity (Lambrus
et al., 2016).

2.3 Centrosomes as STOCs: Regulation of
Mitotic Entry by cAMP-Dependent Protein
Kinase A
Recent work has revealed that PKA activation is regulated
differentially in distinct subcellular compartments, and that

localized activation sites –known as signaling islands– are key
in determining the profile of substrates modified by this kinase
(reviewed in Omar and Scott, 2020). PKA localization and its
activation kinetics at centrosomes are controlled by kinase-
anchoring proteins (AKAPs). Specifically, AKAP450-controlled
autophosphorylation of the PKA regulatory subunit lowers the
cAMP threshold required for PKA activation at centrosomes
(Figures 5A,B) (Taylor et al., 1990; Di Benedetto et al., 2008;
Taylor et al., 2008; Terrin et al., 2012). In parallel, cAMP-specific
phosphodiesterase (PDE4D3) maintains a low cAMP

FIGURE 5 | Centrosome-specific regulation of protein kinase A (PKA) signaling. (A) PKA is a tetrameric holoenzyme composed of two regulatory subunits and two
catalytic subunits. Its activity relies on cyclic AMP (cAMP) cellular levels and is involved in many regulatory processes. (B) Regulation of PKA following G protein-coupled
receptor (GPCR) activation. A ligand binds to the GPCR (step 1), initiating the signal transduction cascade. This signal induces a GDP to GTP exchange on a
heterotrimeric G complex (step 2). The Gα subunit is released and binds to adenylyl cyclase (AC), an event that induces the formation of cyclic adenosine
monophosphate (cAMP) from ATP. A subpopulation of PKA anchors at the centrosomes (step 3). The resulting AKAP450 complex increases PKA affinity for cAMP.
Centrosomal PKA is selectively activated by cAMP, whilst cytosolic PKA (shown in grey) remains mostly inactive (step 4). A specialized cellular response is induced by the
catalytic activation of PKA at centrosomes (step 5).
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concentration in the vicinity of this organelle. Combined, these
two mechanisms allow for a restricted centrosomal PKA pool to
maintain activity when cytosolic PKA is mostly inactive, and
thereby promote cell cycle progression without inadvertently
inducing gene transcription, signal transduction, or other
undesired events.

At the onset of cell division, mitogenic signals trigger an
increase in cAMP levels in the entire cell, including the
centrosome (Vandame et al., 2014). The increase in
centrosomal cAMP is believed to be partly induced by MAPK-
mediated inhibition of PDE4D3, which allows the concentration
of cAMP to increase (Terrin et al., 2012). However, an exogenous
increase in global cellular cAMP levels is not sufficient to induce
PKA-mediated cell cycle progression to promote mitosis. Instead,
an increase in centrosomal cAMP levels is required; when
AKAP450 is artificially relocated away from centrosomes, lack
of PKA impairs mitosis and leads to a block in G1 (Gillingham
and Munro, 2000; Keryer et al., 2003). Conversely, an artificial
increase of centrosomal cAMP levels induces a buildup of
prophase cells (Terrin et al., 2012; Vandame et al., 2014).

Together, these studies unraveled that selective activation of
centrosomal PKA is pivotal for inducing the cAMP-dependent
pathway during mitosis. In this setting, centrosomes act as
supramolecular docking platforms in which conditions for
PKA activation differ significantly from those that prevail
elsewhere in the cell.

2.4 Centrosomes as STOCs: Regulation of
Cell Proliferation Decisions by
NIMA-Related Kinases
NIMA-related protein kinases are serine/threonine kinases
involved in multiple MTOC-related processes. In metazoans,
these processes include centrosome separation, during which
centrosomes migrate to opposite poles of the cell, spindle
assembly, and MTOC-independent regulation of mitotic
checkpoints (Nigg, 2001; O’Connell et al., 2003; Moniz et al.,
2011; Fry et al., 2012). In humans, seven NIMA-related kinases
(Neks) have been identified, whereas lower eukaryotes typically
encode a single family member.

The Nek2 isoform in humans is enriched at the centrosomes.
Although Nek2 associates with centrosomes in all stages of
mitosis, independently of microtubules, its activity is highest
in S and G2 phases (Fry et al., 2012). Nek2 is required for
centrosome integrity, as evidenced by dramatic phenotypes
caused by loss or gain of function mutations. Loss of function
mutations were reported to impair centrosome disjunction, a
process through which the proteinaceous linker keeping the
mother and daughter centrioles in close proximity normally
disappears (Hinchcliffe and Sluder, 2001; Fu et al., 2015), and
to elicit the formation of monopolar mitotic spindles (Faragher
and Fry, 2003; O’Regan et al., 2007). On the other hand, gain of
function mutations were reported to induce premature
centrosome splitting where a single centrosome would separate
into two distinct foci, gradual centrosome loss, and dispersal of
centrosomal material (Fry et al., 1998; Fang and Zhang, 2016).
Beyond its MTOC-dependent role, Nek2 promotes chromatin

condensation in mouse meiotic spermatocytes (Di Agostino et al.,
2004; Fry et al., 2012) and cytokinesis inDrosophila (Prigent et al.,
2005). In fission yeast, the unique Nek2 homolog Fin1 likewise
contributes to key cellular processes ranging from mitotic
commitment (see section “Centrosomes as STOCs: Polo-like
kinases–The Polo-like kinase (PLK) family” for an overview of
mitotic commitment in S. pombe) to spindle function,
maintenance of nuclear envelope dynamics and regulation of
the septum initiation network (SIN) (Krien et al., 2002; Grallert
et al., 2004). Certain phenotypes observed across species upon
gain or loss of function mutations in NIMA-related kinases share
common themes. Fin1 overproduction in S. pombe was notably
reported to create spindle formation defects, reminiscent of the
centrosome splitting phenotype associated with Nek2 gain of
functionmutations in humans (Fry et al., 1998; Krien et al., 2002).
Despite the lower amount of functional overlap observed in this
class of protein kinases in comparison to others (such as PLKs)
across species, NIMA-related kinases still share several functional
features from yeast to humans and represent an important class of
proteins with vital functions in cell biology.

2.4.1 Nek2-Mediated Signaling in the Wnt/Wingless
Pathway
Nek2 is known to phosphorylate ß-catenin, a multifunctional
Wnt-pathway effector implicated in a wide array of biological
contexts including centrosome-related cellular processes (Kaplan
et al., 2004; Bahmanyar et al., 2008; Vora et al., 2020). Throughout
mitosis, Nek2-mediated ß-catenin phosphorylation prevents its
degradation, a mechanism required to maintain high levels of
centrosomal ß-catenin (Mbom et al., 2014) and associated with
accurate centrosome disjunction. Nek2 kinase activity at the start
of mitosis relies on Plk1 (Mardin et al., 2011), however, ß-catenin
enrichment at the centrosomes is independent of its
phosphorylation state (Mbom et al., 2014). Outside of the
centrosome, the Nek2b isoform forms a complex with T-cell
factor (TCF4) to drive ß-catenin-dependent cell proliferation, a
mechanism associated with tumor cell invasion and metastasis
(Shin et al., 2017; Zhang et al., 2017; Shen et al., 2019).

Nek2 also phosphorylates dishevelled (DVL), a scaffold
protein involved in both the canonical and non-canonical
branches of the Wnt pathway. In higher organisms, three
genes encode DVL isoforms –DVL1, DVL2 and DVL3. These
isoforms, broadly expressed in mammalian cells, were reported to
have partly overlapping functions with high levels of redundancy
(Lee et al., 2008). The phosphorylation event mediated by Nek2
on DVL isoforms is essential to promote interactions between
DVL and several centrosomal linker proteins, liberating these
from the centrosomes and ultimately promoting centrosomal
separation. Indeed, lack of DVL impedes the dissolution of
centrosomal linkers, resulting in an absence of centrosomal
separation (Cervenka et al., 2016). Nek2 can also positively
modulate the pool of DVL available at the centrosomes to
upregulate the canonical Wnt/β-catenin pathway (Cervenka
et al., 2016).

Apart from its implication in centrosome separation, the Wnt
signaling pathway was also reported to play a role in cell motility.
In response to exosome-transported signaling molecules named
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planar cell polarity (PCP) proteins, the Wnt pathway stimulates
breast cancer cell (BCC) motility at the cell cortex. For this event
to occur, the association of a centrosomal module is required.
Specifically, DVL2 isoform was shown to mediate the assembly of
this module, composed of the human centrosomal protein
CEP192 and PLK4/AURKB, to promote protrusive activity in
BCCs. This centrosomal module coordinates the exchange of
formin DAAM1 for formin DAAM2 at the cell cortex, resulting in
increased cell migration (Luo et al., 2019). This sequence of events
may partly explain why aberrant expression of PLK4, AURKB
and DAAM2 in breast cancer was shown to correlate with poor
prognosis and increased cancer aggressiveness (http://www.
cbioportal.org). Interestingly, the function of this centrosomal
module was reported to be independent of centrosomes or
microtubules and elegantly highlights how contextual Wnt
signalling in cancer cells has the power to initiate processes
such as cell migration as a means to augment metastatic potential.

In the developing Drosophila eye, the relationship between
Nek2 and Wnt/Wingless is more direct. In a setting where the
anaphase-promoting complex (APC) is inactivated, Nek2
accumulation causes hyperactivation of Wnt signaling and
blocks retinal differentiation. Conversely, when Nek2 is
degraded by APC, local Wnt signaling is suppressed and
retinal differentiation proceeds (Martins et al., 2017). Taken
together, these studies highlight how Nek2 operates in
partnership with the Wnt pathway throughout the entire cell,
including at the centrosomes.

2.5 Centrosomes as STOCs: Regulation of
Mitotic Exit and/or Cytokinesis by MEN and
SIN Kinases
The mitotic exit network (MEN) is a GTPase signaling cascade
that regulates cell cycle progression in budding yeast with
similarities to the Hippo signaling pathway in metazoans.
MEN drives the onset of mitotic exit in late anaphase and
cytokinesis primarily by inhibiting the activity of Cdk1 and
reversing phosphorylation sites on Cdk1 substrates. SPBs
provide spatio-temporal cues for MEN, and importantly,
functions as docking platforms to initiate and amplify
signaling events.

Up until anaphase, the GTPase Tem1, the mainMEN initiator,
is present at SPBs but is kept inactive until Cdc14 phosphatase is
released from the nucleolus to create a positive feedback loop that
drives the mitotic exit process (as reviewed in Manzano-López
and Monje-Casas, 2020). Two spindle position checkpoint
(SPOC) components, GTPase-activating proteins (GAP) Bfa1/
Bub2, inhibit Tem1. In anaphase, spindle elongation allows the
older SPB to progressively migrate from the mother cell into the
daughter bud, at which point the Cdc5 kinase, enriched at the
SPBs, phosphorylates Bfa1/Bub2 to disinhibit Tem1.
Concomitantly with this, migration of the older SPB into the
bud places the Lte1 guanine-exchange factor (GEF), located in the
bud cortex, where it can access and convert Tem1 to its active
GTP-bound form. Subsequently, the Cdc15 kinase and its
downstream effector –the Dbf2-Mob1 complex– are recruited
to SPBs and activated, allowing transmission of theMEN signal to

the nucleolus, where it can activate Cdc14 (Renicke et al., 2017;
Campbell et al., 2019).

The release of Cdc14 and its gradual accumulation outside of
the nucleolus generates a robust feedback loop that promotes
mitotic exit (Barberis et al., 2005; Maekawa et al., 2007). Cdc14
enriches at the SPBs via its interaction with the outer plaque
component Spc72, and throughout anaphase, gradually increases
on the parental/older SPB as it migrates through the daughter bud
(Yoshida et al., 2002). In late telophase, once the daughter SPB is
fully generated, Cdc14 accumulates on both SPBs. By acting as a
docking platform for Cdc14, SPBs may act as a functionally
distinct reservoir of active Cdc14 responsible for promoting
effective mitotic exit (Yoshida et al., 2002).

The wealth of knowledge on the MEN and its role in mitotic
exit sometimes overshadows its equally important roles in
cytokinesis. In budding yeast, establishment of an actomyosin
ring and septum formation between themother and daughter bud
at the beginning of anaphase are necessary processes for
completing cell division and separate the two newly formed
cells. Given the temporal pairing of late mitotic events and
cytokinesis, many MEN components are also required for the
completion of the cytokinetic process. Amongst them, SPB-
bound Tem1 and the Bfa1/Bub2 complex were shown to be
crucial for successful cytokinesis (Whalen et al., 2018) and the
activity of the SPB-enriched Cdc5 kinase required to complete
cytokinesis. In late anaphase, Bfa1 maintains Cdc5 mainly on the
cytoplasmic side of the daughter SPB (Park et al., 2003). At the
onset of cytokinesis, Cdc5 gradually enriches at the bud neck and
promotes cell division through its kinase activity towards a
specific subset of substrates. The preferential enrichment of
Cdc5 at the outer side of the daughter SPB seemingly
facilitates the late mitosis/cytokinesis transition by allowing for
the rapid migration of Cdc5 at the bud neck (Botchkarev et al.,
2017). Thus, the role played by SPBs as platforms that coordinate
MEN signaling has implications beyond the area of mitotic exit,
such as the regulation of key events required for the completion of
cytokinesis.

The septation initiation network (SIN) in fission yeast, a
GTPase signaling cascade akin to the budding yeast MEN,
regulates several mitotic processes occurring in the last steps
of cell division. These processes include actomyosin ring
constriction (CAR), septation and cytokinesis (Feoktistova
et al., 2012; Alcaide-Gavilán et al., 2014; Edreira et al., 2020).
The first event leading to SIN initiation requires the activation of
the Ras-like GTPase Spg1 (septum-promoting GTPase) (Schmidt
et al., 1997). In metaphase, both SPBs contain uniform amounts
of Spg1. The latter, ensuing its activation, recruits its effector
protein kinase Cdc7 at the SPBs. Upon anaphase entry, both Spg1
and Cdc7 become inactivated on the parental SPB whilst Cdc7
concentration increases on the daughter SPB (Sohrmann et al.,
1998). The resulting asymmetrical enrichment of Cdc7 on the
newer SPB further induces the recruitment of Sid1 and Sid2
protein kinases on the daughter SPB, stimulating SIN activity and
contributing to the transduction of septation signals from the SPB
to the division site (Guertin et al., 2000). Furthermore, Sid2 was
reported to exert a positive effect on SIN activity feedback loop,
thus maximizing the signaling cascade to promote septation
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(Feoktistova et al., 2012). The polo-like kinase Plo1, involved in
several steps of mitotic progression, was also reported to
positively impact SIN activity and was hypothesized to operate
upstream of the aforementioned signaling cascade (Ohkura et al.,
1995; Tanaka et al., 2001). Loss-of-function mutations
encompassing certain SIN genes were reported to induce the
formation of elongated multinucleated cells, resulting from the
absence of cell division following several cycles of nuclear division
(Nasmyth and Nurse, 1981; Balasubramanian et al., 1998).
Conversely, gain-of-function mutations were linked to the
establishment of numerous actomyosin contractile rings and
septa in cells without divided nuclei, a consequence of
mutated inhibitors of SIN (Feoktistova et al., 2012).

The function of the MEN in mitotic exit represents a late
evolutionary trait. Since the regulation of mitotic exit was
coupled to the mitotic exit (ME)-signaling pathway only during
the development of the Saccharomycetaceae family, other yeast
species such asC. albicans or S. pombe thus lack this function of the
MEN (Maekawa et al., 2022). Moreover, it is worth noting that the
MEN was suggested to function earlier in the cell cycle, such as in
metaphase, in other processes unrelated to mitotic exit and
cytokinesis. SPBs were notably reported to exploit the MEN as
a way to drive age-dependent segregation. The spindle positioning
protein Kar9 was shown to impact SPB segregation through
preferential asymmetric enrichment to the older SPB in
metaphase, a process requiring sustained Kar9 phosphorylation
by theMEN kinases Dbf2 andDbf20 (reviewed in Hotz and Barral,
2014). The SPB component Nud1 was also reported to further
support the asymmetric enrichment of Kar9 on the old SPB and
demonstrates that the MEN can impact cell cycle progression as
early as in metaphase, through the establishment of asymmetric
SPB inheritance (Hotz et al., 2012a; Hotz et al., 2012b).
Importantly, the contribution of the MEN to early mitotic
events was shown to be conserved across several eukaryotic
species, including S. pombe, and suggests that this specific
feature of the MEN is a commonly shared evolutive trait
(Hachet and Simanis, 2008; Chiba et al., 2009; Chiyoda et al.,
2012; Grallert et al., 2012). Despite the fact that cell cycle
progression is a collective function of Hippo-related kinases
across many eukaryotic species, exceptions remain. The Hippo-
related pathway in ciliates was notably reported to contribute to the
regulation of cilia biology as well as to the establishment of cell
polarity (Tavares et al., 2012; Soares et al., 2019). However, there is
no clear evidence that Hippo-related kinases in ciliates regulate cell
cycle progression the way it was reported in other species such as
yeast and denotes a certain degree of functional variability in this
otherwise conserved pathway.

In comparison to the vast body of knowledge collected on the
MEN-SPBs relationship in budding yeast or the SIN-SPBs in
fission yeast, the precise contribution of human centrosomes to
mitotic exit remains relatively unexplored. The Hippo signaling
pathway is an important regulator of cell proliferation and
apoptosis in higher eukaryotes. Given its importance in
chromosome segregation and cytokinesis, the Hippo pathway
is thus considered to play a functionally analogous role to the
MEN (Hergovich and Hemmings, 2012). Although no clear
Tem1 homolog has been identified in humans so far, Ras has

been proposed to play a Tem1-like role in mitotic exit. Other
MEN components located at SPBs appear to be conserved in
humans, for instance centriolin, a centriole-appendage protein
that transiently locates at the centrosomes. Thus, centriolin may
play a similar role to that of Nud1 in promoting mitotic exit
through its protein-protein interactions involving human MEN
components (Pereira and Schiebel, 2001; Gromley et al., 2003).
The centrosomes appear to act as a scaffolding structure for a
broader range of regulators in humans, thus involving them in a
multitude of intertwined pathways and cellular processes (Mayor
et al., 1999; Chavali et al., 2014).

FIGURE 6 | Visual representation of sporulation and ascus formation in
budding yeast. (A) In response to environmental stressors, diploid yeast cells
initiate the sporulation program. (B) Completion of meiosis I nuclear division.
(C) After the second round of chromosome segregation, the prospore
membrane (shown in orange) forms and expands around each duplicated
SPB (shown in blue). (D) The membrane grows and encapsulates each
haploid nucleus in the tetrad. (E) Spore wall assembly begins and the
remnants of the mother cell breaks down.
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3 BEYOND MTOC AND STOC ROLES OF
CENTROSOMES/SPBS

The studies discussed above describe how SPBs/centrosomes act
as essential signaling centers for many biological processes.
However, multiple lines of evidence reveal the existence of
additional non-canonical roles for centrosomes/SPBs. In this
section, we describe how nature and evolution co-opt MTOCs
into fulfilling roles that go beyond their typical contribution to
cell shape, intra-cellular transport and cell division. These roles
require MTOC activity in some cases but utilize microtubules in
ways that exceed and/or diverge from their primordial function in
eukaryotic cells.

3.1 SPB-Dependent Membrane Formation
During Sporulation
When facing environmental stresses or severe nutrient
deprivation, organisms ranging from bacteria and protozoa to
plants and fungi can undergo sporulation as a way to adapt to
environmental changes and increase the likelihood of their
survival. Certain eukaryotic species, such as budding yeast,
have the capacity to initiate sporulation as a form of
specialized meiosis. This meiotic process allows for cells to
shuffle and partition their genomic contents into different
combinations, thus increasing the likelihood of progeny
survival. In yeast, vegetative cells enter into premeiotic S
phase. After completion of S phase, replicated DNA is
partitioned into four haploid nuclei, which constitute the
backbones of the four daughter cells to be created (Figures 6,
steps A–C). Next, a membrane compartment, called the prospore
membrane, matures and surrounds the four newly created
daughter nuclei (Figure 6D). This step is vital for spore
maturation as it gives rise to thick spore walls required for
chromatin compaction and protection of cells from harsh
environmental conditions (Roeder and Shaw, 1996; Coluccio
et al., 2004; Suda et al., 2007; Neiman, 2011). Finally, the
remnants of the parental cell collapse around the dormant
progeny (the asci) to give rise to four mature haploid cells
(Figure 6E) (Neiman, 2005).

SPBs support the initial construction of the prospore
membrane, but the developmental reprogramming of
vegetative cells that leads to sporulation alters their
composition and function. During meiosis I, SPB duplication
is similar to the process observed during mitotic division, but
meiosis II induces multiple changes in SPB constitution that turns
this organelle into a focal point for membrane formation. Most of
its outer plaque components are replaced with specific proteins
required for sporulation. During meiosis II, Mpc54, Spo74 and
Spo21/Mpc70, three meiotic plaque components, act as
substitutes for Spc72 on the cytoplasmic face of the SPBs.
Instead of interacting with microtubules, Mpc54 and Spo21/
Mpc70 cooperate with Nud1, Cnm67 and Spc42. The
mechanistic process underpinning prospore membrane
extension is not well understood, but we know that each
prospore membrane surrounds its respective SPB in a semi-
circular conformation prior to extension. Each membrane thus

captures half of its corresponding nucleus, eventually forming
walls englobing the entire nucleus (Neiman, 2011). In their
research touching on prospore membrane formation, Knop
and Strasser observed that levels of Mpc54 and Mpc70 peaked
towards the end of meiosis II and plummeted shortly after,
suggesting for a restricted role of these proteins exclusively in
the formation of the meiotic plaque. Assembly of the prospore
membrane was also shown to rely on Don1, a protein emerging
towards the middle stages of meiosis I. Using immuno-electron
microscopy, authors reported that Don1 localizes to the prospore
wall during meiosis II and was proposed to be a marker for
prospore membrane formation (Knop and Strasser, 2000). In a
situation where meiotic SPB components are mutated or
otherwise deficient, prospore membranes fail to engulf the
four nuclei and the sporulation process collapses (Knop and
Strasser, 2000), underscoring the essential nature of SPBs for this
process.

3.2 MTOC as Linchpins for Cellular
Reprogramming of Quiescent Cells
Eukaryotic cells rely heavily on stimuli provided by their
immediate surroundings to make cell proliferation decisions.
In situations where nutrients become limiting and
proliferation is impossible, cells have the ability to initiate
stress survival programs that enable them to better face
environmental hazards. A cellular state termed quiescence can
also be induced when nutrient become scarce or in the presence of
specific developmental cues.

Quiescence is a common dormant state in wildlife (Gray et al.,
2004; Zhang et al., 2019). Upon entering quiescence, cells
temporarily halt their division cycle, thus allowing time for the
surrounding environment to replenish its resources (Sagot and
Laporte, 2019). This process, routinely observed in unicellular
eukaryotes, is also common in multi-cellular organisms including
humans, where the quiescent state preserves and maintains
embryonic stem cell pools in adult tissues until actively needed
for homeostasis or tissue repair (Cheung and Rando, 2013). In yeast,
the decision to favor quiescence over other stress coping strategies
can be determined by the availability and type of carbon source
present in the environment. When ethanol is the predominant
carbon source, sporulation and ascospores formation is the main
stress coping strategy of budding yeast. Conversely, limited
availability of a high-energy fermentable carbon source such as
glucose makes quiescence the preferred route to maintain cellular
homeostasis and redox equilibrium (Tomova et al., 2019).

Entry into quiescence induces major changes in cellular
organization and physiology, including appearance of internal
structures such as storage granules and actin bodies (Sagot et al.,
2006; Narayanaswamy et al., 2009; Noree et al., 2010; Liu et al., 2012;
Laporte et al., 2013; Shah et al., 2013; Sun and Gresham, 2020). The
typical Rabl nuclear configuration, in which centromeres are
clustered to one side of the nuclear envelope and concomitantly
attached to the SPB, is replaced by a simplified nuclear arrangement
in quiescent cells (Figure 7) (Guacci et al., 1997; Jin et al., 1998;
O’Toole et al., 1999; Jin et al., 2000; Bystricky et al., 2004; Laporte
et al., 2013). This response is fully reversible because quiescent cells
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typically revert back to the standard Rabl configuration in less than
an hour after nutrients are replenished in their immediate
environment. This rapid response to environmental cues is highly
beneficial for most unicellular organisms and is thought to provide
cells with increased competingfitness and enhanced survival chances
(Laporte and Sagot, 2014).

An important quiescence hallmark in yeast is the assembly of a
long and highly stable array of nuclear microtubules (nMTs)
which spans the entire length of the nucleus and consequently
displaces the nucleolus (Laporte et al., 2013; Laporte and Sagot,
2014). Chromosomes, which remain tightly attached to the SPB-
generated microtubules, become spread along the length of the
newly formed nMTs array. Whilst the exact purpose of this
nuclear rearrangement during quiescence remains unclear, this
selective chromosomal relocation has been proposed to influence
gene transcription and mRNA export efficiency (Taddei and
Gasser, 2012; Laporte and Sagot, 2014).

SPBs, that form the nMTs array in quiescent cells, are important
executioners of the quiescence program.Accordingly,mutations that
cause shifts in nMTs array length or stability impede quiescence-
related nuclear reorganization and leads to quiescence defects,
genomic instability and decreased likelihood of survival (Jin et al.,
1998; Gray et al., 2004; Laporte and Sagot, 2014). Likewise,
mutations affecting MT nucleation in SPB components, as well
as in other organelles or transduction signal pathways involved in
quiescence, may drastically reduce cell survival (Gray et al., 2004;
Laporte and Sagot, 2014). XRN1 (also known as KEM1) encodes an
exonuclease involved in nutrient signaling. Mutated xrn1 impaired
relay of nutritional information to the SPBs, consistent with a
possible role for the SPB as a signaling platform during
quiescence (Werner-Washburne et al., 1993).

Although a few rare mutant cells survive and are capable of
returning to a cycling state upon replenishment of environmental

nutrients, the likelihood of survival of their offspring is greatly reduced;
a surviving quiescence mutant will confer genomic instability to its
progeny, often resulting in cell death (Laporte and Sagot, 2014).

It is unclear if centrosomes play a similar role as SPBs in
mammalian cell quiescence. The formation of a nMT array is
unlikely to occur in mammalian cells because centrosomes are
typically not embedded in the nuclear membrane in higher
eukaryotes. However, centrosomes may act as a key docking
platform to regulate protein kinase A (PKA) signaling in the early
stages of quiescence, as suggested by Gray et al. (2004).
Furthermore, the process of quiescence has often been
correlated with the formation of a primary cilium in mammals
(Tucker et al., 1979; Laporte and Sagot, 2014). Given the
requirement for cilium resorption in differentiated cells prior
to cell division, the presence of a primary cilium in quiescent cells
has been proposed to act as an important biological checkpoint.
This theory would satisfactorily correlate with a cell’s need to
assess the state of its external surroundings prior to reverting back
to a cycling state (Kim and Tsiokas, 2011 as cited in; Laporte and
Sagot, 2014). Further studies will be necessary to define more
precisely the contribution of centrosomes to mammalian cell
quiescence.

4 CLOSING REMARKS

Centrosomes and SPBs are cellular organelles mainly recognized for
their role as microtubule nucleators (MTOCs) crucial for cell shape
determination, intra-cellular transport and cell division. While there
is little debate that this viewpoint is well justified, the importance of
centrosomes/SPBs in other cellular processesmust not be overlooked.
Indeed, these organelles also act as key players in the transduction of
several signalization events and in the implementation of important

FIGURE 7 | Cellular changes associated with the quiescent state in yeast. These changes include the disappearance of cytoplasmic microtubules (MTs) and
formation of a nuclear bundle of MTs (nMTs) that spans the entire nucleus. Centromeres (shown in yellow) normally cluster together at the end of nuclear MTs in
interphase cells (left) but get redistributed along the length of the newly formed nMT bundle in quiescent cells (right). Chromosome arms are omitted from this figure to
simplify the representation. See text for more details.
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differentiation programs. Through their roles as intracellular docking
platforms that enhance kinase-substrate interactions, centrosomes/
SPBs effectively function as important STOCs. This role is achieved
through the regulated formation of supramolecular protein
assemblies on the surface of MTOCs. The scale and
compositional complexities of these assemblies suggest that
STOCs provide a unique regulatory environment for signaling
events. Moreover, the dynamic nature of their location/
movements during the cell cycle suggest a capacity for decoding
and translating spatio-temporal cues into transduction events.
Overall, centrosomes/SPBs are indispensable to ensure cellular
fitness and mutations in these organelles can lead to severe
pathologies, ranging from microcephaly to cancer (Jaiswal and
Singh, 2021). Given their versatile influence in cell proliferation
and signaling events, future research efforts focused on the
MTOC-independent roles of centrosomes could be a fruitful path
for discovering therapeutic targets in the treatment of several diseases,
including cancer.
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