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Abstract 

Background:  Bulk segregant analysis (BSA) combined with next generation sequencing is a powerful tool to identify 
quantitative trait loci (QTL). The impact of the size of the study population and the percentage of extreme genotypes 
analysed have already been assessed. But a good comparison of statistical approaches designed to identify QTL 
regions using next generation sequencing (NGS) technologies for BSA is still lacking.

Results:  We developed an R code to simulate QTLs in bulks of F2 contrasted lines. We simulated a range of recom-
bination rates based on estimations using different crop species. The simulations were used to benchmark the ability 
of statistical methods identify the exact location of true QTLs. A single QTL led to a shift in allele frequency across a 
large fraction of the chromosome for plant species with low recombination rate. The smoothed version of all statistics 
performed best notably the smoothed Euclidean distance-based statistics was always found to be more accurate 
in identifying the location of QTLs. We propose a simulation approach to build confidence interval statistics for the 
detection of QTLs.

Conclusion:  We highlight the statistical methods best suited for BSA studies using NGS technologies in crops even 
when recombination rate is low. We also provide simulation codes to build confidence intervals and to assess the 
impact of recombination for application to other studies. This computational study will help select NGS-based BSA 
statistics that are useful to the broad scientific community.
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Background
The outstanding progress in high-throughput genotyp-
ing technologies over the last decade has prompted new 
approaches for more efficient dissection of the genetic 
architecture of complex traits [1]. The increased mapping 
resolution reached thanks to deep sequencing technolo-
gies has enhanced the estimation of allele frequencies 
within a population and increased the power of detec-
tion of genetic variants associated with the phenotypic 

variation of a trait [2, 3]. Cost-efficient NGS technolo-
gies such as genotyping by sequencing (GBS) [4] signifi-
cantly facilitates the identification of interesting SNPs 
for marker-assisted breeding programmes. For instance, 
marker-trait associations for agronomic traits [5] and 
resistance to biotic [6, 7] and abiotic [8] stresses have 
been identified in GBS-GWAS studies of major crops, 
including wheat and rice.

The same technology applied to QTL mapping studies 
in bi-parental populations (RILs, double haploids, etc.) 
has helped validate QTLs detected in association studies 
[9, 10], but the detection capacity of QTL mapping stud-
ies still mainly depends on the genetic architecture of the 
quantitative traits, the mapping resolution, and the size 
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of the population used [11]. A simultaneous increase in 
population size and marker density improves QTL detec-
tion power. Larger numbers of QTLs with smaller aver-
age effects can be identified more precisely, partly due 
to the dissection of closely linked QTLs. However, the 
gains in power of QTL detection achieved by increasing 
the size of biparental or multiparental populations (i.e., 
beyond 500 segregant lines) rarely compensates for the 
phenotyping and genotyping effort required [12, 13]. In 
recent years, bulk segregant analyses (BSA) build on NGS 
technologies have proved to be a highly efficient strategy 
for QTL mapping in linkage mapping studies [14–17], 
and for use in GWAS analysis with diversity panels [18, 
19]. The NGS-based BSA method establishes contrasted 
bulks of lines from a population segregating a particular 
trait and explores the differences in the segregation of 
alleles using sequencing from the bulks. Bulking pools of 
contrasted lines for a particular trait greatly reduces the 
genotyping efforts required in the segregating population 
(F2s, RILs, etc.). Moreover, using a BSA based approach 
means larger populations can be considered, which, in 
some studies on yeast [20] and Arabidopsis [21], include 
up to several thousand individuals. In crops, the size of 
the population used generally comprises a few hundred 
individuals [22, 23], but we found one example of very 
large population in which more than 10,000 F3 rice lines 
were screened for cold tolerance. In that study, extreme 
bulks of around 400 lines were used for BSA [14]. BSA 
can therefore select the extreme phenotypes more likely 
to harbour causative polymorphism more reliably. Defin-
ing the extreme phenotypes of an easily measurable trait 
does not require precise characterisation of individual 
traits [14] thus greatly reducing the phenotyping effort 
required.

One major challenge of NGS-based BSA studies is 
screening for deviations in allele frequency that are 
linked to QTL regions in large datasets obtained using 
deep sequencing technologies. Even though using high 
dimensional genomic data markedly increases the map-
ping resolution for QTL detection, it also introduces 
sequencing noise linked to factors such as marked vari-
ation in sequencing read coverage or the unevenness in 
SNP density [24]. Consequently, a significant proportion 
of the new statistical methods used for NGS-based BSA 
studies have focused on identifying smoothing methods 
to reduce the effects of noise and to avoid spurious QTL 
associations. The statistical method based on differences 
in allele frequency proposed by Takagi et  al. [22] has 
become one of the most widely used approaches in the 
field [16, 25, 26]. Other popular methods based on G-test 
[27] or Euclidian distance statistics [28] to measure the 
allelic divergences between the bulks have also been 
widely applied [15, 29, 30]. The implementation of some 

of these methods in R packages such as QTLseqr [31] has 
facilitated their application. While recent studies mostly 
use smoothed statistics to minimise the signal from 
sequencing noise following the calculation of differences 
in allele frequencies between the bulks, the statistics 
remain largely dependent on the properties of the popu-
lation, including population size, recombination rate or 
QTL effects. These effects have been less frequently con-
sidered when optimising the choice of NGS-based BSA 
statistics.

The objective of this work was to perform a numerical 
study to 1) analyse which statistical method best iden-
tifies a hypothetical QTL, 2) analyse which statistical 
method identifies the QTL position most accurately, 3) 
build confidence intervals around the QTL location. We 
tested nine NGS-based BSA statistics and evaluated their 
effectiveness for the detection of QTLs. We used simu-
lated data to assess the impact of variations in the recom-
bination rate. We propose a simple tool to help choose 
the most appropriate approach to run statistics in NGS-
based BSA studies based on the characteristics of the 
QTL population and of the species under study.

Results
BSA simulation settings for three models of recombination
We first simulated a single QTL in the middle of a chro-
mosome and used nine statistics that are commonly used 
in NGS-based BSA studies to detect it (Figs. 1 and 2 and 
Additional file  1: Fig. S1). In the absence of loci affect-
ing the trait, the genotype frequencies showed similar 
variations between the two contrasted bulks, with val-
ues around 0.5 and a difference close to zero. In contrast, 
the presence of a QTL linked to the phenotype led to a 
bias in allele frequency in the bulks. Alternate alleles 
were overrepresented around the QTL region in the bulk 
with high phenotypic values compared to in the bulk 
with low phenotypic values. The difference in allele fre-
quency of the alternate allele between the bulks (∆SNP) 
and a smoothed version of the difference in allele fre-
quency (t-∆SNP) revealed the presence of a QTL peak in 
the middle of the chromosome where the alternate alleles 
affect the quantitative trait positively (Fig. 1).

All nine statistics located the QTL region (Additional 
file 1: Fig. S1). Bigger differences in allele frequency were 
observed closer to the causative locus (centred in the 
chromosome at 50 Mbp). The plots obtained using sta-
tistics based on the difference in allele frequency (Fig. 2 
A and B) produced similar results. In this case, the sta-
tistic varied between -1 and 1, indicating alleles with a 
positive or negative effect on the quantitative trait. BSA 
based on the G statistic and LOD score produced similar 
QTL detection plots (Fig. 2 C and E). These two statisti-
cal tests only indicate whether the alleles have an effect 
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Fig. 1  Simulation of a bulk segregant analysis with different recombination rates. The frequency of the alternate allele for each marker position is 
shown in two contrasted pools of segregant lines displaying high phenotype (A) and low phenotype (B). The difference in allele frequency among 
the pools and the smoothed statistics for the window corresponding to 3 Mbp (line) led to the detection of a QTL simulated in the middle of the 
100 Mbp model chromosome (C) in different species with different recombination ratios (λ): pearl millet (λ = 0.90), rice (λ = 1.30) and foxtail millet 
(λ = 2.15). The results correspond to simulations using binomial distribution in the simulation of sequencing noise and QTL effect equivalent to 20% 
of the phenotypic variance (k = 1). The first graph in A, B and C shows the results in absence of a QTL effect

Fig. 2  QTL detection using different statistics. The difference in allele frequency among contrasted bulks at the marker position (dots) and the 
corresponding smoothed statistics (line) is represented according to QTL-seq method based on ΔSNP [22] (A), Block Regression Mapping [32] (B), 
G statistics [27] (C), Euclidean distance-based statistics [28, 30] (D) and QTG-Seq method based in LOD statistics [30] (E). The dotted lines show the 
95% confidence interval defined for each method. The analysis presented here was performed on rice (λ = 1.30)
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on the quantitative trait. In these four analyses, windows 
equivalent to 3 Mbp were found to efficiently smooth the 
noise that resulted from sequencing. The value of the 
smoothed statistic is the result of a function (Nadaraya-
Watson kernel regression or Loess regression) that calcu-
lates a weighted average of the statistics across the SNPs 
within a sliding window with a given physical distance. 
Finally, the statistic based on Euclidean distance success-
fully detected the QTL. In this case, the smoothed sta-
tistic computed based on the fourth power of hundred 
consecutive markers accentuated the QTL peak signal 
better than the other methods. In parallel simulations, 
we used high coverage sequencing data from African rice 
[33] to add sequencing noise to the simulation of the ref-
erence and alternate allele depth based on a real dataset 
and compared the results with our theoretical approach 
based on a binomial distribution. We observed a similar 
trend in the results obtained with a slightly higher vari-
ance in allele frequency and therefore in the value of the 
statistic at each marker position (Additional file  1: Fig. 
S2). Despite the increased noise, the smoothed statistics 
showed a very similar pattern across simulations. Finally, 
we also tested the detection of QTLs with a minor effect 
on the phenotype equivalent to roughly 6% of the phe-
notypic variance. We found that all statistics detected the 
QTL peak but with major differences among them. The 
Euclidean distance smoothed statistics still led to a more 
accurate detection of the QTL peak in the three recombi-
nation models (Additional file 1: Figs. S3 and S4).

High-density marker coverage reveals the effect of the 
recombination rate on the segregation of alleles in the 
bulks. In low recombinant species such as pearl millet 
(λ = 0.90), the QTL effect seems to spread across a large 
fraction of the chromosome. By contrast, rice (λ = 1.30) 
and the highly recombinant model foxtail millet 
(λ = 2.15) showed strongly marked peaks at the position 
of the QTL. The same trend was observed in the output 
of the five statistical methods (Additional file 1).

QTL identification and the effect of the recombination rate
The accuracy of QTL detection was assessed as the dis-
tance between the initial QTL position and the position 
identified with each statistic. The mean distance was esti-
mated from one thousand simulations for each statistic 
and recombination model (Fig.  3) as well as for simula-
tions showing a slight increase in sequencing noise as a 
consequence of using real rice sequencing data (Addi-
tional file 2: Fig. S1). All the methods detected a signifi-
cant QTL at the desired location, but the accuracy of 
the location varied across the nine statistics tested and 
depending on the recombination rate, especially in simu-
lations that used the binomial function in the definition 
of sequencing noise (Additional file 2: Table S1). In cases 

with a slight increase in sequencing noise (i.e., simula-
tions based on real data) the differences among the sta-
tistics in the accurate detection of QTL was remarkably 
independent of the recombination model (Additional 
file  2: Table  S3). Still, in all the simulations, the higher 
the recombination, the more accurate the detection of 
the QTL. In pearl millet (λ = 0.90), the QTL was located 
between 1,594 kb (G statistics) and 1,729 kb (ΔSNP and 
EDm statistics) average distance from the original QTL 
position considering SNP based statistics. This aver-
age distance was reduced with smoothed statistics and 
ranged between 863 kb (ED1004) and 1,158 kb (AFDexp). 
To give an approximate number of genes, a 863  kb dis-
tance to the QTL in pearl millet (ED1004) is equivalent to 
a “distance” of 20 genes from the true QTL. To perform 
this approximate calculation, we assumed the 38,579 
genes in the 1.7 G pearl millet genome are equally dis-
tributed on its seven chromosomes. These values showed 
that smoothing statistics increased the accuracy of QTL 
detection, particularly Euclidean distance, when the 
recombination rate is low (Additional file  2: Table  S2). 
Similar results were obtained when real data was used to 
simulate sequencing noise. In this case, the average dis-
tance to the original QTL position ranged from 1,993 kb 
(ΔSNP and EDm statistics) to 3,510  kb (LOD statistic) 
when SNP based statistics were used in the plant spe-
cies with low recombination rate (pearl millet, λ = 0.90). 
Smoothed statistics reduced this average distance to 
values ranging from 913 kb (ED1004) to 1,047 kb (AFD-
exp) (Additional file  2: Table  S4). By contrast, the QTL 
positions detected in the foxtail millet model study, 
which have a higher recombination rate (λ = 2.15), were 
more precisely located, independently of the statistic 
used (Additional file  2: Table  S1). The average distance 
ranged between 629 kb (G statistics) and 777 kb (ΔSNP 
and EDm) with SNP based statistics; between 402  kb 
(ED1004) and 822  kb (AFDexp) with smoothed statis-
tics (Additional file  2: Table  S2). These values ranged 
between 901 kb (ΔSNP and EDm) and 1,805 kb (G) with 
SNP based statistics using real data to simulate sequenc-
ing noise, between 428 kb (ED1004) and 653 kb (Gprime) 
when using smoothed statistics (Additional file  2: 
Table  S4). Interestingly, the SNP based statistics G and 
LOD varied more in simulations based on real data (i.e., 
higher sequencing noise). In this case, the smoothed sta-
tistics, Gprime and SmLOD, greatly improved the accu-
racy of QTL detection in all the recombination models 
(Additional file 2: Fig. S1).

Remarkable differences were also found within each 
group of statistics. The statistical tests at SNP level 
(∆SNP, G, EDm and LOD) gave a less accurate estima-
tion of the QTL position than the smoothed version with 
the same statistic (t-∆SNP and AFDexp, Gprime, ED1004 
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and SmLOD). The biggest differences were found for the 
Euclidean distance-based statistics in all recombination 
models. The smoothed version of the statistics, ED1004, 
remarkably improved the QTL detection in the three 
recombination models with the distance to the causa-
tive locus reduced by half compared with SNP based 
statistics, EDm (from 1,729  kb to 864  kb for λ = 0.90; 
from 1,233 kb to 608 kb when λ = 1.30 and from 777 to 
403  kb when λ = 2.15). The smoothed version of ΔSNP 
(t-ΔSNP) also improved the accuracy of the QTL detec-
tion by reducing the average distance to the causative 
SNP by 44% (λ = 0.90), 35% (λ = 1.30) and 19% (λ = 2.15). 
Finally, smoothed G statistics improved QTL detection 
and yielded distances 40% and 30% closer to the causa-
tive locus when λ = 0.90 and λ = 1.30 respectively and 
7% closer when λ = 2.15 (Additional file 2: Table S2). The 
increased efficiency of smoothed statistics coincided 
with a reduced confidence interval width for QTL detec-
tion, which was up to 25% smaller with the Gprime and 
SmLOD statistics compared to G and LOD, respectively. 
The confidence intervals of the statistics were found 
to have the same range of variation across the different 

recombination models using 10,000 simulations (Addi-
tional file 3). When we compared QTLs with low effect 
(roughly 6% compared to 20%), again we found that 
ED1004 distinguished a pattern with no QTL and with a 
QTL effect. (Fig. 4). This pattern was also rather similar 
whether we considered noise based on binomial law or 
based on real rice sequencing data. In conclusion, even in 
the case of a low QTL effect, ED1004 performed remark-
ably better than the other statistics.

Discussion
NGS‑based BSA statistical methods for large complex 
datasets
Combining NGS technologies with Bulk Segregant Anal-
ysis (BSA) increases the power and efficiency of linkage 
mapping remarkably, thus providing a great opportunity 
to accelerate gene identification and QTL mapping in a 
cost-efficient way. Since BSA was first developed in the 
early 1990s [34, 35], the marker densities obtained in 
high-throughput genotyping technologies have steadily 
increased, accompanied by significant increases in popu-
lation size and phenotyping throughput. Altogether, the 

Fig. 3  Comparative analysis of the inferred position of simulated QTLs. To assess the accuracy of QTL detection using nine statistics based on 
calculation of ∆SNP, G, ED and LOD at the marker level in three case studies of the recombination rate (λ), we plotted the distance to the simulated 
QTL in kb. Our calculations were based on differences in allele frequency (∆SNP), G-statistics (G), Euclidian distance (ED) and log likelihood (LOD). 
Methods use either data at the SNP level (∆SNP, G, EDm, LOD) or a smooth value across several SNPs (t-∆SNP, AFDexp, Gprime, ED1004, SmLOD). The 
boxplots represent the range of detection of QTLs in one thousand simulations using each method. Distance corresponds to the absolute genetic 
distance between the simulated QTL position and the QTL position retrieved with each method. Binomial distribution was taken into consideration 
in the simulation of sequencing noise



Page 6 of 12de la Fuente Cantó and Vigouroux ﻿BMC Genomics          (2022) 23:490 

resolution of QTL mapping in NGS-based BSA stud-
ies has increased remarkably and enhanced the power 
of QTL detection compared with conventional linkage 
mapping approaches [3, 14–16, 36, 37].

Statistical approaches for NGS-based BSA studies have 
also been adapted to be able to deal with the complex-
ity of large marker datasets and the inherent sequenc-
ing noise that may mask true genetic diversity, thereby 
distorting the results of genetic studies [38]. Smoothed 
statistics in particular have proved to be effective in 
improving the accuracy of QTL detection whilst tak-
ing linkage disequilibrium between SNP markers into 
account [27, 31]. However, one major limitation of 
smoothed statistics tools is their dependence on param-
eters, for example, on window width, whose value is not 
easy to determine [27]. A great number of approaches 

and tools are available, and it is not always clear which is 
the most suitable for a given study.

Here, we performed a computational study to compare 
the performance of nine statistics for NGS-based BSA 
studies used for the genetic dissection of quantitative 
traits. Four of the statistics we tested measure the dif-
ference in allele segregation between the bulks at single 
marker level (delta-SNP, G, EDm and LOD). The other 
five methods tested used a smoothing analysis based on 
sliding windows and a weighted average for a given physi-
cal distance [22, 27, 30, 32] or fixed windows for a defined 
number of consecutive markers [30].

Our results confirm that smoothed statistics dealt best 
with the unevenness of sequencing data in the estimation 
of differences in allele frequency between bulks. The five 
smoothed statistics increased the accuracy of QTL detec-
tion compared with the corresponding marker-based 

Fig. 4  NGS-based BSA case study in the absence of a QTL effect and with a QTL effect equivalent to 5.9% (k = 0.5) and 20% (k = 1) of phenotypic 
variance. Results using binomial distribution (A) and real data from rice (B) to simulate sequencing noise. In each graph, the grey dots correspond to 
the statistics value at marker level (i.e., EDm); the black line shows the smoothed value of the statistic (i.e., ED1004)
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statistic. In our model study, we assumed that marker 
density was homogeneous along the chromosome. Con-
sequently, the two smoothing approaches predicted a 
similar QTL position. However, in real datasets, fixed 
window width might be more sensitive to skewing in SNP 
density along the chromosome, particularly in regions 
with low marker density. In this case, nonparametric fit-
ting methods for a given genetic distance may be more 
appropriate to smooth datasets with big differences in 
marker density along the genome [28].

Optimisation of NGS‑based BSA analysis using 
computational methods
The structure and size of the population are major factors 
to consider in the optimisation of statistical approaches 
for NGS-based BSA studies [39]. Here, we used a stand-
ard approach and simulated a population of 500 seg-
regant diploid F2 lines (50 lines per bulk) to test the 
accuracy of different statistics and to emphasise differ-
ences when applied to a relatively small population for 
QTL fine-mapping [40]. NGS-based BSA studies are fre-
quently performed using early generations from biparen-
tal crosses (F2s, F3s) for reasons of cost efficiency [17]. 
These studies generally combine a BSA analysis with 
other QTL linkage mapping approaches [15, 25, 30, 41] 
or with a more extensive GWAS analysis [42, 43]. Using 
RILs from the F6 or F7 generation improves the power of 
QTL detection of NGS-based BSA [22], but carrying out 
the additional crosses is labour intensive and may only 
offset the cost of NGS-based BSA when applied to inbred 
species with large complex genomes like wheat [23, 44].

In addition, larger populations increase the probabil-
ity of having enough recombination to enclose QTLs in 
smaller genomic regions. NGS-based BSA studies in very 
large populations (~ 100,000 individuals) of yeast [20] and 
Arabidopsis [21] showed the marked impact of increasing 
population size on enhancing the power of detection of 
small and large effect QTLs as well as in resolving linked 
QTLs. However, these population sizes are not easy to 
manage in experiments on crop species. It has also been 
proposed that the analytical power could be improved by 
increasing the number of genotypes in the bulks, but this 
would also increase the probable presence of intermedi-
ate phenotypes in the bulks, which in turn would nega-
tively affect the power of QTL detection [22]. In this case, 
a possible alternative could be using multiple bulked 
samples comprising 20 to 50 individuals [22] from the 
phenotype tails when using large populations of around 
10,000 individuals [45].

The identification of a suitable strategy to perform 
NGS-based BSA requires optimisation of param-
eters such as bulk size, allele sequencing depth, and the 
type of statistics. Simulation studies have proved to be 

extremely powerful tools to perform such optimisation 
before beginning experimental work. The simulation 
study by Magwene et al. [27] showed that bulks consid-
ering 10–20% of individuals with extreme phenotypes 
from large populations (~ 1,000 individuals) maximises 
the power of QTL detection in NGS-based BSA studies 
as long as the coverage depth is sufficient (allele depth 
greater than the size of the bulks). Most of the NGS-
based BSA studies in crop species use this value as a ref-
erence to define the bulks [17]. In addition, increasing 
sequencing depth rather than marker density (beyond 0.2 
per cM) seems to enable greater gains in power of QTL 
detection in NGS-based BSA studies [46]. Thus, an effi-
cient strategy could consist in exploiting deep sequenc-
ing of genetic libraries representing a reduced part of the 
genome [18, 46–48] or targeting the transcriptome [28, 
44, 49, 50] of contrasted bulks. In the counterbalance 
between bulk size and coverage, favouring larger bulk 
sizes to the detriment of the depth of sequencing may 
lead to greater power of detection of QTLs [51]. How-
ever, other studies suggest that considering larger bulks 
may only be advantageous when combined with increases 
in sequencing depth [27, 36]. Here, the analysis was per-
formed with a fixed number of individuals in the popula-
tion (500), a fixed size for the bulks (50), and an average 
coverage of 100 reads to compare the different statistics. 
We cannot comment further on the trade-off between 
bulk size and depth of sequencing from the simulation 
presented here. However, in future work, the tools devel-
oped in this study could be used to run a broader range of 
simulations to test QTL detection considering these fac-
tors in combination with others such as QTL effects or 
the recombination rate of the population.

Recombination rate in the mapping population should 
be taken into account in the design of the experiment 
and in the selection of statistics for NGS‑based BSA studies
NGS-based BSA studies often use empirical data and 
preliminary simulations to optimise experiments and 
processing pipelines [18, 22, 27, 30, 42, 46, 52, 53]. Stud-
ies often test parameters such as smoothing window 
size, population size, sequencing depth, QTL effect size, 
or heritability. The study by Guo et al. [46] also used the 
recombination rate to select methods based on G sta-
tistics and to resolve genetic linkage between flanking 
QTLs. As a result, the authors achieved similar power 
of QTL detection in empirical data as that achieved in 
studies that used populations about ten times larger [54]. 
Despite the direct influence of the recombination rate on 
the frequency of allele segregation, this factor is rarely 
taken into account in the selection and implementation 
of statistics for NGS-based BSA studies. In fact, it is still 
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not clear if, in practice, recombination rates can be used 
to increase statistical power.

In our simulations, we tested the power of differ-
ent statistics for QTL detection in three case studies in 
which the recombination rate varied. We used an aver-
age recombination rate across the chromosome, whereas 
variable recombination rates along the chromosome 
likely combine the average results of our three simu-
lated scenarios (low, average, high). The results suggest 
remarkable differences in the power and accuracy of 
QTL detection using different statistics, especially when 
the recombination rate is low. The increased uncertainty 
in the position of a QTL is often due to larger blocks of 
linked markers with fewer crossovers in the bulks estab-
lished in studies using plant species with low recombina-
tion rate such as pearl millet. In comparison, species with 
a higher recombination rate showed that QTL detection 
could be more accurate than expected [11]. Interestingly, 
the nine statistics used in our NGS-based BSA simula-
tion study varied significantly in their ability to detect 
QTLs, especially in plant model species with low recom-
bination rate. Overall, the statistics based on Euclidean 
distance proved to be more efficient in detecting QTLs 
across all three case studies and proved to be the most 
suitable when the recombination rate is low. In fact, a 
recent study in rice confirmed this observation using 
empirical data. A grain size QTL located in an 11.31 Mbp 
region using the QTL-seq method based on ΔSNP [22] 
was delimited to a 3.26 Mbp region using the Euclidean 
distance based method [55].

The popular QTL-seq method based on ΔSNP [22] and 
the G statistics method [27] have been the most widely 
used methods in the last decade [14, 25, 29, 56]. An alter-
native version of the ΔSNP statistic considers its absolute 
value [57] or its fourth power [29] when sequencing data 
from a reference parent line is lacking. However, in our 
simulation study and in the same settings, these methods 
were less precise in detecting the location of QTLs with 
intermediate values between Euclidean distance-based 
statistics and the Block Regression Mapping method 
(BRM) [32]. A recent study suggests that the efficiency 
of ΔSNP and G based statistics in detecting QTLs relies 
to a great extent on having relatively high sequenc-
ing coverage [58]. The authors propose an alternative 
approach to improve these methods and to increase the 
sensitivity of QTL detection in the case of lower cover-
age. Similarly, the BRM method based on ΔSNP as a sin-
gle marker based statistic [32] is designed to cope better 
with low coverage datasets than the QTL-seq method 
[22] and G statistics [27]. Yet, in our simulation study, 
the BRM method produced the least precise QTL loca-
tion. Smoothing based on blocks of markers equivalent to 
the same sized window across recombinant models was 

less effective in the highly recombinant model. In this 
case, considering recombination rates to define smaller 
blocks as genetic units would produce better results. 
Finally, in our simulations, the QTG-Seq method based 
on LOD statistics [30] outperformed both the QTL-seq 
[22] and G statistics [27], and produced results close to 
those obtained with Euclidean distance statistics. Recent 
studies combining QTG-Seq and Euclidean distance sta-
tistics were found to be efficient in the QTL fine-mapping 
of plant height in maize [30] and mildew resistance in 
melon [59]. Hence, our result suggests that recombina-
tion rates should be taken into account when select-
ing the most appropriate statistic for QTL mapping and 
when optimising the parameters used for QTL mapping 
in NGS-based BSA studies.

A simulation approach to calculate confidence intervals
Confidence intervals for the estimation of QTL genomic 
location are important parameters to define the extent of 
a significant region to be searched for potential candidate 
genes underlying trait differences. However, only a few 
studies have attempted to study the accuracy of confi-
dence intervals provided by the different statistics using 
simulations [22, 32, 36] or using the root mean square 
error (RMSE) to define a standard deviation for each 
QTL peak [27, 46].

In our study, we used simulations to calculate an over-
all confidence interval for the detection of the position 
of QTL for each of the nine statistics tested. We com-
puted an overall estimation of confidence intervals that 
is equivalent to the mean value of the 95% statistic quan-
tile in the absence of QTL effect in 10,000 simulations. 
The QTL-seq based on ΔSNP statistic 13 uses a similar 
approach but introduces read depth in the simulation to 
compute a value of confidence interval at each SNP posi-
tion [31]. We fixed the values for average depth, QTL 
effect, population size and bulks size and found that the 
confidence interval values did not differ much across the 
three recombination case studies. However, our simula-
tion approach allowed us to tailor the confidence interval 
to each specific study by taking into consideration factors 
of the analysis that were beyond the scope of this study.

Conclusion
Nine NGS-based BSA statistics were tested for the 
detection of QTLs using simulations in three case stud-
ies with variable recombination rates. All the smoothed 
statistics proved to be more accurate in locating QTLs 
than marker-based statistics. The recombination rate 
was found to have an impact on detecting the position 
of QTLs as less accurate results were obtained with low 
recombinants. Euclidean distance-based statistics were 
found to enhance the accuracy of QTL detection in all 
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recombinant models, thereby enabling major gains in 
the low recombination case study. The present study pro-
poses a guideline for testing the parameters best suited 
for the selection of an NGS-based BSA statistical method 
for a F2 population and for the definition of confidence 
intervals.

Material and methods
Population design and case studies
We used a standard approach for the simulation of a 
bulk segregant analysis for QTL mapping based on the 
segregation of a trait in a F2 population derived from a 
bi-parental cross between diploid homozygous lines. For 
the sake of simplicity, we focused the study in one model 
chromosome with 10,000 evenly distributed loci and 100 
Mbp length, i.e., one marker locus every 10 kb. To begin 
with, we modelled the genotype considering a population 
size of 500 diploid individuals (i.e., 1,000 chromosomes). 
The occurrence of crossovers was simulated at random 
and independent from each other according to the Hal-
dane map function [60]. Using this assumption, the 
recombination events were defined following a Poisson 
distribution f (n, λ) in the total number of chromosomes 
at a frequency equivalent to the map distance between 
adjacent loci, λ [61]. 0 s and 1 s were used to code the ref-
erence and alternate parental alleles, respectively.

Next, a normally distributed phenotype N (0, 1) was 
modelled for the group of 500 segregants. We linked the 
phenotype and the genotype of the lines by simulating a 
single QTL with a positive additive effect on the pheno-
type equivalent to one or half standard deviation (k = 1 
or 0.5). The formula [62] relating the fraction of standard 
deviation k to the explained variance π is

where p is the allele frequency and n is the number of 
individuals; in our case, p = 0.5 and n = 500 individuals. 
So, for k = 1, the percentage of the phenotypic variance 
explained is 20% and for k = 0.5, the percentage of the 
variance explained is 5.9%.

π =
p(1-p)k2

p(1− p)k2 + 1− 1/n

Subsequently, bulks of lines exhibiting high (H) and low 
(L) phenotype were established by grouping the genotype 
from the 10% individuals (i.e., 50 individuals) on each 
tail of the phenotype distribution. Counts of parental 
alleles at each marker position were determined for each 
bulk and some level of sequencing noise was introduced 
using a binomial function B (n, P) with a number of trials 
equal to the maximum sequencing depth of 100 (n) and 
a success probability equivalent to the allele frequency 
calculated without noise (P). We used a second method 
to add sequencing noise based on a real dataset of high 
coverage sequencing data from 250 African rice genomes 
[33] (Additional file 5). The noise was added by randomly 
sampling sequencing depth information at 10,000 SNP 
random positions. We built the bulk for 100 chromo-
somes (the same as in our simulated bulks) using the real 
depth and each individual contributed randomly a 0 or 1 
allele (and their number of reads) as a function of allele 
frequency.

Three model species differing in recombination rate 
were used as case studies to test the genetic conformation 
of diverse mapping populations in the detection of QTLs 
using BSA. Pearl millet (Pennisetum glaucum (L.) R. Br.) 
was used as an example of low recombinant species with 
an average chromosome length of 90  cM (i.e. λ = 0.90) 
[63] in contrast to the high recombination rate of foxtail 
millet (Setaria italica (L.) P. Beauv.) whose average chro-
mosome is 215 cM (i.e. λ = 2.15) [64]. Rice (Oryza sativa 
L.) was included as an intermediate case study with 
130 cM average chromosome length (i.e. λ = 1.30) [65].

Statistical methods for BSA‑QTL mapping
Nine statistics were used in the identification of simu-
lated QTLs through BSA: four statistics that compute 
differences in allele frequency at the marker level and 
five statistics that add a smoothing method to esti-
mate this difference in groups of consecutive markers 
(Table 1). The analysis starts by calculating the frequen-
cies of alternate and reference alleles of the cross using 
the allele depth or counts of parental alleles for each bulk 
at each marker position. Then, four metrics are used to 
define the differences in allele frequencies between the 

Table 1  Statistics from the literature adapted to our simulation study

Statistic at SNP 
level

Smoothed 
statisctic

Description Reference

ΔSNP t-∆SNP Allele frequency difference (ΔSNP) smoothed by tri-cube kernel function for sliding window W [22, 31]

AFDexp Allele frequency difference smoothed (ΔSNP) by Loess regression function in blocks of markers of 
size W condidered as genetic unit

[32]

G Gprime G statistic value smoothed by tri-cube kernel function for sliding window W [27, 32]

EDm ED100 Fourth power of cumulative Euclidean distance at SNP level (EDm) of 100 consecutive SNPs [28–30]

LOD SmLOD Maximum-likehood statistic smoothed for tri-cube kernel function for sliding window W [30]
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contrasting bulks at the SNP level. For instance, QTL-
seq [22] and Block regression mapping (BRM) [32] are 
based on the subtraction of the alternate allele frequency 
value of the low bulk from the high bulk (∆SNP). On the 
other hand, the method suggested by Magwene et  al. 
[27] relies on the calculation of the standard G statistic 
(G) and the QTG-Seq method [30] computes a log like-
lihood statistic LOD between allele frequencies. Finally, 
the approach suggested by Hill et al. [28] uses the Euclid-
ean distance between two vectors defined by the frequen-
cies of the alternate and the reference alleles in the high 
and low bulks (EDm). Based on these four statistics at 
the SNP level, other statistics are derived by calculating 
a smoothed version of the statistic in a sliding window 
of consecutive SNPs across the genome. The tricube-
deltaSNP (t-∆SNP) and Gprime are the result of comput-
ing a weighted average of the test statistic for the SNPs 
(∆SNP and G) within a bandwidth window equivalent 
to 3 Mbp. In this case, the smoothed statistics is com-
puted using a Nadaraya-Watson or tricube smoothing 
kernel [66, 67] using the QTLseqr R package [31]. The 
QTG-Seq approach uses the same calculation to estimate 
the Smooth-LOD based on the LOD statistic [30]. Con-
versely, the BRM method [32] uses a Loess function to 
deal with sequencing noise in blocks of markers equiva-
lent to 3 Mbp in size. For the Euclidean distance-based 
statistics, we used the fourth power of the cumulative 
Euclidean distance value for fixed sliding windows of one 
hundred consecutive SNP markers [29, 30, 59]. Selec-
tion of window size is largely dependent on the study 
population. The QTL signal is attenuated to counteract 
sequencing noise. This step could either leave some QTL 
peaks out or merge proximate QTLs peaks when the 
windows are wide or lead to a bunch of false QTL peaks 
when the windows are too narrow. In addition, too nar-
row windows may entail limitations in the computing of 
smoothed statistic [31]. Our selection of window band-
width set to 3 Mbp was based on computing limitations 
encountered in real datasets.

QTL detection: QTL mapping across methods 
and definition of confidence intervals
QTL mapping was analysed using the three case studies 
for recombination. First, the code settings were tested 
by simulating a single QTL in the three model chromo-
somes. The QTL was placed in the middle of the model 
chromosome (i.e., locus 5000) and the statistical meth-
ods were used to visualise the position of the QTL and 
the effect of smoothed statistics (Additional files 6 and 
7). Next, we assessed the efficiency of QTL detection by 
running one thousand independent simulations on each 
model chromosome (Additional files 8 and 9). In this 
case, a random QTL position was defined in each loop 

of the simulation. The absolute genetic distance between 
the initial QTL position and the position retrieved by 
each statistical method was used to compare the accu-
racy of QTL detection. The QTL position considered cor-
responds to the locus for which the maximum difference 
in the statistic is reached between the bulks, or the QTL 
peak.

In addition, statistical values from ten thousand inde-
pendent simulations with no QTL effect were used to 
define the confidence intervals for QTL detection (Addi-
tional file 10). The 95% quantiles for these 10,000 simu-
lations were selected as significant threshold values to 
estimate the confidence interval to define QTL regions 
of significance with each NGS-based BSA statistic. The 
steps followed in the simulations are summarised in Sup-
plementary Table S4.

Abbreviations
BSA: Bulk Segregant Analysis; NGS: Next Generation Sequencing; SNP: Single 
Nucleotide Polymorphism; QTL: Quantitative Trait Loci; RILs: Recombinant 
inbred lines; BRM: Block Regression Mapping; ΔSNP: Delta-SNP index; t-ΔSNP: 
Tricube delta-SNP index; EDm: Euclidean Distance at marker level; ED100

4: 
Euclidean Distance smoothed for groups of 100 consecutive markers; AFDexp: 
Allele Frequency Difference smoothed according to Huang et al. 2019; LOD: 
LOD score at marker level according to Zhang et al. 2019; SmLOD: Smoothed 
LOD according to Zhang et al. 2019.
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Additional file 1. Supplementary figures showing the results of simula-
tions of a NGS-based BSA case study using different statistics for the 
detection of a single QTL in a model chromosome at three recombina-
tion rates (λ=0.90, λ=1.30 and λ=2.15). Figure S1. Result of simulations 
using binomial distribution in the simulation of sequencing noise and a 
QTL effect equivalent to 20% of the phenotypic variance (k=1). Figure 
S2. Result of simulations using real data from rice to add sequencing 
noise and a QTL effect equivalent to 20% of the phenotypic variance 
(k=1). Figure S3. Result of simulations using binomial distribution in the 
simulation of sequencing noise and a QTL effect equivalent to 5.9% of the 
phenotypic variance (k=0.5). Figure S4. Result of simulations using real 
data from rice to add sequencing noise and a QTL effect equivalent to 
5.9% of the phenotypic variance (k=0.5)

Additional file 2. Supplementary figure and tables showing the results 
of comparative analysis of BSA statistical methods and their accuracy in 
locating QTLs in 1,000 simulations. Figure S1. Comparative analysis of 
the inferred position of simulated QTLs using rice real data to simulate 
sequencing noise. Table S1. Pairwise comparison of different statistical 
approaches inferring the position of a simulated QTL. The positions used 
correspond to 1,000 simulations including binomial distribution to add 
sequencing noise (Figure 3). Table S2. Summary statistics of the absolute 
genetic distance (kb) between the simulated QTL and the QTL position 
retrieved for 1,000 simulations run with each statistic in each model chro-
mosome (Figure 3). Table S3. Pairwise comparison of different statistical 
approaches inferring the position of a simulated QTL. The positions used 
correspond to 1,000 simulations using rice real data to add sequencing 
noise (Additional file 2- Figure S1). Table S4. Summary statistics of the 
absolute genetic distance (kb) between the simulated QTL and the QTL 
position retrieved for 1,000 simulations with each statistic in each model 
chromosome (Additional file 2- Figure S1).
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Additional file 3. Table showing the confidence intervals of each of the 
statistics. The calculation is based on 10,000 simulations for each model 
chromosome.

Additional file 4. General summary of the main steps of the simulations.

Additional file 5. “OgOb-all-merged.DPech.recode.vcf”. vcf file containing 
high coverage sequencing data from 250 African rice genomes 32.

Additional file 6. “Simulation-Code1a.R”. R code used to compare the 
mapping of a single QTL using different BSA statistics in three recombina-
tion models. The QTL was placed in the middle of the chromosome and 
sequencing noise was simulated according to a binomial distribution.

Additional file 7. “Simulation-Code1b.R”. R code used to compare the 
mapping of a single QTL using different BSA statistics in three recombina-
tion models. The QTL was placed in the middle of the chromosome and 
real data from rice were used in the simulation of sequencing noise.

Additional file 8. “Simulation-Code2a.R”. R code used to evaluate the 
accuracy of QTL detection using different BSA statistics. In this case we 
ran 1,000 simulations. Each loop defines a random QTL position. The 
absolute difference between the initial position of the QTL and the posi-
tion retrieved with each method was used to compare the accuracy of the 
different methods. This code uses binomial distribution in the simulation 
of sequencing noise.

Additional file 9. “Simulation-Code2b.R”. R code used to evaluate the 
accuracy of QTL detection using different BSA statistics. In this case we 
ran 1,000 simulations. Each loop defines a random QTL position. The 
absolute difference between the initial position of the QTL and the posi-
tion retrieved with each method was used to compare the accuracy of 
the different methods. This code uses rice real data in the simulation of 
sequencing noise.

Additional file 10. “Simulation-Code3.R”. R code used to define the 
confidence intervals for each statistic and each recombination model. We 
ran 10,000 simulations with no QTL effect. The 95% quantiles were used 
as significant threshold values to define the confidence intervals of each 
statistic.
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