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Abstract

The alsodid ground frogs of the Eupsophus genus are divided into two groups, the roseus

(2n = 30) and vertebralis (2n = 28), which are distributed throughout the temperate Nothofa-

gus forests of South America. Currently, the roseus group is composed by four species,

while the vertebralis group consists of two. Phylogenetic relationships and species delimita-

tion within each group are controversial. In fact, previous analyses considered that the

roseus group was composed of between four to nine species. In this work, we evaluated

phylogenetic relationships, diversification times, and species delimitation within the roseus

group using a multi-locus dataset. For this purpose, mitochondrial (D-loop, Cyt b, and COI)

and nuclear (POMC and CRYBA1) partial sequences from 164 individuals were amplified,

representing all species. Maximum Likelihood (ML) and Bayesian approaches were used to

reconstruct phylogenetic relationships. Species tree was estimated using BEAST and sin-

gular value decomposition scores for species quartets (SVDquartets). Species limits were

evaluated with six coalescent approaches. Diversification times were estimated using mito-

chondrial and nuclear rates with LogNormal relaxed clock in BEAST. Nine well-supported

monophyletic lineages were recovered in Bayesian, ML, and SVDquartets, including eight

named species and a lineage composed by specimens from the Villarrica population (Boot-

strap:>70, PP:> 0.99). Single-locus species delimitation analyses overestimated the spe-

cies number in E. migueli, E. calcaratus, and E. roseus lineages, while multi-locus analyses

recovered as species the nine lineages observed in phylogenetic analyses (Ctax = 0.69). It

is hypothesized that Eupsophus diversification occurred during Mid-Pleistocene (0.42–0.14

Mya), with most species having originated after the Last Southern Patagonian Glaciation

(0.18 Mya). Our results revitalize the hypothesis that the E. roseus group is composed of

eight species and support the Villarrica lineage as a new putative species.
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Introduction

From an operational point of view, the notion of biodiversity encompasses several different

levels of biological organization, from the genetic make up of the species to ecosystems and

landscapes, in which the species is the most significant unit. Species are used for comparisons

in almost all biological fields including ecology, evolution, and conservation [1–3], and there is

no doubt the central unit for systematics is also the species [4]. Furthermore, biodiversity hot-

spots are selected on the basis of the species they possess, conservation schemes are assessed

on how many species are preserved, and conservation legislation and politics are focused on

species preservation [5,6].

Despite the importance of the species concepts debate [7,8], and since the species as taxo-

nomic hierarchy is also considered a fundamental topic in biology [9], it is broadly accepted

that species are best conceptualized as dynamic entities connected by "grey zones" where their

delimitation will remain inherently ambiguous [4,10]. Under this perspective, species delimita-

tion, i.e. the act of identifying biological diversity at species-level [11], is particularly challeng-

ing in actively radiating groups composed of recently diverged lineages. The difficulty lies in

the fact that recently separated species are less likely to possess all or even many of the diagnos-

able characters such as phenetic distinctiveness, intrinsic reproductive incompatibility, eco-

logical uniqueness, or reciprocal monophyly, that constitute operational criteria for their

delimitation [4,12]. This becomes more complex when hybridization and introgression among

related species are considered common and major contributors to speciation and diversifica-

tion [13]. Genealogical discordance obtained with different markers is a result of these pro-

cesses, but also of incomplete lineage sorting, selection, or demographic disparities [14]. Thus,

hypotheses of the boundaries of recently diverged species may remain unclear due to incom-

plete lineage sorting, introgression, complex of cryptic species that cannot be distinguished by

morphology alone, sampling deficiencies, or different taxonomic practices [2,4].

Ever since genetic data became easier and less expensive to gather, the field of species delim-

itation has experienced an explosion in the number and variety of methodological approaches

[3,11,15–17]. These new approaches proceed by evaluating models of lineage composition

under a phylogenetic framework that implements a coalescent model to delimit the species

[11,18]. In this regard, these approaches estimate the phylogeny while allowing for the action

of population-level processes, such as genetic drift in combination with migration, expansion,

population divergence, or combinations of these processes [19–21]. Thus, the species delimita-

tion models can involve population size parameters (i.e. θs for the extant species and common

ancestors), parameters for the divergence times (τ), and coalescent models specifying the dis-

tribution of gene trees at different loci [22–26].

Some methodological approaches to species delimitation use single-locus sequence infor-

mation itself as the primary information source for establishing group membership and defin-

ing species boundaries [27–29]. Other methods are designed to analyze multi-locus data sets

and require a priori assignment of individuals to species categories [21,30,31]. The perfor-

mance of species delimitation methods are quantified by the number of different species recog-

nized in each case, and the congruence with data at hand such as life history, geographical

distribution, morphology, and behavior [15,32]. Although there is difficulty to integrate

genetic and non-genetic data to increase the efficacy of species detection [33], there are avail-

able methods to measure the congruence and resolving power among species delimitation

approaches [34].

The history of the Patagonian landscape offers exceptional opportunities to investigate

diversification and promote conservation strategies by studying the past, present, and future of

evolutionary processes using amphibians as a model of study. In this region, the amphibian
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fauna of Chile is not particularly diverse (60 species; [35]) but includes 10 endemic genera,

some of them having one, a few species (e. g. Calyptocephalella, Chaltenobatrachus,Hylorina,
Insuetophrynus, Rhinoderma), or as many as 18 (Alsodes). Among these amphibians are the

frogs of the genus Eupsophus Fitzinger 1843. This taxon currently includes six species dis-

tributed almost throughout the temperate Nothofagus forest of South America [35]. Never-

theless, Eupsophus have puzzled frog systematics for decades [36–39], and a clear consensus

has not yet been reached regarding the number of species that make up this genus [40–42].

In fact, the genus Eupsophus was classically divided into two groups with following species

[36,43]: 1) roseus group, composed of E. altor, E. roseus, E. calcaratus, E. contulmoensis,
E. insularis, E. septentrionalis, E.migueli and E. nahuelbutensis, all of them with 30 chro-

mosomes, with individuals of 34–42 mm body size (snout-vent distance) [44]; and 2) the

vertebralis group, composed of E. vertebralis and E. emiliopugini, both species with 28 chro-

mosomes and individuals with a body size of 50–59 mm (snout-vent distance) [44]. Never-

theless, recently molecular analyses within the roseus group synonymized E. altor with E.

migueli as well as E. contulmoensis, E. septentrionalis, and E. nahuelbutensis with E. roseus
[37]. Therefore, the roseus group is currently composed by four species: E.migueli, E. insu-
laris, E. roseus and E. calcaratus [35].

In this study, we present phylogenetic and species delimitation of the roseus group, using

164 new samples from all species covering most of their distribution range. We used three

mitochondrial and two nuclear markers, three of them are different to those used by Blotto

et al. [36] and Correa et al. [37] [Control Region (D-loop), Propiomelanocortin (POMC), and β
Crystallin A1 (CRYBA1)]. These molecular datasets were used to carry out phylogenetic recon-

structions and an extensive number of single- and multi-locus species delimitation methods.

Species trees and diversification times were estimated to support phylogenetic and species

boundaries inferences. New samples, different markers, and multiple bioinformatic techniques

allowed us to test, in an independent way, phylogenetic and species delimitation hypothesis of

the roseus group.

Materials and methods

Ethics statement

This study was carried out under supervision and approval of the Bioethics and Biosecurity

Committee of the Universidad Austral de Chile (UACh, Resolutions No. 236/2015 and 61/15),

and the Servicio Agrı́cola y Ganadero (SAG, Resolution No. 9244/2015). After capture, animals

were kept in the dark in fabric bags for a maximum of two hours. Euthanasia was carried out

in the field by an overdose of benzocaine 50 mg/mL in a humid chamber. The Corporación

Nacional Forestal, Ministerio de Agricultura, Gobierno de Chile allows to collect buccal swabs

samples of Eupsophus species from wild protected areas (CONAF, Permit No. 11/2016.-CPP/

MDM/jcr/ 29.02.2016).

Sample collection

A total of 164 samples of Eupsophus from 45 localities in Chile were analysed (Fig 1, S1 Table).

Each sampling site was geo-referenced with a GPS Garmin GPSmap 76CSx. Two E. emiliopu-
gini individuals, three E. vertebralis, and one Alsodes norae were used as outgroups (S1 Table,

gray cells). Although mostly samples were obtained from buccal swabs according to Broquet

et al. [45], some animals were euthanized. Liver tissue was extracted, conserved in 100% etha-

nol, and stored at -20˚C. The specimens were deposited in herpetological collection of the

Institute of Marine and Limnological Sciences, Universidad Austral de Chile (ICMLH). The

voucher and isolate numbers were included in the sequences information.
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DNA extraction, amplification, and sequence alignment

Whole genomic DNA was extracted using Chelex following Walsh et al. [46]. We amplified via

the polymerase chain reaction (PCR) three mitochondrial regions: a segment of D-loop [47],

Cytochrome b (Cyt b; [48, 49]), and Cytochrome oxidase subunit I (COI; [50]), and two

nuclear regions: POMC [51], and CRYBA1 [52]. We mixed reaction cocktails for PCR using

100 ng DNA, 10 μmol of each oligonucleotide primer, 2X of Platinum TaqDNA Polymerase

master mix (Invitrogen, Cat. No. 10966), and nuclease-free water to final volume of 25 μL. We

verified successful PCR qualitatively by viewing bands of appropriate size following electro-

phoresis on 1.0% agarose gels. PCR products were sequenced in Macrogen Inc. (Seoul, Korea).

Electropherograms were visualized and aligned with Geneious v.9.1.3 (GeneMatters Corp.)

using the iterative method of global pairwise alignment (Muscle and ClustalW) implemented

in the same software [53,54]. An inspection of aligned sequences by eye as well as manual cor-

rections was also carried out. We expanded our dataset with sequences of E. calcaratus
reported in Nuñez et al. [55], and mitochondrial sequences reported by Suárez-Villota et al.

[49]. All newly generated sequences from Eupsophus and Alsodes were submitted to GenBank

(MK180849-MK181499).

Phylogenetic analyses

Phylogenetic trees were constructed with concatenated dataset using Maximum Likelihood

(ML) and Bayesian inference (BI). Evolutionary models and partitioning strategies were evalu-

ated with Partitionfinder v2.1.1 [56] and the best partition was identified using the Bayesian

information criterion [57]. ML trees were inferred using GARLI v2.0 [58] with branch support

estimated by nonparametric bootstrap (1000 replicates) [59]. Bayesian analyses were per-

formed using MrBayes v3.2 [60]. Each Markov chain Monte Carlo (MCMC) was started from

a random tree and run for 5.0x107 generations with every 1000th generation sampled from the

chain. MCMC stationarity was checked as suggested in Nylander et al. [61]. All sample points

prior to reaching the plateau phase were discarded as “burn-in”, and the remaining trees were

combined to find the a posteriori probability of phylogeny. The analyses were repeated four

times to confirm that they all converged on the same results [62].

Species trees were reconstructed using the Singular Value Decomposition Scores for Species

Quartets (SVDquartets) [63] and species tree reconstruction in BEAST v2.4.8 (�BEAST)

[30,64].

The SVDquartets method infers relationships among quartets of taxa under a coalescent

model and then estimates the species tree using a quartet assembly method [63,65]. We evalu-

ated all the possible quartets from the concatenated data set using SVDquartets module imple-

mented in PAUP� v4.0a [66]. Quartet’s Fiduccia and Mattheyses algorithm [67] and

multispecies coalescent options were used to infer species tree from the quartets. We used non-

parametric bootstrap with 100 replicates to assess the variability in the estimated tree [59].

For �BEAST, multi-species coalescent module implemented in BEAST [30,64] and

concatenated dataset were used. We set the partition scheme and models found by Partition-

finder. Mutation rates, clock models, and tree priors were the same as detailed in divergence

time estimates section (see below). MCMC were run three times for 5.0x107 generations each,

logging tree parameters every 50,000 generations. Posterior distribution was summarized with

Fig 1. Map depicting 45 localities of Eupsophus samples from Chile (listed in S1 Table). E. roseus: localities 1–16 (red), E insularis:
locality 17 (purple), E.migueli: localities 18–20 (blue), E. calcaratus: localities 21–43 (yellow). Localities of outgroup were: E. emiliopugini:
44 and 45 (white), E. vertebralis: 12, 19, 22, Alsodes norae: 19.

https://doi.org/10.1371/journal.pone.0204968.g001
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Densitree v2.01 [64]. Chain mixing, convergence, and a posteriori probability were estimated

in the same way as the Bayesian analyses described above.

Species delimitation analyses

Two single-locus analyses, Bayesian General Mixed Yule Coalescent model (bGMYC; [27,68])

and multi-rate Poisson Tree Processes (mPTP; [69]) were performed on mitochondrial data-

set. The GMYC model distinguishes between intraspecific (coalescent process) and interspe-

cific (Yule process) branching events on a phylogenetic tree [29]. We used the last 100 trees

sampled from the posterior distribution of a Bayesian analysis for mitochondrial sequences

(detailed in next section). Bayesian GMYC analyses were assessed using the R package

bGMYC, where each tree was ran for 50,000 generations, discarding the first 40,000 genera-

tions as burn-in and using thinning intervals of 100 generations (as recommended by Reid

and Carstens [70]). The threshold parameter priors (t1 and t2) were set at 2 and 170, and the

starting parameter value was set at 25.

mPTP is a phylogeny-aware approach that delimits species assuming a constant speciation

rate with different intraspecific coalescent rates [69]. For this analysis, a tree obtained with

mitochondrial dataset in MrBayes was used as input on the web server (http://mptp.h-its.org//

tree).

Four multi-locus coalescent-based methods were applied to species delimitation: Tree Esti-

mation using Maximum Likelihood, (STEM; [18,21]), Bayesian Species Delimitation (BPP;

[26,71]), Multi-locus Species Delimitation using a Trinomial Distribution Model (Tr2; [72]),

and Bayes Factor Delimitation (BFD; [73]). As required by these methods, a set of analyses

assigning individuals to a series of species categories was performed (delimitation scenarios).

STEM analysis followed Harrington and Near [31]. ML scores for each species tree were

generated with STEM v2.0 [21] and evaluated using the information-theoretic approach out-

lined by Carstens and Dewey [18].

BPP analysis was applied using Bayesian Phylogenetics and Phylogeography software

(BPP v.2.2; [26,71]). We used A10 mode, which delimits species using a user-specified guide

tree (species delimitation = 1, species tree = 0). The species tree obtained with �BEAST was

used as guide tree. Population size parameters (θs) and divergence time at the root of the

species tree (τ0) were estimated using A00 mode [71], while the other divergence time para-

meters were considered as the Dirichlet prior ([24]: equation 2). Each analysis was run four

times to confirm consistency among runs. Following a conservative approach, only the specia-

tion events supported by probabilities larger or equal to 0.99 were considered for species

delimitation.

The Tr2 analysis followed Fujisawa et al. [72]. Gene trees were obtained in GARLI and the

polytomies were resolved using internode branch lengths of 1.0x10-8 in Mesquite v2.75 [74].

For the BFD analysis, we reconstructed a species tree for each delimitation scenario using

BEAST, as it was detailed in phylogenetic analyses section (see above). After the standard

MCMC chain has finished, a marginal likelihood estimation (MLE) was performed for each

species tree, using both path sampling and stepping-stone via an additional run of ten million

generations of 100 path-steps (1,000 million generations). Subsequently, the Bayes factor

between delimitation scenarios was calculated using MLEs [73] and evaluated using the frame-

work of Kass and Raftery [75].

The taxonomic index of congruence (Ctax) between pairs of species delimitation methods

was estimated following the Miralles and Vences’ protocol [34]. In order to access most con-

gruent species delimitation approaches, the mean Ctax value for each method was also

estimated.
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Divergence time estimates

Divergence times were estimated with concatenated mitochondrial and nuclear dataset using

the Bayesian method (BEAST v2.4.8; [64]). We used Neobatrachian mutation rates of

0.291037% and 0.374114% per million years for COI and POMC, respectively [76]. The muta-

tion rates from the other markers were estimated using as prior nuclear or mitochondrial rates

for all genes as reported by Irrisarri et al. [76] (0.379173% and 0.075283%, respectively). Parti-

tionfinder provided nucleotide substitution models. LogNormal relaxed clock model and

birth-death process as tree prior were used. Bayes factor analysis [77] indicated that this setting

received decisive support compared with other models and tree priors available in BEAST.

Markov chains in BEAST were initialized from the tree obtained from species tree analyses to

calculate posterior parameter distributions, including the tree topology and divergence times.

We ran this analysis for 5x107 generations, and sampling every 1000th generation. The first

10% of samples were discarded as “burn-in”, and we estimated convergence to the stationary

distribution and acceptable mixing using Tracer v1.6 [78]. An additional BEAST analysis was

carried out only with mitochondrial dataset using the same setting to obtain the last 100 trees.

These trees were used as input in bGMYC (see section above).

Results

Phylogenetic patterns in E. roseus group

We aligned the five DNA markers for a total of 2576 sites, 858 were variable and 700 were phy-

logenetically informative. Three of these markers corresponded to mitochondrial dataset with

a total of 1799 nucleotide sites, 750 variable, and 629 phylogenetically informative (see infor-

mation for each marker in S2 Table). Evolutionary models and partitioning strategy obtained

in Partitionfinder are also indicated in supplementary data (S2 Table).

Phylogenetic analyses using concatenated mitochondrial and nuclear sequences recovered

three main well-supported clades corresponding to Clade A (including E. insularis and E.

migueli), Clade B (E. roseus), and Clade C (E. calcaratus) (Fig 2). Although ML and Bayesian

analyses recovered to B and C were sister clades, phylogenetic relationships among these clades

received low support (Fig 2). Within these clades it is possible to recognize nine highly sup-

ported monophyletic lineages (Fig 2; Bootstrap >70, PP>0.99, lineages 1–9). The phylogenetic

relationships among Eupsophus species using only mitochondrial dataset recovered the same

pattern described for the concatenated dataset (S1A Fig), while nuclear dataset analyses

showed a basal polytomy where only lineages 1 and 8 were resolved (Bootstrap >80, PP>0.99;

S1B Fig, blue arrows). Other clades exhibited only high posterior probability support in

nuclear analyses. For example the clade composed by four individuals from lineage 4, and 21

individuals from lineage 9 (PP>0.99; S1B Fig, red arrow). Nevertheless, low bootstrap support

and low variation detected for nuclear markers (S2 Table) prevent us to discuss such a mito-

nuclear discordance.

Species delimitation analyses

The most congruent result among single- and multi-locus analyses recognized nine monophy-

letic lineages as different species (Fig 3; mean Ctax = 0.69, see all Ctax values in S3 Table).

These nine lineages were the same ones recovered in the phylogenetic analyses and were also

supported in the consensus tree from the SVDquartets analysis (Fig 3; Bootstrap >70). Taking

into consideration both the geographical distribution (Fig 1) and phylogenetic analyses of

Blotto et al. [36], these lineages corresponded to the formerly eight Eupsophus species of the

roseus group: E. altor, E.migueli, E. insularis, E. contulmoensis, E. nahuelbutensis, E.
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septentrionalis, E. roseus, E calcaratus, plus a lineage composed by specimens from the locality

of Villarrica, hereafter referred to as Eupsophus sp. (Fig 3).

Bayesian GMYC analyses detected more than one species in these nine lineages except in E.

insularis and E. contulmoensis (Fig 3). Multi rate PTP detected six species corresponding to E.

altor, E.migueli, E. insularis, E. contulmoensis, E. nahuelbutensis, and E. septentrionalis line-

ages, and more than one species in E. roseus and E calcaratus lineages (Fig 3). The nine-species

scenario (Fig 4A, gray cell) was the highest supported in BPP and Tr2 analyses (Fig 4B, black

arrows, scenario 12). For the STEM analysis the eight-species scenario, where Eupsophus sp.

and E. roseus represent a single species, was the highest supported (Fig 4A, scenario 11). Never-

theless, among the other species delimitation scenarios, the STEM analysis greatly favored a

nine-species delimitation scenario (Fig 4B, S4 Table). Highest MLEs in BFD analysis were

obtained for eight-species scenario, where E. altor and E.migueli corresponded to one species

(Fig 4, scenario 10). In this case, Bayes factor comparisons were greater than two, which

allowed us to choose that better scenario (S5 Table). Nevertheless, comparisons with some sce-

narios including that of nine-species were around four, which indicate non-strong or decisive

support to the best model (S5 Table). Other possible scenarios, including that proposed by

Correa et al. [37] (scenario 3), were lowly supported for all multi-locus analyses (Fig 4).

Species tree and divergence time estimates among Eupsophus species

Species tree reconstructions in �BEAST and SVDquartets, using the nine lineages (= species),

recovered similar phylogenetic relationships to the Bayesian and ML analyses (Fig 5). Under

this scenario, E. calcaratus diverged early in Eupsophus radiation for both the species tree and

the divergence time tree. Overlaying posterior sets of trees generated in BEAST and plotted by

DensiTree supported this topology (Fig 5). Thus, we decided to used consensus species tree as

a prior to estimate the divergence times among Eupsophus species (Fig 5, in blue).

The age of crown-group Eupsophus and the origin of E. calcaratus are estimated at 0.396

(0.351–0.442) Myr. Eupsophus insularis diverged at 0.268 (0.230–0.308) Myr, while E. altor
and E.migueli at 0.096 (0.077–0.116) Myr (Fig 5). The split between E. roseus and Eupsophus
sp. /E. contulmoensis, E. nahuelbutensis, and E. septentrionalis was around 0.134 (0.114–0.154)

Myr. The divergence between E. roseus and Eupsophus sp. was estimated at 0.088 (0.072–

0.106) Myr. Eupsophus septentrionalis diverged at 0.111 (0.193–0.131) Myr, followed of E. con-
tulmoensis and E. nahuelbutensis at 0.054 (0.041–0.067) Myr (Fig 5).

Discussion

Species delimitation in the Eupsophus roseus group

The most congruent species delimitation results detected nine species in the E. roseus group,

and eight of them (namely E. altor, E. calcaratus, E. contulmoensis, E. insularis, E.migueli, E.

nahuelbutensis, E. roseus, and E. septentrionalis) were concordant with taxonomic proposals of

the last decades [36,38,49,79–83]. Although, gaps in morphological, geographic, cytogenetic,

bioacoustic, and behavioral information prevent us to carry out a protocol for integrative tax-

onomy, our molecular approach is concordantly with integrative studies available for some

species as E. altor [81]. Moreover, we provided molecular evidences for separation of nine

Fig 2. Phylogenetic relationships among Eupsophus species. This maximum likelihood (ML) tree was reconstructed using concatenated nuclear and

mitochondrial data set. Topologies obtained by ML and Bayesian inference were similar. Numbers above branches represent bootstrap scores and

Bayesian posterior probabilities. Isolate numbers consist of the species abbreviation (E. roseus: ER, E.migueli: EM, E. insularis: EI, and E. calcaratus: EC),

locality abbreviation listed in S1 Table, and field number. Major clades (A, B, and C) and lineages (1–9) of Eupsophus are indicated.

https://doi.org/10.1371/journal.pone.0204968.g002
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evolutionary lineages, a key step to carry out future work protocols under an integrative taxo-

nomical approach [84].

The highest level of congruence was obtained with BPP and Tr2 methods (mean

Ctax = 0.69; nine species), followed by STEM, and BFD (mean Ctax = 0.63; eight species; Figs

3 and 4, S3 Table). Although, Eupsophus sp. and E. roseus clades were recovered as a single spe-

cies by STEM, they were recovered as different species by BPP, Tr2, mPTP, and BFD analyses,

similar to the case of E.migueli and E. altor which were recovered as a single species by BFD

but as two different species in the other analyses. Therefore, the greatest congruence indicated

that Clade B is composed by five different species (Eupsophus sp., E. roseus, E. nahuelbutensis,
E. contulmoensis and E. septentrionalis), while Clade A is composed by three (E. altor, E.

migueli, and E. insularis) as it was suggested in previous works [36,81]. The differences among

the results of these species delimitation methods could be derived from their different sensibil-

ity to the ratio of population size to divergence time, as reported between BPP and bPTP [17].

Hence the importance of carrying out several species delimitation methods to examine

whether the proposed groups are consistently recovered with different algorithms [17,11].

This was evident when we compared results from multi-locus analyses with bGMYC result

(mean Ctax = 0.27), which overestimated the number of species in all lineages except in E.

insularis and E. contulmoensis (Fig 3). It is known that bGMYC has shortcomings when data-

sets consist of few putative species [85] and cannot be used as sufficient evidence for evaluating

the specific status without additional data or analyses [86]. Moreover, this method tends to

overestimate the number of species when the ancestral polymorphism is low [87]. Therefore,

rather than using this method as a species delimitation approach, we used it to obtain alterna-

tive scenarios to be tested with multi-locus analyses (e.g. scenario 13, Fig 4).

Fig 3. SVDquartets and species delimitation analyses. Majority-rule consensus tree from the SVDquartets analysis.

Nodal support values are bootstrap proportions. Bars on the right of the tree indicate the species limits as proposed by

bGMYC, mPTP, STEM, BPP, Tr2 and BFD analyses. All analyses were carried out with mitochondrial and nuclear

loci, except bGMYC and mPTP which used only mitochondrial data set. Limits of formerly Eupsophus species and

putative species from Villarrica (Eupsophus sp.) are indicated with different colors on the branches of the tree and with

square bracket on the right of the bars. These limits correspond to the most congruent species delimitation scenario

(see S3 Table).

https://doi.org/10.1371/journal.pone.0204968.g003

Fig 4. Multi-locus species delimitation analyses. A) species delimitation scenarios. Specimens were assigned to the delimited species indicated in Fig 3. Abbreviations

within parenthesis indicate the grouping tested in each scenario. E. roseus: ER, E.migueli: EM, E. insularis: EI, and E. calcaratus: EC, E. altor: EA, E. contulmoensis: ECO,

Eupsophus sp.: EV, E. nahuelbutensis: EN, E. septentrionalis: ES. Some abbreviated localities from S1 Table were added to species abbreviation to indicate a specific

locality grouping. The most congruent scenario is indicated in gray. B) probability, marginal likelihood (MLE), or score values generated for each scenario using

different species delimitation approaches. Black arrow indicates the credible species hypotheses. For Tr2 lowest score indicates the better-delimited scenario. For STEM

and BFD were plotted model probabilities and MLE values using stepping-stone sampling, respectively (see S4 and S5 Tables).

https://doi.org/10.1371/journal.pone.0204968.g004
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Our delimitation results did not agree with a recent hypothesis [37], which would be related

to the use of different molecular markers and species delimitation analyses. Three of our mark-

ers were found to be highly variables (Cyt b, COI, D-loop), while two were conservative

(POMC and CRYBA1; see S2 Table). Thus, we use at least three strong markers (sequences

with many polymorphic sites), a key aspect to carry out coalescent analyses when less than ten

markers are used [88]. On the other hand, we used several multi-locus coalescent methods to

delimitate species (BPP, STEM, R2, and BFD), while Correa et al. [37] based its inferences in

single-locus analyses (bGMYC, mPTP, and Automatic Barcode Gap Discovery, ABGD). In

this sense, the two groups of synonymized species were recovered as two species in analyses of

mPTP (using mitochondrial data set) and ABGD (using mitochondrial + nuclear data set) per-

formed by these authors [37]. The ABGD method is based on genetic distances computed

from a single-locus (COI) and requires a priori specification of an intraspecific distance thresh-

old [89]. The robustness and accuracy of coalescent approaches over distance methods are well

known, partly because the latter do not appeal to an explicit species concept [17,90]. Therefore,

we decided not to include ABGD in our main species delimitation analyses. Nevertheless, we

conducted ABGD analyses using our COI and concatenated datasets, obtaining different

results (see S1 File). In this regard, the use of two potential barcode gaps allowed us to detected

Fig 5. Species tree and divergence times of Eupsophus. This cladogram illustrates the posterior distribution of the species trees inferred with BEAST based on the

most congruent species delimitation scenario (Figs 3 and 4, S2 Table). High color density is indicative of areas in the species trees with high topology agreement.

Different colors represent different topologies. Consensus species tree are colored in blue. Nodal values are Bayesian posterior probability (BEAST) and bootstrap

proportions (SVDquartets). Mean divergence dates in million years and 95% credible intervals are indicated (below the support values).

https://doi.org/10.1371/journal.pone.0204968.g005
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nine and five groups with COI, while seven and four groups were obtained with concatenated

dataset. Consequently, ABGD results can be influenced by the application of a method

designed for single-locus (DNA barcoding) to concatenated dataset, as well as by the a priori

election of distance threshold. Moreover, ABGD analysis underestimated species diversity

among species with low divergence [89,91]. Thus, ABGD tool is recommended as a first group-

ing hypothesis but not as robust and definitive species delimitation proof [89].

Phylogenetic relationships and divergence time in the Eupsophus roseus
group

Monophyly of E. roseus group and its nine delimited species was strongly supported, concor-

dant with previous analyses (Fig 2; [36,49]). Although the early divergence of E. calcaratus was

not strongly supported in Bayesian, ML, and SVDquartet approaches; our analyses resolved all

other interspecific relationships among delimited species (Figs 2 and 3). In fact, the plot of

overlying posterior sets of species trees (Fig 5) showed few alternative interspecific relation-

ships. One example of this, is the early divergence of E. septentrionalis within Clade B, which

was also recovered by Blotto et al. [36] and Suárez-Villota et al. [49] (Fig 5, in red).

Phylogenetic and species delimitation analyses recognized to Eupsophus sp. as a distinct

species (Figs 3 and 4). In fact, SVDquartet analysis detected this clade with greater support

than other well-defined species such as E. insularis (Fig 3; bootstrap: 95%), and high probabili-

ties were detected in single- and multi-locus species delimitation analyses (Figs 3 and 4). These

results are concordant with previous works suggesting a species-level for this lineage [55].

Although Correa et al. [37] also detected a close phylogenetic relationship between Villarrica

and E. roseus specimens, they considered the three specimens from this locality within the E.

roseus diversity. We sampled 17 specimens from this locality and they were monophyletic with

high support (Fig 2; Bootstrap: 94.4, PP: 0.99). Additionally, we did not detect syntopy

instances in Villarrica, which could result in the recovery of specimens from other localities

within the Villarrica clade (i.e. interpopulational paraphyly). This paraphyletic pattern is com-

mon for localities within the E. roseus lineage, an additional support to consider the possibility

that Villarrica specimens do not belong to E. roseus species. For example, specimens from

Fundo Santa Marı́a (FS) are recovered with specimens from other localities [e.g. Mafil (MA),

Llancahue (LA)], in several highly supported clades within the E. roseus lineage (Fig 2).

We used the divergence rate in agreement with estimates for several other Neobatrachian

species [76]. We fully recognize that this approach is far from ideal with several potential

sources of error [92], but a beginning exploration of evolutionary histories of these endemic

Patagonian species will in our view benefit from provisional estimates. Under this assumption,

most of the delimited species from the E. roseus group diverged from 0.134 to 0.054 Mya dur-

ing the Valdivian interglacial [93], except E. calcaratus and E. insularis whose origin is older

(before of the Last Southern Patagonian glaciation, 0.18 Mya). The oldest deposits of Mocha

Island are dated from the Eocene and Miocene [94] whereas extensive terraces from Pliocene

and Pleistocene characterize more recent settings [95]. Although the origin of E. insularis in

the Mocha Island remain unknown, these large terraces might have been a suitable habitat for

both its settlement and differentiation from the continental Eupsophus species. Anyway, it is

possible that all species lived during Valdivia interglacial and were subsequently affected by

the Last Glacial Maximum (LGM, 0.020–0.014 Mya; [96,97]). Valdivia interglacial was charac-

terized by the presence of North Patagonian forests and Valdivian rainforests [98], which are

habitats associated to Eupsophus species [44,81]. These suitable Late Pleistocene habitats for

Eupsophus species were probably contracted during periods of glacial advance, whereas distri-

butional range shifted during glacial retreats and warming. Therefore, it is possible to
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hypothesize a wide distribution of Eupsophus species during the interglacial, followed by

restricted distribution in refugia during the LGM. Consequently, current restricted distribu-

tion of some Eupsophus species (e. g. E.migueli, E. altor, E. contulmoensis, E. nahuelbutensis,
Eupsophus sp., E. septentrionalis) could be related with Pleistocene cycling events. In fact, geo-

graphical isolation effect of Quaternary cycling events over other vertebrate species has been

hypothesized [99–101].

Finally, the lineage represented by the Villarrica specimens (Eupsophus sp.) diverged from

E. roseus at ~ 0.088 Mya (Fig 5). Under this temporal scenario it is possible that this lineage

lived during the interglacial and was subsequently affected by LGM. A central east colonization

of an ancestral E. roseus population could have given rise to Eupsophus sp. during warmer

interglacial conditions. In this sense, this putative species probably represents a remnant line-

age left behind in central-west Chilean refugia present during LGM. In short, isolation during

LGM, the monophyly, and coalescent species delimitation suggest taxonomic differentiation

of the Villarrica specimens.

Using new molecular datasets and coalescent analyses, our approach revitalizes in an inde-

pendent way the hypothesis that the E. roseus group is composed of eight species. Moreover, we

suggest the taxonomic differentiation for the Villarrica specimens. Finally, we suggest filling

bioacoustic, morphological, behavioral, and karyotypic data gaps for a deep Eupsophus revision.
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